
Northeastern University

From the SelectedWorks of Zhengyu Yang

2019

Systems and Methods for Spike Detection and
Load Balancing Resource Management
Zhengyu Yang, Northeastern University
Venkatraman Balasubramanian
Olufogorehan Tunde-Onadele
Ping Wong
Nithya Ramakrishnan, et al.

Available at: https://works.bepress.com/zhengyuyang/65/

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.northeastern.edu/
https://works.bepress.com/zhengyuyang/
https://works.bepress.com/zhengyuyang/65/

US 20210058453A1
IN

(19) United States
(12) Patent Application Publication (10) Pub . No .: US 2021/0058453 A1

Balasubramanian et al . (43) Pub . Date : Feb. 25 , 2021

Publication Classification (54) SYSTEMS AND METHODS FOR SPIKE
DETECTION AND LOAD BALANCING
RESOURCE MANAGEMENT

(71) Applicant : Samsung Electronics Co. , Ltd. ,
Suwon - si (KR)

(51) Int . Ci .
H04L 29/08 (2006.01)
H04L 12/26 (2006.01)
H04L 12/861 (2006.01)

(52) U.S. CI .
??? H04L 67/1002 (2013.01) ; H04L 67/32

(2013.01) ; H04L 49/90 (2013.01) ; H04L 43/08
(2013.01)

(72) Inventors : Venkatraman Balasubramanian ,
Tempe , AZ (US) ; Olufogorehan
Adetayo Tunde - Onadele , Raleigh , NC
(US) ; Zhengyu Yang , San Diego , CA
(US) ; Ping Terence Wong , San Diego ,
CA (US) ; Nithya Ramakrishnan , San
Diego , CA (US) ; T. David Evans , San
Diego , CA (US) ; Clay Mayers , San
Diego , CA (US)

ABSTRACT (57)

(21) Appl . No .: 16 / 706,161

A load balancing system includes : a centralized queue ; a
pool of resource nodes connected to the centralized queue ;
one or more processors ; and memory coupled to the one or
more processors and storing instructions that , when
executed by the one or more processors , cause the one or
more processors to : monitor a queue status of the centralized
queue to identify a bursty traffic period ; calculate an index
value for a load associated with the bursty traffic period ;
select a load balancing strategy based on the index value ;
distribute the load to the pool of resource nodes based on the
load balancing strategy ; observe a state of the pool of
resource nodes in response to the load balancing strategy ;
calculate a reward based on the observed state ; and adjust
the load balancing strategy based on the reward .

(22) Filed : Dec. 6 , 2019

Related U.S. Application Data
(60) Provisional application No. 62 / 913,536 , filed on Oct.

10 , 2019 , provisional application No. 62 / 890,864 ,
filed on Aug. 23 , 2019 .

102

106
108

Agent
Scheduler Composition Logic

BIL
? Container Container Container

102

Patent Application Publication

106

Agent
Scheduler Composition Logic

112

114

iQ9

17

Feb. 25 , 2021 Sheet 1 of 21

104

Container Container Container

110

Node Pool

FIG . 1

US 2021/0058453 A1

Patent Application Publication Feb. 25 , 2021 Sheet 2 of 21 US 2021/0058453 A1

200

202
F
t
E
E

1 Centralized Queue (CQ)
Workload 1

:)
)
1 ???????????? 204 E

E
1
11
!

F
E

)
)
j
1
1

Dispatcher
5
1

2080 1
1
1
1
3

3 208a 2086 -208c Server
Pool

206a 206b 206c 206d F
E
F

Server 0 Server 1 Server 2 Server 3
$

FIG . 2

-302

job_pkt_struct

Patent Application Publication

Consists of

304

306

key_pt

Value struct

Feb. 25 , 2021 Sheet 3 of 21

Consists of

value_pir

value_size

type

operation

timestamp

308

310

312

314

316

US 2021/0058453 A1

FIG . 3

Patent Application Publication Feb. 25 , 2021 Sheet 4 of 21 US 2021/0058453 A1

V Pool Workload

Queue metrics Traffic metrics

-402 Load Monitor Spike Detector

Queue status Detection degree

Load Balancer 406

FIG . 4

400

Load Balancer
512

High Spike ?

Patent Application Publication

Yes

402

Main Procedure

514

516

Middle Spike ?

Receive Request

Load Monitor

502

Enable " Round Robin " strategy No

Feich queue status

Multiple Queues in the pool ?

Yes

Low Spike ?

Fetch queue status

504

Yes

520

Yes

-No

506

-518

Feb. 25 , 2021 Sheet 5 of 21

No

Fetch queue status

Enable " Join Shortest Queue strategy

-522

Enable " minCV strategy

New strategy update window starts ?

Send al jobs to this Queue

Yes

Wait and do not change load balance strategy

Spike Detector

US 2021/0058453 A1

FIG . 5A

Patent Application Publication Feb. 25 , 2021 Sheet 6 of 21 US 2021/0058453 A1

Procedure Dispatcher (
receiveRequest (request)
mnt - QueueLoadMonitori
det = ForkloadspikeDetectori)
bal - LoadBalancer)
while (result) :

strategy - sendAllToOneQP
????

???? ? if (curTime mod strategyUpdateNindow spikeDeg = cet.getCurSciteDeg 0)
if (spikedeg == highSpike) :
strategy -- roundRobin

else if (spikeDeg - midSpike) :

else if (spikeDeg == lowSpike) :
Strategy - mincy

bal , dispatch (request , strategy)

FIG . 5B

US 2021/0058453 A1

FIG . 6

Time

SM SS SM SW SM SW SM SS SM

SW SM SS SM SW SM

SW SM SS SM

Weak Spike Range

Feb. 25 , 2021 Sheet 7 of 21

Middle Spike Range

10 Stream Number

Strong Spike Range

Patent Application Publication

Patent Application Publication Feb. 25 , 2021 Sheet 8 of 21 US 2021/0058453 A1

Workload Spike Detector

-702 Middle 706 High 710

708 -712
Round Robin Join Shortest Queue minCV

FIG . 7A

Patent Application Publication Feb. 25 , 2021 Sheet 9 of 21 US 2021/0058453 A1

Procedure LoadBalancer (request , strategy) :
if (strategy asendalliooneQ ?) :

qagetQueuePair)
send (request , o

if (strategya - roundRobin) :
q = getQueuePairRoundRobin (lastQueueID)
send (request , q)
Yeturn

if (curTime mod queueStatusupdateilindow
queue Status - mot.getQueueStatus ()

if (strategy -- JSQ) :
q = getQueuePairuso (queueStatus.actualworkloadAmount)
send (request , a
return

else if (strategy -- mincy)
r = getQueuePairlincv (queueStatus , actualWorkload & mount)
send (request , a

FIG , 7B

Patent Application Publication Feb. 25 , 2021 Sheet 10 of 21 US 2021/0058453 A1

Orchestrator -802
-806 Index Policy Filter

Traffic metrics

Bound Calculator Traffic Monitor

Dissemination Traffic status

Composition Logic 812 Load Balancer Agent

Resource Composition Request Update

VM Pool Schedule

FIG . 8

800

Patent Application Publication

812

Reward

804

808

Load Balancer Agent
ncer Agent -806

Index Policy

Bound
Filter Calculator

Traffic Ingestion

Traffic Monitor

Base Resource parameter

Action

810

Environment

Feb. 25 , 2021 Sheet 11 of 21

Schedule

Composition

Load

State observation

US 2021/0058453 A1

FIG . 9

Patent Application Publication Feb. 25 , 2021 Sheet 12 of 21 US 2021/0058453 A1

Initialize :
Stopping time . S (alpha
Gittins index values , G

Largest GI value , max (G !

44 No
New time step , S ?

Yes

1015
Compute new GI value

1020
Sort k largest Gl values

No New kth largest value ?

1030
No

1035
Burst Flag On ,
Call Load Agent

No

FIG . 10A

Class SpikeDetector :
Punction agent's overall schedule

Procedure rundetectionSchedule () :
Step 1 : Initialize

this stoppingtime = nextStatetime ()

Patent Application Publication

Step 2 : While within time step

while (currentTime () > this.prevStoppingTime) t & (currentTime () { this.stoppingTime) :

Step 3 : Compute new GI value

this.currentGivalue - IndexPolicyáilter.getourrenti ()
Step 4 : Sort k largest GI values GIStore.append (this.currentGIValue)

sort (this , GIStore)
trim this GIStore , ki this.kthç?value = this.GIStore?ki

Feb. 25 , 2021 Sheet 13 of 21

Step 5 : Neu kth largest value ? if (this.currentGIValue this.ktnivalue)
return

Step 6 : Signal burst depending on threshold if (this.currentgivalue = - IndexPolicyüllter.getburston)
burstSignal
?

