تحلیل تأثیرات استفاده از بام سبز به عنوان راهکاری بر - 42 نگهداری انرژی در اقلیم های مختلف ایران با استفاده از نرم افزار دیزاین بیلدر

Alireza Zolfaghari, *University of Birjand*
Mehran Sa’adati Nasab
Elaheh Norouzi Jajarm
Hamed Moslehi

Available at: https://works.bepress.com/zolfaghari/64/
تحلیل تأثیرات استفاده از بام سبز به عنوان راهکاری بر نگهداری انرژی در اقیانوس های مختلف ایران با استفاده از نرمافزار دیزاین بیلدیر

چکیده

یکی از عواملی که تاثیر قابل توجهی بر مصرف انرژی و همچنین آسیب حزامی دارد، نوع بام ساختمان و مصالح تشکیل‌دهنده آن است. حدود 20 درصد تلفات حرارتی کل ساختمان، از طریق بام آن اتفاق می‌افتد که با توجه به سطح زیادی و نسبت مستمر آن به تابش شدت خورشید در تابستان و هوای سرد در زمستان بدین راه حلی قطعی این اتفاق رفت. یکی از روش‌های کاهش بار حرارتی ساختمان استفاده از بام سبز و به کارگیری پوشش گیاهی بر روی بام ساختمان است. در نتیجه حاضر، تاثیر پارامترهای مؤثر بر عملکرد بام‌های سبز بر مصرف انرژی ماهانه و سالانه ساختمان در چهار شهر ایران مورد تحلیل و بررسی قرار گرفته است. نتایج حاکی از آن است که میزان مصرف انرژی ساختمان به طور چشمگیری به ضرب مساحت برگ پوشش گیاهی به کار رفته بر روی بام ساختمان وابسته است. به طوری که استفاده از پوشش گیاهی با ضرب مساحت برگ 5 می‌تواند به ترتیب در شهرهای اهواز، تهران، البرز و مشهد در طول سال 3.79، 28، 3.97 و 2.56٪ از میزان مصرف انرژی ساختمان کاهش دهد. علاوه بر این، نتایج مربوط به بررسی تغییر تعداد طبقات نشان می‌دهد که با کاهش تعداد طبقات، میزان صرف‌جویی در مصرف انرژی بیشتر خواهد شد. به عبارتی استفاده از پوشش گیاهی بر روی بام ساختمان‌های یک طبقه مقرن به صرفه‌تر است.

واژه‌های کلیدی: نمای دو پوسته، نرمافزار دیزاین بیلدیر، معماری سبز، بهینه‌سازی
تحلل تاثیرات استفاده از یک سیستم نوری بر تغییرات سئولی انسن در اقلیم‌های مختلف ایران با استفاده از نرم‌افزار دیزاین بیلدر

مقدمه

یکی از عواملی که تاثیر قابل توجهی بر مصرف انرژی و همچنین آسایش حرارتی دارد، نوع یک ساختمان و مصالح تشکیل‌دهنده آن است. حدود 20 درصد وسایل حرارتی کلی ساختمان، از طریق یک سیستم برآینده و تغییرات آن اتفاق می‌افتد که با توجه به سطح زیاد بام و نسبت میزان مالکیت باغات به ساختمان در کشورهای مختلف، این افزایش‌ها در هر دو صورت فعالیت انجام می‌شود.

قائمه‌سازی مراحل اجرای طراحی یک ساختمان با استفاده از گیاه‌پوشی و تغییرات طراحی این باغات در در خاک به‌طور مداوم انجام می‌شود.

شکل (1): مصالح ساختمانی برای یک ساختمان سبز

ارزانی کنترل انرژی و انرژی کنترل‌بودن در ساختمان‌های گیاه‌پوش‌ست

استفاده از یک سیستم نوری بر تغییرات سئولی انسن در اقلیم‌های مختلف ایران ممکن است با استفاده از یک سیستم نوری به‌طور مداوم انجام می‌شود.

1 Green roof
تحلیل تاثیرات استفاده از بام بسی به عنوان راهکاری بر تغییرات اقلیمی مختلف ایران با استفاده از نرم‌افزار دیوین بی‌لیدر

چهارمین کنفرانس بین‌المللی
روابداتهای نوین در تغییرات اقلیمی

باشند. این بام بسی سطحی هستند و معمولاً کمتر از 60-200 میلیتری است و به دلیل محدودیت در رشد ریشه، تنوع زیادی از گیاهان را در برابر گردن و وزن این بام بین 60-150 کیلوگرم بر متر مربع است که در سه‌سالهٔ دوم به‌طور مستمر ادامه دارد.

