Skip to main content
Article
Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts
Biochemistry and Microbiology
  • Christopher A. Drummond
  • Michael C. Hill
  • Huilin Shi
  • Xiaoming Fan
  • Jeffrey X. Xie
  • Steven T. Haller
  • David J. Kennedy
  • Jiang Liu, MUSOM
  • Michael R. Garrett
  • Zijian Xie, Marshall University
  • Christopher J. Cooper
  • Joseph I. Shapiro, MD, Marshall University
  • Jiang Tian
Document Type
Article
Publication Date
3-1-2016
Abstract

Chronic kidney disease (CKD) is accompanied by cardiac fibrosis, hypertrophy, and dysfunction, which are commonly referred to as uremic cardiomyopathy. Our previous studies found that Na/K-ATPase ligands or 5/6th partial nephrectomy (PNx) induces cardiac fibrosis in rats and mice. The current study used in vitro and in vivo models to explore novel roles for microRNA in this mechanism of cardiac fibrosis formation. To accomplish this, we performed microRNA profiling with RT-qPCR based arrays on cardiac tissue from rats subjected to marinobufagenin (MBG) infusion or PNx. The analysis showed that a series of fibrosis-related microRNAs were dysregulated. Among the dysregulated microRNAs, microRNA (miR)-29b-3p, which directly targets mRNA of collagen, was consistently reduced in both PNx and MBG-infused animals. In vitro experiments demonstrated that treatment of primary cultures of adult rat cardiac fibroblasts with Na/K-ATPase ligands induced significant increases in the fibrosis marker, collagen protein, and mRNA expression compared with controls, whereas miR-29b-3p expression decreased >50%. Transfection of miR-29b-3p mimics into cardiac fibroblasts inhibited cardiotonic steroids-induced collagen synthesis. Moreover, a specific Na/K-ATPase signaling antagonist, pNaKtide, prevented ouabain-induced increases in collagen synthesis and decreases in miR-29b-3p expression in these cells. In conclusion, these data are the first to indicate that signaling through Na/K-ATPase regulates miRNAs and specifically, miR-29b-3p expression both in vivo and in vitro. Additionally, these data indicate that miR-29b-3p expression plays an important role in the formation of cardiac fibrosis in CKD.

Comments

Copyright © 2016 the American Physiological Society. All rights reserved.

Citation Information
Drummond CA, Hill MC, Shi H, et al. Na/K-ATPase signaling regulates collagen synthesis through microRNA-29b-3p in cardiac fibroblasts. Physiological genomics 2015;48(3):220-29