US 2021/0058453 A1

FIG . 10B

806

1105

Linear increasing index scale of burst values

Gl analyzer

Sieps within

burst value

Window

incoming traffic

GI : 0.8

Burst values

0.8

Patent Application Publication

Index Policy Filter

G1 : 05 FIG . 11A

806

1105

Linear increasing index scale of burst values

Gl : 0,1

Gl analyzer

Steps within window

incoming traffic

G1 : 02

Burst values

0.5

Feb. 25 , 2021 Sheet 14 of 21

Index Policy Filler

FIG . 11B

806

- 1105

Linear increasing index scale of burst values

chen ????

AW
Gl : 0.2

Steps within

burst

Gl analyzer

incoming traffic

Burst values

* W

G1 : 0.7

FIG . 11C

Index Policy Filter

US 2021/0058453 A1

Patent Application Publication Feb. 25 , 2021 Sheet 15 of 21 US 2021/0058453 A1

-1205 Incoming traffic enters the IPF

The traffic is examined by the GI analyzer

1215 The Gittins indices of steps in the analysis window are computed

1220 The representative largest value is recorded

-1225 Linear index measure achieved

FIG . 12

Patent Application Publication Feb. 25 , 2021 Sheet 16 of 21 US 2021/0058453 A1

No

New time step ?
Yes

WE
1310

Change in GI value ?

Yes

For each resource , en

1320 Get load managing value , 1

1325 Get base resource parameter ,

1330 Get resource confidence bounds

1335

Apply Q - eaming updates

FIG . 13A

class QlearningAgent :
Dunction c

Procedure play and train (env , agent , t_max = 10 ** 4) ;

* This function should

run a full environment , actions given by the agent's e - greedy policy
train agent using agent update? ...) whenever it is possible

return total reward

if this.strategy . increment Load " B) update ") :

Patent Application Publication

[Iask : Directly use (1 - to - 1 mapping) | * Step : 1 Set NOT PRACHENTED RANGE flag to True

rewards.append (play and train (env , agent))

agent.epsilon * -0.99 Binarized state spaces

?

This environment has a continuous set of possible states , so you will have to group them into bins

somohon ,

* The simplest way is to use ' round (x , n digits) ' for numpy round) to round real number to a given

amount of digits .

Feb. 25 , 2021 Sheet 17 of 21

n actions - env.action space .

print (" first state : & s " (env.reset ()))

?? ????

US 2021/0058453 A1

return

FIG . 13B

Patent Application Publication Feb. 25 , 2021 Sheet 18 of 21 US 2021/0058453 A1

No

New time step ?

Yes

Get parameters need forl " calc : Bj , N

Update n ; according to G

Perform l ' update

1425 Communicate B update

1430 Update confidence bound

FIG . 14

810

814

B

Gl input from the index Policy Filter

1 calculation

Composition Logic

VM schedule updates

Patent Application Publication

VY . N FIG . 15A Confidence bound progression

Feb. 25 , 2021 Sheet 19 of 21

???

Burst Value

w

US 2021/0058453 A1

FIG . 15B

Patent Application Publication

Mode Selector

2091

1605

1610

Feb. 25 , 2021 Sheet 20 of 21

Mode 1 ; Heuristic Mode

Mode 2 : Learning Mode

FIG . 16

US 2021/0058453 A1

Initialize 2 - bit counter

1702

Get Gl value

1706

Patent Application Publication

Gl value in mid - range " ?

Yes Get SCV value

No Select Leaming Mode

1708

1712

Agree on burst ?

1714

Yes Select Heuristic Mode

-1716

Counter value < 2 (midpoint threshold) ?

Yes Seleci Heuristic Mode

1718

No
Select Learning Mode

Feb. 25 , 2021 Sheet 21 of 21

ode] 21724

1720

Failure rate improves or maintained) ?

Failure rate improves or maintained) ?

Yes

Yes

1728

No

Decrement counter (if not already at 0)

US 2021/0058453 A1

1722

FIG . 17

Increment counter (if not already at max value , 3)

US 2021/0058453 Al Feb. 25 , 2021
1

SYSTEMS AND METHODS FOR SPIKE
DETECTION AND LOAD BALANCING

RESOURCE MANAGEMENT

CROSS - REFERENCE TO RELATED
APPLICATION (S)

[0001] This application claims priority to and the benefit
of U.S. Provisional Application No. 62 / 913,536 , filed on
Oct. 10 , 2019 , entitled “ SPIKE DETECTION AND LOAD
BALANCING RESOURCE MANAGEMENT IN CLOUD
COMPUTING , " and also claims priority and the benefit of
U.S. Provisional Application No. 62 / 890,864 , filed on Aug.
23 , 2019 , entitled “ SPIKE DETECTION AND LOAD BAL
ANCING RESOURCE MANAGEMENT IN CLOUD
COMPUTING , ” the content of both of which are incorpo
rated herein by reference in their entirety . This application is
also related to U.S. patent application Ser . No. 16 / 536,928 ,
filed on Aug. 9 , 2019 , and U.S. patent application Ser . No.
16 / 459,166 , filed on Jul . 1 , 2019 , the content of both of
which are incorporated herein by reference in their entirety .

FIELD

[0002] One or more aspects of example embodiments
relate to workload traffic distribution , and more particularly
to systems and methods for spike detection and load bal
ancing .

BACKGROUND

[0003] Generally , the amount of traffic (or load) targeted
towards cloud data centers fluctuate based on user requests .
This traffic may be bursty (e.g. , sudden peak in requests) and
may require a high degree of resource reallocation . Often ,
however , the nature of uncertain workload traffic my require
many requests to be reallocated on - the - fly , which may result
in performance degradation . For example , traffic arriving at
a cloud data center may be proportional to scheduling
delays , where the higher the variability the longer the
scheduling delays . Thus , if resources are committed , chang
ing schedules may result in unsatisfied Service - Level Agree
ments (SLA) .
[0004] These issues may be exacerbated for users who rent
or own multiple server nodes (e.g. , Docker containers ,
virtual machines , and the like) to process (or execute)
requests . For example , these server nodes are generally
hosted by a cloud computing vendor , and may be located on
physical servers that often host other users ' service nodes .
Moreover , these physical servers are oftentimes oversold to
multiple users , such that multiple users share the overprom
ised resource . As a result , a user having a workload spike
(e.g. , sending a large amount of jobs or requests) may not
only cause issues for the user on the shared resource , but
may also slow down the physical host server to affect other

pool of resource nodes connected to the centralized queue ;
one or more processors ; and memory connected to the one
or more processors and storing instructions that , when
executed by the one or more processors , cause the one or
more processors to : monitor a queue status of the centralized
queue to identify a bursty traffic period ; calculate an index
value for a load associated with the bursty traffic period ;
select a load balancing strategy based on the index value ;
distribute the load to the pool of resource nodes based on the
load balancing strategy ; observe a state of the pool of
resource nodes in response to the load balancing strategy ;
calculate a reward based on the observed state ; and adjust
the load balancing strategy based on the reward .
[0008] In one or more example embodiments , the index
value may correspond to a Gittins Index (GI) value .
[0009] In one or more example embodiments , to calculate
the index value , the instructions may further cause the one
or more processors to : calculate a plurality of GI values for
the load associated with the bursty traffic period ; and output
a greatest one of the plurality of GI values as a new spike
value .
[0010] In one or more example embodiments , to distribute
the load to the pool of resource nodes , the instructions may
further cause the one or more processors to : adjust resource
requirements for the pool of resource nodes based on the
new spike value to generate a new compute environment ;
and generate a schedule of job request distributions associ
ated with the load for the new compute environment .
[0011] In one or more example embodiments , to select the
load balancing strategy , the instructions may further cause
the one or more processors to : calculate an incremental load
managing value for each resource in the pool of resource
nodes ; and calculate a base resource parameter for each
resource in the pool of resource nodes .
[0012] In one or more example embodiments , the load
balancing strategy may be selected based on the resource
with the greatest base resource parameter .
[0013] In one or more example embodiments , to calculate
the reward , the instructions may further cause the one or
more processors to : calculate a Q - function based on the
index value , an input state , the selected load balancing
strategy , and a reward function .
[0014] In one or more example embodiments , the Q - func
tion may be calculated according to : Q (s , a) : = r (s , a) + y max , Q
(s ' , a ;) , wherein : s and s ' may correspond to past and present
state GI index values , respectively , a may correspond to
different load values ; and r may correspond to an immediate
reward parameter .
[0015] In one or more example embodiments , the instruc
tions may further cause the one or more processors to : apply
an exponentially weighted moving average to the Q - function
calculation .
[0016] In one or more example embodiments , the load
may correspond to a Poisson traffic distribution .
[0017] According to one or more example embodiments ,
a method for load balancing , includes : monitoring , by one or
more processors , a queue status of a centralized queue to
identify a bursty traffic period ; calculating , by the one or
more processors , an index value for a load associated with
the bursty traffic period ; selecting , by the one or more
processors , a load balancing strategy based on the index
value ; distributing , by the one or more processors , the load
to a pool of resource nodes based on the load balancing
strategy ; observing , by the one or more processors , a state of

users .