سیستم بام بسی متراکم عمقی بیش از 150 تا 400 میلیتری دارد و طرف گستردگی از گیاهان را در خود جای می‌دهد. وزن معمولی این بام بین 150-500 کیلوگرم بر متر مربع است. که به دلیل این وزن بالا باید سازه مقاوم‌سازی شود. در این بامها تنوع گیاهی بیشتر است. همچنین، بام‌های سبز نیمه‌متراکم در شرایطی بین بام‌های گسترده و متراکم قرار دارند. این بام‌ها دارای عمل مشترک نسبت به بام‌های سبز گسترده حداقل بین 120-250 میلیتری هستند و وزن آن‌ها حدوداً 200 کیلوگرم بر متر مربع می‌باشد.

در این تحقیق پژوهش ضریب مناسب برق را به عنوان مضراتی سطح در طراحی بام سبز اقلیم‌های اهواء، تهران، تبریز و مشهد بررسی می‌گردد و نتایج گیاهی مناسب با بیشتر کاهش مصرف انرژی را پیشنهاد خواهند کرد.

شکل (2). نمونه‌های از انواع بام‌های سبز متداول (الف) بام سبز نیمه متراکم، (ب) بام سبز متراکم، (ج) بام سبز گسترده

تحقیقات پیشین

تاکنون تحقیقات زیادی در زمینه بررسی میزان انرژی‌گذاری بام‌های سبز بر مصرف انرژی ساختمان انجام پذیرفته است. در سال 1998 دلیابیوی[9] یک مدل ریاضی ساده برای بررسی بام‌های سبز ارائه کرد و در نتیجه خود، بام سبز را به عنوان یک سیستم خنک کننده و همچنین یک عقب حرارتی که باعث کاهش شار عبوری از سقف می‌شود، معرفی کرد و پارامترهای مهم در طراحی و انتخاب پوشش گیاهی یک مدل که شامل شاخص مستحکم برق، مشخصات ظاهری شاخ و برق، چگالی طراحی خاک و ضخامت و رطوبت آن می‌شود. در سال 2003 کافیان و همکاران[10] دو حالت بام معمولی و بام سبز را یا یکدیگر مقایسه نمودند. نتایج تحقیق این‌سان نشان داد که در ماه‌های دمای سفید بام با استفاده از پوشش گیاهی تا حدود 30 درجه سلسیوس کاهش می‌یابد. در سال 2003 وارک و وارک[11] تأثیر استفاده از پوشش گیاهی بر روی بام‌ساختمان‌های تجاری در کالیفرنیا شمالی را بررسی نمودند و نشان دادند که این امر می‌تواند به حدود 30 درصد تقاضای سرمایش و گرمایش را در طول سالهای نمک دهد. همچنین، در سال 2009 فنگ و همکاران[12] در یک پژوهش تحلیلی برای مشکلاتی را در کل نمونه‌های در شبیه‌سازی بام‌های سبز ارائه کردند که این امر می‌تواند به حدود 99.1% از کل حرارتی رسیده به بام، مربوط به تشعشع خورشیدی و 0.9 درصد مربوط به گرما در این حالت بود. با استفاده از روابداتهای نوین، 58 درصد از طریق تبخیر آب موجود در گیاه و خاک، 30 درصد از طریق تبدیل تابش با طول موج بند سیاه و فضای انفجار و 9.5 درصد از طریق فتوسنتز در گیاهان از بین می‌روند و تنها 1.2 درصد از در گیاه و خاک ذخیره شده و یا با طریق سفید به داخل ساختمان وارد می‌شود.
روند حل مستقل

در این تحقیق به مدل سازی یک ساختمان نمونه در اقلیم‌های اهواز، تهران، شیراز و مشهد به کمک نرم‌افزار یدزابین بدلر پرداخته شده است و میزان تأثیرگذاری بارهای سیب و پارامترهای طراحی آن بر کاهش میزان مصرف انرژی مورد بررسی قرار گرفته است. فضای مدل سازی ساختمانی 5 طبقه با کاربری مسکونی در نظر گرفته شده است که ابعاد هر طبقه آن 2/8×9.5×21 مترمکعب و دارای چهار پنجره در چهار جنوبي و سه پنجره در چهار شمالی می‌باشد. پنج‌هوا دارای شیب دو‌جداره بوده که ضخامت هر شیب‌های 3 میلی‌متر و گزار محبوس بین شیب‌های هوا با ضخامت 13 میلی‌متر می‌باشد. شکل 3 شماتیکی از این فضای نمونه را نشان می‌دهد. جنس و ساختار مواد بکار رفته در جدارهای ساختمان و خواص فیزیکی آن‌ها در جداول 1 آمده است.

