Skip to main content
Article
Signal Classification in Fading Channels Using Cyclic Spectral Analysis
EURASIP Journal on Wireless Communications and Networking
  • Eric Like, Air Force Institute of Technology
  • Vasu D. Chakravarthy, Wright Patterson Air Force Base
  • Paul Ratazzi, Griffiss Air Force Base
  • Zhiqiang Wu, Wright State University - Main Campus
Document Type
Article
Publication Date
1-1-2009
Abstract
Cognitive Radio (CR), a hierarchical Dynamic Spectrum Access (DSA) model, has been considered as a strong candidate for future communication systems improving spectrum efficiency utilizing unused spectrum of opportunity. However, to ensure the effectiveness of dynamic spectrum access, accurate signal classification in fading channels at low signal to noise ratio is essential. In this paper, a hierarchical cyclostationary-based classifier is proposed to reliably identify the signal type of a wide range of unknown signals. The proposed system assumes no a priori knowledge of critical signal statistics such as carrier frequency, carrier phase, or symbol rate. The system is designed with a multistage approach to minimize the number of samples required to make a classification decision while simultaneously ensuring the greatest reliability in the current and previous stages. The system performance is demonstrated in a variety of multipath fading channels, where several multiantenna-based combining schemes are implemented to exploit spatial diversity.
Comments

Originally published in EURASIP Journal on Wireless Communications and Networking 2009.

Copyright © 2009 Eric Like et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

DOI
10.1155/2009/879812
Citation Information
Eric Like, Vasu D. Chakravarthy, Paul Ratazzi and Zhiqiang Wu. "Signal Classification in Fading Channels Using Cyclic Spectral Analysis" EURASIP Journal on Wireless Communications and Networking Vol. 2009 (2009) ISSN: 1687-1499
Available at: http://works.bepress.com/zhiqiang_wu/1/