[0005] Accordingly , systems and methods for spike detec
tion and intelligent load balancing may be desired .
[0006] The above information disclosed in this Back
ground section is for enhancement of understanding of the
background of the present disclosure , and therefore , it may
contain information that does not constitute prior art .

SUMMARY

[0007] According to one or more example embodiments ,
a load balancing system , includes : a centralized queue ; a

US 2021/0058453 A1 Feb. 25 , 2021
2

the pool of resource nodes in response to the load balancing
strategy ; calculating , by the one or more processors , a
reward based on the observed state ; and adjusting , by the
one or more processors , the load balancing strategy based on
the reward .
[0018] In one or more example embodiments , the index
value may correspond to a Gittins Index (GI) value .
[0019] In one or more example embodiments , the calcu
lating of the index value may include : calculating , by the one
or more processors , a plurality of GI values for the load
associated with the bursty traffic period ; and outputting , by
the one or more processors , a greatest one of the plurality of
GI values as a new spike value .
[0020] In one or more example embodiments , the distrib
uting of the load to the pool of resource nodes may include :
adjusting , by the one or more processors , resource require
ments for the pool of resource nodes based on the new spike
value to generate a new compute environment ; and gener
ating , by the one or more processors , a schedule of job
request distributions associated with the load for the new
compute environment .
[0021] In one or more example embodiments , the select
ing of the load balancing strategy may include : calculating ,
by the one or more processors , an incremental load manag
ing value for each resource in the pool of resource nodes ;
and calculating , by the one or more processors , a base
resource parameter for each resource in the pool of resource
nodes .
[0022] In one or more example embodiments , the load
balancing strategy may be selected based on the resource
with the greatest base resource parameter .
[0023] In one or more example embodiments , the calcu
lating of the reward may include : calculating , by the one or
more processors , a Q - function based on the index value , an
input state , the selected load balancing strategy , and a reward
function .
[0024] In one or more example embodiments , the Q - func
tion may be calculated according to : (s.a) : = r (s , a) + y max , Q
(s ' , a ;) , wherein : s and s ' may correspond to past and present
state GI index values , respectively , a may correspond to
different load values ; and r may correspond to an immediate
reward parameter .
[0025] In one or more example embodiments , the method
may further include : applying , by the one or more proces
sors , an exponentially weighted moving average to the
Q - function calculation .
[0026] In one or more example embodiments , the load
may correspond to a Poisson traffic distribution .

[0031] FIG . 4 illustrates a block diagram of a load bal
ancing system operating under a first mode to balance loads ,
according to an example embodiment .
[0032] FIG . 5A illustrates a flow chart of a method for
selecting an appropriate load balancing strategy under the
first mode , according to an example embodiment .
[0033] FIG . 5B illustrates corresponding pseudocode for
implementing the method of FIG . 5A .
[0034] FIG . 6 illustrates a graph of the SCV - ACF based
spike detection method , according to an example embodi
ment .
[0035] FIG . 7A is a block diagram illustrating a corre
sponding load balancing strategy for each spike level deter
mined by a spike detector , according to an example embodi
ment .
[0036] FIG . 7B illustrates example pseudocode for imple
menting the various load balancing strategies of FIG . 7A ,
according to an example embodiment .
[0037] FIG . 8 illustrates a block diagram of a load bal
ancing system operating under a second mode to balance
loads , according to an example embodiment .
[0038] FIG . 9 is a system diagram of a load balancing
system , according to an example embodiment .
[0039] FIG . 10A illustrates an example flow diagram of a
method for detecting spikes , according to an example
embodiment .
[0040] FIG . 10B is a corresponding pseudocode of the
spike detection method of FIG . 10A .
[0041] FIGS . 11A - 11C illustrate examples of an index
policy filter for analyzing incoming traffic , according to
example embodiments .
[0042] FIG . 12 is a flow diagram illustrating an example
method for generating a burst value , according to an
example embodiment .
[0043] FIG . 13A is a flow diagram of an example method
of a machine learning process , according to an example
embodiment .
[0044] FIG . 13B is corresponding pseudocode for imple
menting the process of FIG . 13A .
[0045] FIG . 14 is a flow diagram of a bound calculator ,
according to an example embodiment .
[0046] FIG . 154 illustrates parameter transmission
between an index policy filter , a bound calculator , compo
sition logic , and a resource pool scheduler , according to an
example embodiment .
[0047] FIG . 15B shows the resulting confidence bound
levels of a load balancing agent , according to an example
embodiment .
[0048] FIG . 16 is a block diagram of a mode selector ,
according to an example embodiment .
[0049] FIG . 17 is a flow diagram of a method for auto
matically selecting between a first mode and a second mode ,
according to an example embodiment .

BRIEF DESCRIPTION OF THE DRAWINGS

DETAILED DESCRIPTION

[0027] The above and other aspects and features of the
present invention will become more apparent to those skilled
in the art from the following detailed description of the
example embodiments with reference to the accompanying
drawings .
[0028] FIG . 1 illustrates a load balancing system in a cloud
environment , according to an example embodiment .
[0029] FIG . 2 illustrates an example device for dispatch
ing jobs from a centralized queue , according to an example
embodiment .
[0030] FIG . 3 illustrates a data structure topology of a job
request , according to an example embodiment .

[0050] Hereinafter , example embodiments will be
described in more detail with reference to the accompanying
drawings , in which like reference numbers refer to like
elements throughout . The present invention , however , may
be embodied in various different forms , and should not be
construed as being limited to only the illustrated embodi
ments herein . Rather , these embodiments are provided as
examples so that this disclosure will be thorough and
complete , and will fully convey the aspects and features of

US 2021/0058453 A1 Feb. 25 , 2021
3

be a

the present invention to those skilled in the art . Accordingly ,
processes , elements , and techniques that are not necessary to
those having ordinary skill in the art for a complete under
standing of the aspects and features of the present invention
may not be described . Unless otherwise noted , like reference
numerals denote like elements throughout the attached
drawings and the written description , and thus , descriptions
thereof may not be repeated .
[0051] One or more aspects and features of example
embodiments of the present disclosure are directed to an
end - to - end solution to detect workload traffic spikes (also
referred to as spike detection) and to conduct intelligent load
balancing across server nodes . In some embodiments , a load
balancing system is provided to detect workload traffic
spikes and to select one or more resources to assign new jobs
for a client . In some embodiments , the load balancing
system may be aware of other users ' behavior impacts on the
shared hosting physical servers (e.g. , through periodic moni
toring of the service rate of its own server nodes) . In some
embodiments , the load balancing system may selectively
operate under two modes : (1) a first mode , which may
heuristic mode ; and (2) a second mode , which may be a
machine learning mode such as , for example , a Reinforce
ment Learning - Based Mode .
[0052] In brief overview , the first mode (e.g. , the heuristic
mode) is a relatively lightweight approach that handles
uniform distribution incoming workloads . Under the first
mode , spikes may be detected using a squared - coefficient of
variation - autocorrelation (SCV - ACF) method , which is
based on the dispersion of a stochastic process . Job requests
may then be allocated using a Round Robin load balancing
strategy , a Join Shortest Queue load balancing strategy , and
a minCV (minimum Coefficient of Variation) load balancing
strategy in response to high , middle , and low spike degrees
(or spike ranges) , respectively .
[0053] The second mode (e.g. , the learning mode) is a
machine learning mode based on a reinforcement learning
based approach (e.g. , Q - learning) that uses an index (e.g. ,
Gittins Index) to predict a spike value (or spike level) within
a specified job completion time . Under the second mode , the
load balancing system may be enabled to respond to a broad
spectrum of spike values (or spike levels) , when compared
to the first mode in which the spike ranges are divided into
predetermined (or preset) categories . In some embodiments ,
under the second mode , the load balancing system may
adjust the load balancing strategies based on changing
workload conditions over time , may be enabled to support
critical or time - sensitive jobs that have an expire due time ,
and may support dynamic resource allocation (e.g. , adding
or removing resources) in response to bursty traffic periods
(e.g. , high traffic spike periods) .
[0054] In various embodiments , the load balancing system
may be configured to operate under any one of the first mode
or the second mode based on various desired aspects and
features of the modes . In some embodiments , the load
balancing system may include a mode selector to automati
cally select between the modes as desired or needed based
on the workload conditions of the resource node pool .
[0055] Detecting and handling bursty requests (e.g. , traffic
spikes) is a complex issue faced in many areas . The difficulty
may lie in analyzing spikes within changing local and global
environments . The widespread cloud computing market is
an area where this issue is commonplace . Accordingly , while
various embodiments are described herein within the context