همچنین، فضای نمونه دارای سیستم تهویه مطبوع در بازه آسیب حراتی افراد (دبای تنظیم شده برای زمستان 23 درجه سلسیوس و برای تابستان 28 درجه سلسیوس) است. ساختمان از اطراف با هواهای اراز در ارتباط بوده و هواهای اتفاق با دمای معادل دمای هواهای خارج، 1 متری در هر ساعت تغییر می‌شود. همچنین، الگوی حرارت برای سطوح داخلی و خارجی به ترتیب به صورت پیش‌فرض DOE2 و TARP درنظر گرفته شده است.

![شکل 3. شکل شماتیک ساختمان نمونه](image_url)

جدول 1. جنس، خواص فیزیکی و ساختار مواد بکار رفته در جدارهای ساختمان

<table>
<thead>
<tr>
<th>جنس مصالح</th>
<th>ضخامت</th>
<th>ضربه هدایت</th>
<th>وزن</th>
<th>چگالی</th>
<th>گرمی</th>
<th>درایه</th>
<th>درایه</th>
<th>درایه</th>
<th>درایه</th>
</tr>
</thead>
<tbody>
<tr>
<td>دیوار</td>
<td>لاشه خارج</td>
<td>880</td>
<td>2300</td>
<td>1/4</td>
<td>05</td>
<td>0/5</td>
<td>انود</td>
<td>گچ</td>
<td>لاشه خارج</td>
</tr>
<tr>
<td>دیوار</td>
<td>لاشه داخل</td>
<td>896</td>
<td>2800</td>
<td>0/88</td>
<td>0/02</td>
<td>انود</td>
<td>گچ</td>
<td>لاشه داخل</td>
<td>895</td>
</tr>
<tr>
<td>دیوار</td>
<td>لاشه داخل</td>
<td>896</td>
<td>2800</td>
<td>0/88</td>
<td>0/02</td>
<td>انود</td>
<td>گچ</td>
<td>لاشه داخل</td>
<td>895</td>
</tr>
<tr>
<td>دیوار</td>
<td>لاشه داخل</td>
<td>896</td>
<td>2800</td>
<td>0/88</td>
<td>0/02</td>
<td>انود</td>
<td>گچ</td>
<td>لاشه داخل</td>
<td>895</td>
</tr>
</tbody>
</table>
تحلیل تاثیرات استفاده از یام سبز به عنوان راهکار بر نگهداری انرژی در اقلیم‌های مختلف ایران با استفاده از نرم‌افزار دیرین‌بیدر

نمودار

این نمودار نشان می‌دهد که با افزایش زمان، درصد خورشیدی و انرژی برق به همراه بهبود در بکارگیری یام سبز می‌تواند بهبودی نسبی‌تری در بهره‌وری انرژی داشته باشد. لیست زیر نشان دهنده میزان افزایش انرژی برق در شرایط مختلف است:

<table>
<thead>
<tr>
<th>رنگ</th>
<th>هوا</th>
<th>گرانیت</th>
<th>پیلا</th>
<th>سایبان</th>
<th>بلک</th>
<th>هوا</th>
<th>موزائیک</th>
</tr>
</thead>
<tbody>
<tr>
<td>لا۰۴</td>
<td></td>
<td>2/9</td>
<td>0/02</td>
<td>0/06</td>
<td>0/1</td>
<td>0/3</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۰۷</td>
<td>500</td>
<td>30</td>
<td>0/28</td>
<td>0/06</td>
<td>0/1</td>
<td>0/3</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۱۸</td>
<td>1250</td>
<td>1800</td>
<td>0/1</td>
<td>0/1</td>
<td>0/3</td>
<td>0/1</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۱۰</td>
<td>1000</td>
<td>1100</td>
<td>0/23</td>
<td>0/03</td>
<td>0/3</td>
<td>0/1</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۸۸</td>
<td>840</td>
<td>500</td>
<td>0/16</td>
<td>0/05</td>
<td>0/3</td>
<td>0/1</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۱۱۸</td>
<td>1000</td>
<td>1200</td>
<td>0/38</td>
<td>0/05</td>
<td>0/3</td>
<td>0/1</td>
<td>0/03</td>
</tr>
<tr>
<td>لا۱۰۰۸</td>
<td>1000</td>
<td>3000</td>
<td>1/4</td>
<td>0/03</td>
<td>0/3</td>
<td>0/1</td>
<td>0/03</td>
</tr>
</tbody>
</table>

