Skip to main content
Article
Basic hydrology, limnology, and meteorology of modern Lake El’gygytgyn, Siberia
Journal of Paleolimnology (2007)
  • Julie Brigham_Grette, University of Massachusetts - Amherst
  • Matthew Nolan, University of Alaska Fairbanks
Abstract
A survey of the modern physical setting of Lake El’gygytgyn, northeastern Siberia, is presented here to facilitate interpretation of a 250,000-year climate record derived from sediment cores from the lake bottom. The lake lies inside a meteorite impact crater that is approximately 18 km in diameter, with a total watershed area of 293 km2, 110 km2 of which is lake surface. The only surface water entering the lake comes from the approximately 50 streams draining from within the crater rim; a numbering system for these inlet streams is adopted to facilitate scientific discussion. We created a digital elevation model for the watershed and used it to create hypsometries, channel networks, and drainage area statistics for each of the inlet streams. Many of the streams enter shallow lagoons dammed by gravel berms at the lakeshore; these lagoons may play a significant role in the thermal and biological dynamics of the lake due to their higher water temperatures (>6°C). The lake itself is approximately 12 km wide and 175 m deep, with a volume of 14.1 km3. Water temperature within a column of water near the center of this oligotrophic, monomictic lake never exceeded 4°C over a 2.5 year record, though the shallow shelves (<10>m) surrounding the lake can reach 5°C in summer. Though thermally stratified in winter, the water appears completely mixed shortly after lake ice breakup in July. Mean annual air temperature measured about 200 m from the lake was −10.3°C in 2002, and an unshielded rain gage there recorded 70 mm of rain in summer of 2002. End of winter snow water equivalent on the lake was approximately 110 mm in May 2002. Analysis of NCEP reanalysis air temperatures (1948–2002) reveals that the 8 warmest years and 10 warmest winters have occurred since 1989, with the number of days below −30°C dropping from a pre-1989 mean of 35 to near 0 in recent years. The crater region is windy as well as cold, with hourly wind speeds exceeding 13.4 m s−1 (30 mph) typically at least once each month and 17.8 m s−1 (40 mph) in winter months, with only a few calm days per month; wind may also play an important role in controlling the modern shape of the lake. Numerous lines of evidence suggest that the physical hydrology and limnology of the lake has changed substantially over the past 3.6 million years, and some of the implications of these changes on paleoclimate reconstructions are discussed.
Keywords
  • Arctic,
  • Hydrology,
  • Limnology,
  • Lake ice,
  • Climate
Disciplines
Publication Date
January, 2007
Publisher Statement
The original publication is available at www.springerlink.com
Citation Information
Julie Brigham_Grette and Matthew Nolan. "Basic hydrology, limnology, and meteorology of modern Lake El’gygytgyn, Siberia" Journal of Paleolimnology Vol. 37 Iss. 1 (2007)
Available at: http://works.bepress.com/julie_brigham_grette/1/