of a cloud environment in which the load balancing system
assigns job requests to computer (or server) nodes , the
present disclosure is not limited thereto , and it is to be
understood that the same or equivalent functions and struc
tures may be accomplished by different embodiments and in
different environments (e.g. , distributed processing environ
ment in which compute tasks are assigned to worker nodes ,
disk input / output processing in which 1/0 requests are
assigned to disk resources , or the like) that are also intended
to be encompassed within the spirit and scope of the present
disclosure .
[0056] FIG . 1 illustrates a load balancing system in a cloud
environment , according to an example embodiment . As
shown in FIG . 1 , the cloud environment 102 may be
communicably connected to one or more customer devices
(or client devices) 104 to process requests (or jobs) 106 from
the customer devices 104. In some embodiments , the cloud
environment 102 may include a load balancing system 108
connected to a resource node pool 110 to distribute the job
requests to the resource node pool 110 according to various
load balancing strategies . In some embodiments , the
resource node pool 110 may include a plurality of resource
nodes (e.g. , server nodes) , which is shown in the example of
FIG . 1 as a plurality of virtual machines (VM) and corre
sponding containers (e.g. , data containers) . However , the
present disclosure is not limited thereto , and in other
embodiments , the resource node pool 110 may include a
plurality of worker nodes , a plurality of disk drives (e.g. ,
storage resource) , and / or a plurality of processors (e.g. ,
computational resource) .
[0057] In a cloud environment , efficient allocation of
resources to serve requests start at the clients ' side . Client
applications demand resources differently , such that if a
particular client application is in higher demand , computa
tion resources should be re - assigned to that client applica
tion . For example , applications having different execution
requirements (such as serialized loadable library or parallel
process) frequently demand resource reallocation . These
requests , often incoming in short periods , are responsible for
the spikes with higher rates of arrival . However , changing
bursty workloads may degrade quality of service (QoS) , and
may affect service provider profit . Therefore , the job arrival
and completion rate of the workload may need to be opti
mally considered without dropping requests .
[0058] In some embodiments , the load balancing system
108 may include a load balancing agent 112 , a resource pool
scheduler 114 , and composition logic 116. As will be dis
cussed in more detail below , in various embodiments , the
load balancing agent 112 may distribute the load (e.g. , job
requests) to the resource nodes in response to spikey arrival
periods . In some embodiments , the load balancing system
108 may operate under a first mode or a second mode as
needed or desired to balance the load , in response to
changing workload conditions .
[0059] FIG . 2 illustrates an example device for dispatch
ing jobs from a centralized queue , according to an example
embodiment . Referring to FIG . 2 , the device 200 includes a
centralized queue (CQ) 202 , a dispatcher 204 , and a plurality
of server nodes 206a , 206 , 206c , and 206d . In some
embodiments , each of the server nodes 206a , 206 , 206c ,
and 206d has a corresponding queue 208a , 2086 , 208c , and
208d . In some embodiments , a cloud provider system (e.g. ,
the cloud environment 102 of FIG . 1) queues user job
requests in the centralized queue 202 based on a travel path

??

US 2021/0058453 A1 Feb. 25 , 2021
4

TABLE 1 - continued

Parameter Ref . # Description

value_size
type

operation

310
312
314

The size of the job object
Content type of job service
Request operations such as get , put ,
delete , etc.
Timestamp such as Centralized Queue
entry time , in order to capture job time
sensitivity

timestamp 316

of the request . The travel path of the request , which may be
determined by region , may be based on a “ physical - world ”
geographical location (e.g. , if the centralized queue is in
New York , then a worker node in Chicago may be a better
choice than a worker node with the same spec in Tokyo ,
Japan) or may be based on network - topology - based location
(e.g. , a closer location node's access speed may be slower
than a farther location node's access speed) . In some
embodiments , the dispatcher 204 (e.g. , the load balancing
system) may be connected to the centralized queue 202 to
balance the load (e.g. , the user job requests) across corre
sponding queues 208a , 2086 , 208c , and 208d of the region .
[0060] For example , in some embodiments , all requests
(e.g. , jobs) destined for or assigned to the device 200 (e.g. ,
based on region) is queued in the centralized queue 202. The
dispatcher 204 then distributes the queued requests to cor
responding ones of the queues 208a , 2086 , 208c , and 208d
of the server nodes 206a , 206 , 206c and 206d according to
a queue strategy . Each of the queues 208a , 2086 , 208c , and
208d have a characteristic arrival rate and service rate , but
the service rates of the queues 208a , 2006 , 208c , and 208d
may not be guaranteed to be the same as each other at a
given time (e.g. , runtime) .
[0061] In some embodiments , the goal of the dispatcher
204 may be to balance the load across all of the queues 208a ,
2086 , 208c , and 208d in a selected region (e.g. , geographical
location) . For example , in a simplified homogeneous sce
nario , if the requests have the same or substantially the same
amount of workload (e.g. , spends the same makespan) , then
the dispatcher 204 may simply balance the queues based on
the number of queued jobs . However , the requests are
usually not homogeneous , and requests (e.g. , jobs) from a
plurality of applications or even a single application may
have significant differences (e.g. , different workloads) in
real cases .
[0062] Further , it may be possible for a request (e.g. , job)
that is initially considered suitable for a server (e.g. , a server
node) to later become unresponsive or “ stuck , ” for example ,
when resources suddenly change or are re - allocated . In this
case , in some embodiments , the requests (e.g. , jobs) may be
returned to a temporary queue , such that the request (or job)
may be picked up by (or distributed to) other servers (e.g. ,
other server nodes) . In some embodiments , these unrespon
sive or “ stuck ” requests may be returned to the centralized
queue 202 before finally being dropped , in extreme cases . In
some embodiments , the nature of such requests may be
learned (e.g. , via a learning mode) in order to take an
appropriate action , as will be discussed further below .
[0063] FIG . 3 illustrates a data structure topology of a job
request , according to an example embodiment . Each of the
parameters shown in FIG . 3 are described in more detail in
the following Table 1 .

[0064] In some embodiments , from among the parameters
shown in Table 1 , the value_size 310 parameter (e.g. , data
size) and the operation 314 parameter (e.g. , read , write ,
delete , and the like) may have more impact on performance
in terms of latency than the other parameters shown in Table
1. For example , a first request having a 4 KB I / O read and
a second request having a 10 MB I / O write will have
different makespans (e.g. , job finish times) , and thus , a load
balancer (e.g. , the dispatcher) should not treat the first and
second requests equally . Accordingly , in some embodi
ments , requests (e.g. , jobs) may be differentiated based on
their characteristics and by determining an actual or esti
mated workload (e.g. , makespan) associated with the
request .
[0065] FIG . 4 illustrates a block diagram of a load bal
ancing system operating under a first mode (e.g. , the heu
ristic mode) to balance loads , according to an example
embodiment . As described in more detail below , the first
mode is a relatively lightweight heuristic approach that
statically distributes workloads (e.g. , jobs or requests) based
on various spike ranges (or degrees) . For example , in the
first mode , workloads (e.g. , jobs or requests) may be dis
tributed to the resources using a Round Robin load balanc
ing strategy in response to a high spike range (or degree) , a
Join Shortest Queue load balancing strategy in response to
a medium spike range , and / or a minimum coefficient of
variation (minCV) strategy in response to a low spike range .
In some embodiments , the workload spikes (and corre
sponding spike ranges) may be detected based on a squared
?? fficient of ation autocorrela ion (SCV - ACF) method ,
which is based on a dispersion of a stochastic process , for
example .
[0066] Referring to FIG . 4 , in some embodiments , the load
balancing system 400 includes a load monitor 402 , a spike
detector 404 , and a load balancer 406. The load monitor 402
may monitor the resource pool (e.g. , the node pool , server
pool , and the like) and may provide information associated
with the contents of the resource pool (e.g. , the correspond
ing queues of each of the nodes) . For example , in some
embodiments , the load monitor 402 may collect load status
information (e.g. , number of queues , number of job requests ,
each request’s workload amount , and / or the like) of a current
queue in a region . This load status information may be used
by the spike detector 404 to compute a degree (or measure)
of the actual workload involved , instead of using just the
number of jobs queued to compute the spike level . For
example , in some embodiments , the spike detector 404 may
detect (e.g. , measure or compute) a spike level of the current
incoming jobs (e.g. , requests) for a user's centralized queue
to the queues of the corresponding resource nodes . In some
embodiments , the spike detector 404 may label a period
(e.g. , time window) associated with the current incoming
jobs as a strong spiky period , a middle spiky period , or weak
spiky period .