اعتبار سنگین

پیش از اینکه تاثیر یام سبز بر مصرف انرژی ساختنی را مورد بررسی قرار دهیم، نمود و برای این منظور از مقایسه‌ی نتایج خروجی از این نرم‌افزار با نتایج تحقیقات آقای جافال و همکارانش [13] استفاده شده است. این اثر تاثیر استفاده از یام سبز را با استفاده از نرم‌افزار ترنسیس برای ساختنی به مساحت 96 متر مربع در اقلیم آب و هوایی روجیل فرانسه مورد بررسی قرار داده‌ند. همان‌طور که در شکل 4 مشاهده می‌شود، نتایج مدل‌سازی صورت گرفته در تحقیق حاضر با دقت خوبی بر نتایج مدل‌سازی ساختنی جافال و همکارانش [13] منطبق است.

نتایج

حال که تا حدی از صحت نتایج اطمنان حاصل شد، تاثیر یام سبز بر مصرف انرژی ساختنی در اقلیم‌های اهواز، تهران، تبرز و مشهد مورد بررسی قرار خواهد گرفت. برای این منظور، بهتای نتایج در شکل‌های 5 و 6 بیان می‌گردد و نسبت مصرف انرژی ساختنی نمونه در چهار اقلیم اهواز، تهران، تبرز و مشهد به ازای 12 ماه سال نشان داده شده است. به توجه به شکل 5 مشاهده می‌شود که در اقلیم اهواز که بهبودی گرم‌گی و جوشکشابی دارد، در ماه‌های گرم گیاهی که به‌طور کلی بیشتر می‌باشد مصرف
انرژی ساختن را بیش از همه کاهش داده‌اند به طوری که در اقلیم‌های متوسط، مقدار سالانه 76.5 کیلووات ساعت تعیین می‌شود. نیاز اسکایلر ساختن در اقلیم‌های متوسط مقدار 112.8 کیلووات ساعت تعیین می‌شود. با توجه به شکل 6، مصرف انرژی در اقلیم‌های متوسط در شرایط در حدود 2.95٪ از مصرف انرژی ساختن به‌کاهش باشد. با توجه به نتایج شکل 6، در این اقلیم‌ها انرژی ساختن نیاز به گیاهان به‌طور بیشتری نیاز به مصرف انرژی در اقلیم‌های متوسط دارد. با توجه به شکل 7، در این اقلیم‌ها نیاز به گیاهان به‌طور بیشتری است. در این مورد، مصرف انرژی در اقلیم‌های متوسط، معادل 7.27٪ از مصرف انرژی ساختن را کاهش داده‌است. با توجه به شکل 8، مصرف انرژی در اقلیم‌های متوسط، معادل 1.5 مصرف انرژی را کاهش خواهد داد و استفاده از گیاهان دیگر باعث افزایش مصرف انرژی خواهد شد. در این اقلیم‌ها، گیاهان به‌طور بیشتری می‌تواند مصرف انرژی ساختن در اقلیم‌های متوسط را به میزان 68.47 کیلووات ساعت معادل 6.65٪ کاهش دهد.

![شکل 5](image5.png)

![شکل 6](image6.png)
تحلیل تاثیرات استفاده از یام سبز به عنوان راهکاری بر نگهداری انرژی در اقلیم‌های مختلف ایران با استفاده از نرم‌افزار دیزاین بیلد

جهانی کنفرانس بین المللی
رویکدهای نوین در نگهداری انرژی

با توجه به انرکرد یام سبز در ماه‌های مختلف سال منفی‌بوده و در ماه‌های سرد سال مانع از تابش خورشید روزی یام و باعث افزایش مصرف انرژی ساختمان می‌شود، نمایان کردن عملکرد پوشش‌های گیاهی مختلف در طول سال بررسی شده و برای هر اقلیم مناسب با آب و هوای آن بهترین پوشش را برگزینیم. شکل‌های 9 و 10 مصرف انرژی گرماپی و سرمایشی سالانه ساختمان و درصد کاهش مصرف در حالت‌های مختلف را نشان می‌دهند.

