Skip to main content
A Novel Cancer Syndrome Caused by KCNQ1-Deficiency in the Golden Syrian Hamster
Journal of Carcinogenesis
  • Rong Li, Utah State University
  • Jinxin Miao, Utah State University
  • Alexandru-Flaviu Tabaran, University of Minnesota - Duluth
  • M. Gerard O'Sullivan, University of Minnesota - Duluth
  • Kyle J. Anderson, University of Minnesota - Duluth
  • Patricia M. Scott, University of Minnesota - Duluth
  • Zhongde Wang, Utah State University
  • Robert T. Cormier, University of Minnesota - Duluth
Document Type
Medknow Publications
Publication Date
Creative Commons License
Creative Commons Attribution-Noncommercial-Share Alike 4.0

BACKGROUND: The golden Syrian hamster is an emerging model organism. To optimize its use, our group has made the first genetically engineered hamsters. One of the first genes that we investigated is KCNQ1 which encodes for the KCNQ1 potassium channel and also has been implicated as a tumor suppressor gene.

MATERIALS AND METHODS: We generated KCNQ1 knockout (KO) hamsters by CRISPR/Cas9­-mediated gene targeting and investigated the effects of KCNQ1­-deficiency on tumorigenesis.

RESULTS: By 70 days of age seven of the eight homozygous KCNQ1 KOs used in this study began showing signs of distress, and on necropsy six of the seven ill hamsters had visible cancers, including T-cell lymphomas, plasma cell tumors, hemangiosarcomas, and suspect myeloid leukemias.

CONCLUSIONS: None of the hamsters in our colony that were wild­-type or heterozygous for KCNQ1 mutations developed cancers indicating that the cancer phenotype is linked to KCNQ1­-deficiency. This study is also the first evidence linking KCNQ1­-deficiency to blood cancers.

Citation Information
Li R, Miao J, Tabaran AF, O'Sullivan MG, Anderson KJ, Scott PM, Wang Z, Cormier RT. A novel cancer syndrome caused by KCNQ1­-deficiency in the golden Syrian hamster. J Carcinog 2018;17:6-­6