TABLE 1

Parameter Ref . # Description

job_pkt_struct 302

key_ptr
value_struct
value_ptr

304
306
308

The request instanced struct containing
a key and a value object
A pointer to a key
An instanced value struct of the job object
A pointer to the job object , such as the
data / file to be operated on

US 2021/0058453 A1 Feb. 25 , 2021
5

FIG . 5B) . For example , if the load balancer 406 determines
that the spike degree is within a high spike range at block
512 , then the round robin load balancing strategy may be
enabled at block 514. If the load balancer 406 determines
that the spike degree is within a middle spike range at block
516 , then the join shortest queue load balancing strategy
may be enabled at block 518. If the load balancer 406
determines that the spike degree is within a low spike range
at block 520 , then the minCV load balancing strategy may
be enabled at block 522. Once a load balancing strategy has
been determined , the system may lock that strategy at block
510 , as discussed above .
[0072] Each of the load monitor 402 , spike detector 404 ,
and load balancer 406 will be described in more detail with
reference to Table 3 , which summarizes some symbols and
their corresponding descriptions as used herein .

TABLE 3

[0067] In some embodiments , the load balancer 406 may
use the label provided by the spike detector 404 to determine
an appropriate load balancing strategy to use in distributing
the workloads (e.g. , jobs or requests) . In some embodiments ,
based on the load status information and the label , the load
balancer 406 may distribute the jobs (or requests) among the
queues of the resource nodes to balance the load and
improve system utilization . For example , in some embodi
ments , during a low degree (or range) of bursty job arrivals
(e.g. , a weak spiky period) , the load balancer 406 may have
more time to make more accurate decisions based on the
minCV load balancing strategy . During a medium degree (or
range) of job arrivals (e.g. , a middle spiky period) , the load
balancer 406 may use the join shortest queue load balancing
strategy using information corresponding to the workload
state of the queues . During a high degree (or range) of
incoming traffic (e.g. , a high spikey period) , status informa
tion may be delayed so the load balancer 406 may use a
round robin load balancing strategy .
[0068] In more detail , FIG . 5A illustrates a flow chart of a
method for selecting an appropriate load balancing strategy
under the first mode , according to an example embodiment ,
and FIG . 5B illustrates corresponding pseudocode for imple
menting the method of FIG . 5A .
[0069] Referring to FIGS . 5A and 5B , when an assigned
job request is received (e.g. , from a cloud provider) at block
502 , the request is queued in a centralized queue (e.g. , CQ
202 of FIG . 2) . At block 504 , the system checks whether or
not the node pool has multiple queues (e.g. , line 7 in FIG .
5B) . If not (e.g. , no) , then there is only one queue so that all
of the job requests are distributed to the single queue at
block 506. On the other hand , if the node pool has multiple
queues at block 504 (e.g. , yes) , then the system determines
whether a current time corresponds to a new strategy update
window (e.g. , line 10 in FIG . 5B) at block 508. For example ,
Table 2 describes two epoch windows and their functions
used in the first mode .

Symbols Description

T < i , q ?

S ;
Vi
H < viq ?

ta

lal , lel

t cok , is TABLE 2

Actual workload amount of request i in Queue q . The
total makespan of the job .
Job size of request i .
Operation type of request i , e.g. , get , put , delete , etc.
Queue q's Service Rate for request i's operation
type .
Total actual workload amount of all requests queued
in the Queue q .

{ q } Set of queued job requests in the Queue q .
q , c Queue q , and Centralized Queue c in each Cloud

queue region / port . Notice that this c is CQ , not User
Application Layer Queues .
The number of requests that are queued in the
Queue q , and Centralized Queue c .

lqlmax , Iclmax The preset maximal size of Queue q and Centralized
Queue c , respectively .

feq.k. Total actual workload amount of all requests queued
in the Queue q , when the new job request i is
assigned to Queue k . Notice that k may be the same
or not the same as Queue q , thus it is a piecewise
function .
Mean total actual workload amount of all requests
queued in all Queues in the Queue set Q if the new
request i is assigned to Queue k .
The set of Queues in the current Cloud queue
region .

Ng The number of queues in the Cloud queue region .
The coefficient of variation (CV) of total workload
amount of each Queue in the region . This value
reflects the balance degree , e.g. , the larger the CV
there is across the Queues .

SCV Squared - coefficient of variation .
? Spike level , or index of dispersion . The bigger it is ,

the higher the spike level is .
An iterating lag's value and the preset maximal lag
value (usually to be very large or even infinity) for
auto - correlation function as shown in Eq . 3-3 .
The variance of the Centralized Queue (CQ) queued
job number . We assume that the arrival distribution
follows a wide - sense stationary process which
means it is a time - independent process .
A knob to tune the weight of autocorrelation results ,
usually , we can set it to 2 or 3 .

Icly , Icleo Centralized Queue (CQ) queued job numbers at time
t and t + 0 , respectively .
Mean value of the Centralized Queue (CQ) queued
job numbers at time t and t + 0 , respectively .

Epoch Window Name Description

Strategy update window
(W_SU) < Q , k , 1 > A preset frequency for updating strategy

as well as conducting detection
of workload spike level
A present frequency for updating the
status of the queues in the report

Queue status updating window
(W_QSU)

? , ???? [0070] If the current time does not correspond to the
strategy update window at block 508 (e.g. , no) , then the load
balancer 406 may not change the load balancing strategy of
the current epoch at block 510. In other words , once a load
balancing strategy has been determined , the system will lock
that strategy at block 510 , and the load monitor 402 will be
invoked (if necessary or desired) to assist with dispatching
the current load balancing strategy . This “ lazy ” strategy
updating frequency may reduce updating costs associated
with constantly updating the load balancing strategy .
[0071] On the other hand , if the current time corresponds
to the strategy update window at block 508 (e.g. , yes) , then
the spike detector 404 is invoked to detect a spike degree (or
level) of the current traffic in the centralized queue , and will
send the spike degree result to the load balancer 406. The
load balancer 406 may switch between the strategies
depending on the spike degree results (e.g. , lines 10-18 of

Tele , Telite

[0073] As discussed above , considering only the number
of pending jobs (or requests) may not be enough , since the
workload (e.g. , makespan) of a particular job may be dif
ferent from that of another job . Accordingly , in some
embodiments , the load monitor 402 may differentiate jobs

US 2021/0058453 A1 Feb. 25 , 2021
6

Equation 3
E [(| C | + 0 - [C] + e) - ([c] . - Ich)] n - SCV | 1+ Q.

(e.g. , requests) based on their characteristics by converting
them based on their actual (or estimated) workload (e.g. ,
makespan) . For example , in some embodiments , the load
monitor 402 may determine (e.g. , calculate or estimate) the
workload amount of a single job (or request) by dividing a
size of the job request by a service rate of the queue q for the
request's operation type as shown in Equation 1 .

S ; Equation 1
Tci , q > M < v ; , q >

[0074] For a non - limiting example , considering a write
I / O job having 1024 KB size and a write rate of that queue
is 1024 MB / sec , then the workload amount (e.g. , actual or
estimated) is around 0.001 seconds . Accordingly , the load
monitor 402 may identify information of the job's size and
type , as well as each queue's service rate for this type of job ,
in order to calculate the workload amount of the job using
Equation 1. Although all queues in a same cloud region may
have the same service rate for the same type of operation ,
Equation 1 supports queues in the same cloud region having
heterogeneous service rates for the same type of operation
(e.g. , as reflected by P < vi , g > in the denominator of Equation
1) .

[0075] Based on Equation 1 , the total workload amount of
all queued job requests in the queue q can be further
calculated by summing up all the workload amounts of the
requests in queue q , as shown in Equation 2 .