با توجه به شکل‌های 9 و 10، که به ترتیب مصرف انرژی گرماپی و سرمایشی سالانه ساختمان در اقلیم‌های مختلف و پوشش‌های منفی‌بوده را نشان می‌دهند، در تمامی اقلیم‌ها با توجه به انرکرد یام در فصل سرمایی به مدت حداکثری تابش خورشید داریم، گیاهی که کمترین مساحت برگ را داشته باشد، عملکرد‌مناسب‌تری داشته و مصرف انرژی گرماپی ساختمان در این حالت کمتر است. برعکس این حالت در ماه‌های گرم سال، برای جلوگیری از تابش مستقیم خورشید بر روی یام و کاهش نیاز ساختمان بی مصرف انرژی جهت تامین سرمایش، گیاهانی با مساحت برگ زیاد مناسب‌تر بوده و هم‌اکنون که در شکل 10 مشخص است، تاثیر بیشتری نسبت به حالت گرماپی در مصرف انرژی ساختمان داشته است.

با توجه به انرکرد یام سبز در ماه‌های گرم سال دیده می‌شود و همچنین تاثیر معکوس در دو فصل سرد و گرم سال، و همچنین نتایج ارائه شده در شکل‌های 11 و 12 که مصرف انرژی سالانه و درصد کاهش مصرف را نشان می‌دهند، مشخص
تحلیل تاثیرات استفاده از بام سبز به عنوان راهکاری بر نگهداری انرژی در اقلیم‌های مختلف ایران با استفاده از نرم‌افزار دیزاینر

است که برای اقلیم اهواز با دمای هوای بالا استفاده از پوشه‌های گیاهی با مساحت برگ کم باعث افزایش مصرف انرژی خواهد شد. در حالی که گیاهی با ضریب مساحت برگ 5 باعث می‌شود مصرف انرژی 3.28% کاهش یابد. برای دیگر اقلیم‌ها نیز این روند ادامه دارد. به طوری که برای اقلیم تهران استفاده از پوشه‌های گیاهی بهبود باعث 3.97% کاهش، در اقلیم تبریز 1.5% کاهش و در اقلیم مشهد 2.56% کاهش می‌شود.

شکل(9): مصرف انرژی سالانه گرمایشی در اقلیم‌های مختلف در حالات مختلف ضریب مساحت برگ (kWh)

شکل(10): مصرف انرژی سالانه سرمایشی در اقلیم‌های مختلف در حالات مختلف ضریب مساحت برگ (kWh)
تحلیل تاثیرات استفاده از بام سیز به عنوان راهکاری بر نگهداری ارزی در اقلیم‌های مختلف ایران با استفاده از نرم‌افزار دیزاینر

چهارمین کنفرانس بین المللی رویکردهای نوین در نگهداری ارزی

شکل (11). مصرف انرژی سالانه در اقلیم‌های مختلف در حالات مختلف ضریب مساحت برق (kWh)

شکل (12). درصد کاهش مصرف انرژی سالانه در اقلیم‌های مختلف در حالات مختلف ضریب مساحت برق

نتیجه‌گیری

در تحقیق حاضر، تاثیر پارامترهای مؤثر بر عملکرد بام‌های سیز بر مصرف انرژی سالانه ساختمان در اقلیم‌های اهواز، تهران، تبریز و مشهد مورد تحلیل و بررسی قرار گرفت. نتایج نشان داد که گرچه عملکرد بام‌های گیاهی مختلف در اقلیم‌های گوناگون در فصول گرم و سرد سال بسیار متفاوت است، اما با توجه به اینکه عملکرد بام‌های سیز در ماه‌های گرم غلیب می‌باشد، استفاده از بام‌های گیاهی با مساحت برق زیاد می‌تواند به ترتیب در تهران 3/97 در اهواز 3/28 در تبریز 1/5 در مشهد 2/56 در مصرف انرژی ساختمان کاهد می‌باشد. مهترین دلیل این تاثیر و پارامتر مهم در انتخاب نوع پوشش گیاهی، شدت تابش و رطوبت هوا در اقلیم مورد نظر است. اگرچه دمای هوا اهواز بیشتر از تهران است، اما رطوبت کمتر تهران باعث شده بیشترین کاهش مصرف و بهترین عملکرد به این شکل اختصاص یابد.

همچنین در پژوهش دیگر مشخص شد که عملکرد بام سیز در ساختمان‌هایی با تعداد طبقات کمتر، عملکردی مناسبتر و مقرون به صرفه‌تر است.