Equation 2
T < i , q >)

[0078] Accordingly , in some embodiments , the spike level
may correspond to a squared - coefficient of variation (SCV)
of an autocorrelation - based function (ACF) . In some
embodiments , the joint presence of SCV and autocorrela
tions may be sufficient to differentiate between job work
loads with different spikes intensities . In Equation 3 , a may
refer to a preset knob to adjust the weight of ACF (e.g. 2 or
3) , O refers to a lag time between t and t + 0 , and o refers to
the variance of the Centralized Queue (CQ) queued job
number . In some embodiments , Equation 2 assumes that the
arrival distribution follows a wide - sense stationary process ,
meaning that it is a time - independent process . As a result ,
the autocorrelation depends only on the lag time 0 , since the
correlation depends only on the time - distance (or time
period) between the pair of values and not on their position
in time .
[0079] FIG . 6 illustrates a graph of the SCV - ACF based
spike detection method , according to an example embodi
ment . In the graph of FIG . 6 , a strong spike is represented
by the reference symbol SS , a middle spike is represented by
the reference symbol MS , and weak spike is represented by
the reference symbol WS . As shown in FIG . 6 , I / O stream
numbers that fall within a corresponding range may deter
mine how the spike level is categorized . For example , if the
I / O stream numbers fall within a first range (e.g. , a weak
spike range) , the spike level may be categorized as a weak
spike WS . If the I / O stream numbers fall within a second
range (e.g. , a middle spike range) , the spike level may be
categorized as a middle spike MS . If the I / O stream numbers
fall within a third range (e.g. , a strong spike range) , the spike
level may be categorized as a strong spike SS . Accordingly ,
in some embodiments , the spike detector 404 may catego
rize each job request of the current epoch into one of the
three spike levels shown in FIG . 6 based on the ranges (e.g. ,
preset ranges) of the spike level types .
[0080] FIG . 7A is a block diagram illustrating a corre
sponding load balancing strategy for each spike level deter
mined by the spike detector 404 , according to an example
embodiment , and FIG . 7B illustrates example pseudocode
for implementing the various load balancing strategies of
FIG . 7A , according to an example embodiment .
[0081] As discussed above , workload imbalance may
cause resource underutilization and / or system performance
degradation . One challenge during load balancing is deter
mining whether the queue status information is trustworthy .
For example , constantly gathering the queue status infor
mation (e.g. , job size , job type , queue's service rate , and / or
the like) may require large overhead , whereas older status
information may be out - of - date . Accordingly , in some
embodiments , the system may detect the spike level to
switch between the different load balancing strategies based
on different trust levels of the queue status information . For
example , queue status information that is gathered during
high request traffic periods (e.g. , high spike level) is gener
ally less trustworthy than queue status information gathered
during low traffic times (e.g. , weak spike level) .
[0082] Accordingly , as shown in FIG . 7A , in some
embodiments , during high traffic periods (e.g. , high spike

M < v ; , q >
ie { q }

[0076] However , it may be costly to gather and calculate
queue workload status frequently . Accordingly , in some
embodiments , an epoch window (e.g. , queueStatusUpdate
Window) , as discussed in Table 2 above , may be provided to
set a periodic “ recalibrate ” queue status . While this can
reduce overhead , it may also introduce an information delay
which may lead to degregated dispatching solutions . For
example , during a high traffic time (e.g. , high job request
spike time) , this delay may lead to assigning all jobs to a
queue that was the most idle in a last epoch , while other
queues become idle after they have finished their queued
jobs . This imbalance may not only wastes system resources
but can cause backlogs . Accordingly , in some embodiments ,
the spike detector 404 may detect the spike level such that
different load balancing strategies may be enabled for dif
ferent spike levels .
[0077] For example , in some embodiments , in order to
enable the system to qualitatively capture job request spikes
in a single score (e.g. , a level or degree value) , while
predicting (or identifying) a start and an end of a spike
period , the spike detector 404 may utilize the SCV - ACF
based spike detection method . For example , the level of
spikes may be defined as an index (n) of dispersion of a
stochastic process , as shown in Equation 3 .

US 2021/0058453 A1 Feb. 25 , 2021
7

queued jobs to represent the workload amount . This imple
mentation method may be beneficial in cases where the
overall system utilization ratio is very high , since it may be
faster than using actual (or estimated) workload amounts of
each queue . Accordingly , in some embodiments , the load
balancer 406 may enable the JSQ load balancing strategy to
assign the incoming job request to the queue with the least
number of queued request , as shown in Equation 6 .

min : k +1

s.t .:

\ kl < \ klmax Equation 6 :

level) 702 , the load balancer 406 may select the round robin
load balancing strategy 704. During medium traffic periods
(e.g. , middle spike level) 706 , the load balancer 406 may
select the join shortest queue load balancing strategy 708 .
During low traffic periods (e.g. , weak spike level) 710 , the
load balancer 406 may select the minCV load balancing
strategy 712. Each of these strategies will be discussed in
more detail below .
[0083] In the case of high traffic periods (e.g. , a large
number of requests are detected by the load monitor 402) ,
the load balancer 406 may enable the round robin load
balancing strategy , which has low or no overhead since the
queue status information or complicated load balancing
calculations are not needed . For example , during such high
traffic periods , determining the workload amount of each
queue may be costly , and the queue status information may
be frequently out - of - date due to delays from the high traffic .
Such delays may mislead the system , for example , by
sending all job requests to a previous lowest workload
queue , which may result in imbalance due to saturation of
that queue . In other words , since the queue status informa
tion cannot be trusted , and there is no time to conduct
complicated calculations on the large amount of high traffic ,
the round robin load balancing strategy may be enabled
during high traffic periods .
[0084] For example , in some embodiments , as shown in
Equation 4 , the system may maintain the previous queue
number k , and may add a one for each new job request . If
the queue number k exceeds a boundary , it goes back to zero
(e.g. , since the queue number is from 0 to Nq - 1) , as shown
in Equation 4

[0088] In some embodiments , given a set of queues Q ,
Equation 6 may be written as shown in Equation 7 .

Equation 7 argmin
(| k | + 1)

ke { Q }

[0089] While using the number of queued jobs may be
faster than using actual (or estimated) workload amounts of
each queue , the tradeoff may be accuracy since the number
of queued jobs does not consider the load differences
between the jobs . Accordingly , in some embodiments , to
reflect the actual (or estimated) workload amount more
accurately , the load balancer 406 may enable the JSQ load
balancing strategy to further calculate the actual (or esti
mated) workload amount of each queue , adding the new job
request's (converted) workload amount . For example , in
some embodiments , the load balancer 406 may first define
the total actual workload amount of all job requests present
in the queue q , when a new request I is assigned to the queue
k . Given k , the queue q's total amount of workload may be
calculated using Equation 8 .

Equation 4 k + 1 , ke [0.Ng – 2]
0 , k = Ng -1

? ? (ja) » k?q Equation 8
je { q }

[0085] As shown from Equation 4 , the left - hand - side k
represents a next round selection of k to assign the new job
request , and this k value is based on its own previous value
(k + 1) . Since the round robin load balancing strategy is
independent on the characteristics of the new job request , the
constraint is that we need to make sure the selected queue (as
well as all other queues) is (are) not full , as shown in
Equation 5 .

liq , k , 1)
? ? (id) 1 : 0) + + T (1,9) , k = 9
je { f }

\ k \ < \ klmax Equation 5 : [0090] As shown in Equation 8 , k may or may not be equal
to q , and thus , is a piecewise function . Accordingly , as
shown in Equation 9 , an optimization framework may be to
find the queue k where the load is lowest (including the
newly added job if the queue is not full) . Thus , the load
balancer 406 may assign the incoming request to the queue
with the least actual (or estimated) workload amount of
queued requests using Equation 9 .

[0086] In the case of middle (or medium) traffic periods ,
the load balancer 406 may enable the join shortest queue
(JSQ) load balancing strategy , which aims to balance the
load across the queues while reducing the probability that
any one queue has several jobs pending while the others are
idle . During middle traffic periods , since the delay of the
queue status information and the actual queue status is
smaller than that of higher spike level epochs , the delayed
queue status information may be more trustworthy than
during high spike situations . Accordingly , during middle
traffic periods , the load balancer 406 may have more time to
retrieve and utilize more detailed queue status information .
[0087] In various embodiments , the JSQ load balancing
strategy may be implemented based on the number of
queued jobs and / or based on the actual (or estimated)
workload amount . For example , in some embodiments , the
JSQ load balancing strategy may simply use the number of

min : { x } , kçi) Thisk) + Tkijk) + Tijk) Equation 9
je { k }

s.t .: \ k] <] k max

[0091] In some embodiments , given a set of queues Q and
the new job request i , Equation 9 may be written as shown
in Equation 10 .

US 2021/0058453 A1 Feb. 25 , 2021
8

-continued
Equation 10 | k] < \ klmax argmin

ke { Q } l (kki)

[0095] As shown in Equation 13 , an optimization frame
work minCV is provided to minimize or reduce the objective
function under three constraints (e.g. , s.t. in Equation 13) .
The first constraint ensures that q (iterated queue) and k
(queue to assign the new job) are in the set of all available
queues in the region . The second and third constraints ensure
that queues should not queue more than their preset queue
capacity (e.g. , lalmar and kl mar) in the unit of job request
numbers . This optimization framework is referred to as
minCV , since it aims to minimize the CV of
workload amounts by identifying the k to achieve the
minimal value of CV , as shown in equation 14 .

[0092] In case of low (or weak) traffic periods , the load
balancer 406 may enable the minCV load balancing strategy ,
since the load balancer 406 may have more time to conduct
a full optimization considering both actual (or estimated)
workload amount , and a more accurate balance degree
measurement . In some embodiments , the actual (or esti
mated) workload amount may be calculated , for example ,
using Equations 1 and 2 discussed above . The balance
degree measurement may be calculated using a standard
deviation (e.g. , the square root of the variance) , but requires
the same units (e.g. , the absolute number of inputs) as the
mean . Accordingly , in some embodiments , the load balancer
406 may evaluate the dispersion of the queue workload
distribution using Coefficient of Variation (CV) , also known
as Relative Standard Deviation (RSD) , which is the ratio of
the standard deviation to the mean . For example , in some
embodiments , for any given k (which corresponds to the
selected queue to be assigned the job request) , the load
balancer 406 may calculate a mean total actual workload
amount of all requests queued in all queues in the queue set
Q using Equation 11 .

queue actual

Equation 14 argmin
?? , k , i) k? Q

flaki) Equation 11

f | Q , ki)
qEQ

Na

[0093] The load balancer 406 may then calculate the CV
(represented by 2 in Equation 12) by dividing the standard
deviation by the mean calculated in Equation 11 as shown in
Equation 12 .

(Pig , : k.i) - P1Qk)) ? Equation 12
GEO

1210 , k , 1) Na
l (Q , k , 1)

[0096] FIG . 8 illustrates a block diagram of a load bal
ancing system operating under a second mode to balance
loads , according to an example embodiment . FIG . 9 is a
system diagram of the load balancing system of FIG . 8 ,
according to an example embodiment . As described in more
detail below , the second mode is a machine learning (e.g. ,
reinforcement learning) based method that uses an index
(e.g. , Gittins index) to predict spike values within a particu
lar job completion time . In some embodiments , when oper
ating under the second mode , the system may be enabled to
respond to a spectrum of spike values , instead of the spike
levels of the first mode that are divided based on the
configured (e.g. , pre - configured) ranges (e.g. , weak spike
range , middle spike range , and strong spike range) . Further ,
in some embodiments , when operating under the second
mode , the system may be enabled to dynamically adjust the
load balancing strategies according to changing workload
conditions over time , instead of being limited to the pre
configured load balancing strategies (e.g. , round robin , join
shortest queue , and minCV) of the first mode . In some
embodiments , the system operating under the second mode
may be enabled to support job requests having an expire due
time (e.g. , also referred to hereinafter as time - sensitive job
requests) , and / or may add or remove resources dynamically
in response to bursty traffic periods .
[0097] Referring to FIGS . 8 and 9 , in some embodiments ,
the system 800 may include an orchestrator 802 , a traffic
monitor 804 , an index policy filter 806 , a load agent (or load
balancing agent) 812 , a bound calculator 808 , composition
logic 810 , and a resource pool (or VM pool) scheduler 814 .
In some embodiments , the traffic monitor 804 may monitor
the central queue (e.g. , CQ 202 in FIG . 2) and may transmit
status information of the central queue . In some embodi
ments , the index policy filter 806 may manage time - critical
information including time window decisions . In some
embodiments , the load balancing agent 812 may enable
various load balancing strategies based on machine learning
methods (e.g. , reinforcement learning (Q - learning)) . For
example , in some embodiments , as shown in FIG.9 , the load
balancing agent 812 may distribute a load to the pool of
resource nodes according to a selected load balancing strat
egy (e.g. , Action) , observe a state of the pool of resource

[0094] As shown in Equation 12 , given a queue k that is
selected to accept a new request i , the balance degree of all
queues in the queue set Q after the new request is added to
k is 2 < Q , k , i > . In this case , a smaller CV value (2) indicates
a better load balancing result in the cloud region / port .
Accordingly , in some embodiments , the load balancer 406
may implement the minCV load balancing strategy using
Equation 13 , which aims to minimize or reduce the imbal
ance degree .

Equation 13 (fig .) - Pon) ?
gEQ

min : 12 , k , 1) Na
l (Q , k , 1)

s.t .: 9 , k?Q
lal = almax

US 2021/0058453 A1 Feb. 25 , 2021
9

tor . For example , burstiness may be described based on a
single parameter , and this parameter may allow learning
traffic behavior and may provide feedback to the operator on
the fly . More specifically , in some embodiments , the model
fitting and trace generation is efficient , as it scales linearly
with the size of the data . The system 800 , according to some
embodiments , utilizes reinforcement learning as a machine
learning strategy , since reinforcement learning is a “ fail - fast
learn - fast ” approach .
[0103] For example , in some embodiments , entropy may
be defined as the uniformity of a discrete probability func
tion P. An entropy value E (P) for an event P with probability
P ; is defined in Equation 15 .

n Equation 15
E (P) = Epilog , 1 / pi

i = 1

[0104] Where the variables of Equation 15 are defined in
Table 4 .

TABLE 4

Symbol Description

E (P)
Pi

Entropy of event P
Probability of an event p

Calculation of Entropy
E (P) = pilog , 1 / P :

i = 1

nodes in response to the load balancing strategy (e.g. , State
observation) , calculate a reward based on the observed state
(e.g. , Reward) , and adjust the load balancing strategy based
on the reward . In some embodiments , the bound calculator
808 may communicate the load balancing agent's 812
confidence in meeting job requirements . In some embodi
ments , the composition logic 810 may enable the load
balancing agent 812 to add or remove resources (e.g. , from
the resource pool) . In some embodiments , the resource pool
scheduler 814 may prepare job requests to be scheduled into
an appropriate queue .
[0098] In brief overview , the system 800 may be broken
up into a detection phase and a dissemination phase as two
main phases . In some embodiments , the traffic monitor 804
and the index policy filter 806 are primarily involved with
the detection phase (e.g. , spike detection and time - critical
job support functions) , whereas the load balancing agent
812 , the bound calculator 808 , the composition logic 810 ,
and the resource pool scheduler 814 are primarily involved
with the dissemination phase (e.g. , load balancing and
dynamic resource adjustment) . In some embodiments , the
bound calculator 808 may be considered as the learning
" glue ” that processes the detection information for load
balancing action .
[0099] In some embodiments , during the detection phase ,
the orchestrator 802 receives input from a local traffic
monitor 804 concerning the job request arrivals . The job
request arrivals are passed through the index policy filter
806 where each window of burst is time stamped . For
example , a Gittins index of 0.7 suggests that 70 % of the job
requests arrive in half the time interval , and the remaining
30 % of the job requests arrive in the other half of the time
interval . In some embodiments , during this arrival process
two kinds of actions may be taken . A first action that may be
taken is the overall optimal strategy for preempting traffic ,
and a second action that may be taken is computation of the
Gittins index . In some embodiments , an optimal strategy of
allocating compute resources may be computed based on
how the traffic construction grows over time .
[0100] For example , an initial construction may begin
with a two time period division of a window , and gradually
resources over number of requests may be generated on each
half of the time axis according to the Gittins index compu
tation . The output may be sent to the bound calculator 808 ,
where an incremental load value may be calculated based on
the predicted spike requirement . The calculated incremental
load value may then be used in the next phase (e.g. , the
dissemination phase) to reallocate resources , for example .
[0101] During the dissemination phase , the orchestrator
802 may measure a resource increment (I) used for the
change in the initial allocation , and may perform re - com
putation of the desired resource requirement . This may be
given as input to a composition logic 810. Accordingly , the
dissemination phase may work in cooperation with the
infrastructure that plays an integral role in resource provi
sioning in the cloud . For example , the composition logic 810
may perform the requested resource VM chaining tailoring
to the service demands in the SLA (Service Level Agree
ment) or QoS (Quality of Service) .
[0102] According to some embodiments , a spike indica
tion parameter based on the Gittins index enables the system
800 to predict the spike value within a specified job comple
tion time with very few parameters . This enables the system
800 to balance loads while maximizing profits for an opera

[0105] As shown in Equation 15 , when all the probability
values are equal (or the same) , then entropy reaches a
maximum value . On the other hand , if one event dominates ,
then entropy approaches zero . Thus , in some embodiments ,
entropy describes the burstiness , and a global value of
burstiness per se is judged by a Hurst parameter . It is actually
a notion of self - similarity , but self - similar processes do not
always generate a bursty sequence . In addition , the Hurst
parameter pertains to usage over large time scales . Accord
ingly , in some embodiments , inspiration is drawn from a
statistical index called the Gittins index .
[0106] Typically , the Gittins index is used as a parameter
that demarcates requests within a time interval . For example ,
a Gittins index of 0.7 suggests that 70 % of the requests
arrive in half the time interval and the remaining 30 % in the
other half . During this arrival process , two kinds of actions
may be taken , one action is the overall optimal strategy for
pre - empting traffic , and the other action is computation of
the Gittins index . In some embodiments , the optimal strat
egy of allocating computing resources may be determined
based on how traffic construction grows over time . For
example , the initial construction begins with the two - time
division and gradually recurses over the number of requests
generated on each half of the time axis according to the
Gittins index computation . In some embodiments , how fast
the Gittins index can be computed is not the intention , but
instead , the insights gained by using the index as an input to
learn the traffic characteristics . For example , in some
embodiments , as the value of the Gittins index approaches
1 , higher traffic irregularity may be assumed since uniform
traffic index values are typically around 0.5 .

US 2021/0058453 A1 Feb. 25 , 2021
10

TABLE 5 - continued

Symbol Description

T (S (a)) , B Time to completely traverse stopping
set S (a)
T (S (a)) with t > 0 : Xt \ in S (a) ,
discount parameter
reward for state space (Xt) , T (S (a))
with t > 0 : Xt \ in S (a) , Identity Matrix

r * (X .) , I

Paba Markovian update function , Cu = { if be C (ak)
otherwise

dak GI calculation formula

[T (S (a))

El Br " (X :) Xo = a
Expectation of the reward based on
prior knowledge

t = 0

[T (S (a)) maximum value of the Bayesian
expectation E Br " (X) Xo = a

t = 0
max

[T (S (a))
E | ? ? ' | ?? = 0

I = 0

[0107] In some embodiments , the second mode (e.g. , the
learning mode) may be used to cater to an arbitrary distri
bution (e.g. , unlike the first mode catering to a uniform
distribution) . For example , in some embodiments , the sec
ond mode may encompass uniform distribution as a special
case scenario . In some embodiments , the traffic considered
in most scenarios under the second mode may be described
as a poisson traffic that is not always self - similar . For
example , different user requests ranging from multimedia ,
gaming applications , to web apps have shown the drastic
need to manage quality of service in such environments .
Typically , when the load in a network goes beyond a usual
load barometer there is a need to manage such a change .
Hence , such distributions are arbitrary and may need to be
brought under an indexable umbrella . In other words , the
indexability of the second mode may enable converting a non - machine learning problem into a machine learning
problem . In some embodiments , the function is monotoni
cally increasing making the overall traffic indexing easier .
Further , in some embodiments , the arrival distributions may
be mapped as an onto function to the traffic arrival .
[0108] In some embodiments , the Gittins index enables
job preemption , that is , time critical jobs may be performed
first , instead of following a first come first serve (e.g. , FCFS)
job completion . For example , consider a scenario where the
overall jobs being queued is of two types , namely , best effort
and time sensitive traffic . In some embodiments , the fresh
arrival time and schedule based on the Gittins index is
computed to stall the traffic that is either stagnant in the
queue or who's resource occupation is unknown .
[0109] In more detail , FIG . 10A illustrates an example
flow diagram of a method for detecting spikes , according to
an example embodiment , and FIG . 10B is a corresponding
pseudocode of the spike detection method of FIG . 10A .
Referring to FIGS . 8 , 9 , 10A , and 10B , in some embodi
ments , the flow of control starts from detection . Once the
detection occurs , the index (e.g. , the Gittins index) allows
the traffic to be segregated as time critical and best effort
traffic . Likewise , the index can characterize the traffic based
on how bursty it is and the degree of burst defined from the
Hurst parameter . In some embodiments , in order to satisfy
the burst request , more resource requirements may be
desired in such scenarios , which can be satisfied by com
posing a new virtual compute environment . In some
embodiments , the load balancer includes the bound calcu
lation parameters (e.g. , as calculated by the bound calculator
808) and a new load increment value (e.g. , based on the
degree of burst) . In some embodiments , the time critical
nature of jobs may be monitored by both the index policy
filter 806 and the traffic monitor 804 .
[0110] For example , in some embodiments , as job requests
are queued (e.g. , in the CQ 202 of FIG . 2) , the traffic monitor
804 monitors the queue for spike detection . In some embodi
ments , the traffic monitor 804 may calculate a Gittins index
metric to segregate the traffic . For example , Table 5 defines
some symbols and their related descriptions of the algo
rithms used for spike detection , according to some embodi
ments .

[0111] Referring to FIGS . 10A and 10B , consider time
t = 1 , a first spike is received in the network . A decision to be
made here (e.g. , the ultimate decision of flow diagram of
FIG . 10A , may be referred to as successful spike detection .
Accordingly , for any other value determined by the flow
diagram of FIG . 10A may be considered to be a failure . For
example , the decision to be made by the flow diagram of
FIG . 10A may follow a Bernoulli decision of success and
failures . In some embodiments , as this problem may likely
evolve exponentially based on service rates , this problem
may be proved as NP - complete (or in other words , increase
of service rate leads to increase of computation time which
is not in the polynomial order . Accordingly , in some embodi
ments , a scalar may be modeled based on a stopping time T ,
which is a time when the detection phase transitions to the
dissemination phase .
[0112] For example , at block 1005 , the traffic monitor 804
may initialize . During initialization , the traffic monitor 804
may determine the highest Gittins index (GI) , § using
Equation 16. The stopping phase for a state a may be defined
as S (a) , such that if a , has the highest GI , then Ç = S (Q) .

Equation 16
Ma) = max

El S " Br (X) [Xo = x]
B [Xo = a]

where
E [X = 0 T (S (a))

TABLE 5 S (a) cs

Symbol Description

S (a) , C (ay) State a , Stopping set S (a) , Continuing
set (C (a)
Gittins Index Value for ' a ' , Globally
initialized Gittins Index value

(a) , t
[0113] Within the stopping phase S for the state ai at block
1010 , blocks 1015 , 1020 , and 1025 are iterated over the ai
state such that if C (ak) = al ... ak - 1 represents the next kth
largest GI , this may be represented by Equation 17 .

US 2021/0058453 A1 Feb. 25 , 2021
11

Equation 17 Qs = { Pict , it be clou) otherwise

[0114] In Equation 17 , P ab represents the reward function
using an mxl matrix . Further , if I represents the mxm
identity matrix , then we may compute the value of Gittins
index GI by first using two assistant equations (Equations 18
and 19) :

(k) = [I - BQK)] ' S Equation 18 :

(= [I - BOWk - 1 Equation 19 :

[0115] Based on Equations 18 and 19 , the value of the
Gittins index GI may be computed from Equation 20 .

dick Equation 20

[011] After the value of the Gittins index GI is computed
(e.g. , at block 1015) , sorted (e.g. , at block 1020) , and
determined to be the largest kth value (e.g. , at block 1025) ,
the GI value (e.g. , the largest kth GI value) is compared to
a GI threshold value (e.g. , 0.5 in this example) to determine
the best completion rate for a time T , which is the stopping
time . In this case , if the Gittin index GI is greater than the
GI threshold value , a burst flag is set to on to call the load
balancing agent 812 at block 1035 .
[0117] FIGS . 11A - 11C illustrate examples of an index
policy filter for analyzing incoming traffic , according to
example embodiments . While some non - limiting example
waveforms of the incoming traffic are illustrated in FIGS .
11A - 11C , the present disclosure is not limited to the
examples shown in FIGS . 11A - 11C , and the actual wave
forms of the incoming traffic may differ from those shown .
In some embodiments , after the monitoring procedure , the
index policy filter 806 may mark the incoming traffic based
on indexability to determine a proper spike value (e.g. , burst
value) of the incoming traffic . For example , in some embodi
ments , the index policy filter 806 analyzes incoming traffic
of various distributions for bursts using the Gittins indices .
The Gittins index provides a linear scale to represent the
maximum value considered for a burst .
[0118] For example , in some embodiments , the index
policy filter 806 may include a Gittins Index (GI) analyzer
1105. In some embodiments , the GI analyzer 1105 computes
the Gittins index for arrival groups in steps of a window , and
may output a representative value (e.g. , a burst value)
corresponding to the spike value for the window . For

example , as shown in FIG . 11A , the GI analyzer 1105 may
analyze the incoming traffic to generate randomly changing
spike values (e.g. , Gittins index values or GI values) . As
shown in FIG . 11A , linear increase in traffic arrival with the
highest burst (e.g. , highest burst value) may be segregated .
As shown in FIG . 11B , linearly increasing burst values may
result in the GI analyzer 1105 outputting the highest value
(e.g. , the highest burst value) as the new spike value . As
shown in FIG . 11C , increasing burst values with a different
set of random values may result in the GI analyzer output
ting the highest value (e.g. , the highest burst value) as the
new spike value .
[0119] FIG . 12 is a flow diagram illustrating an example
method for generating a burst value , according to an
example embodiment . Referring to FIG . 12 , incoming traffic
is received by the index policy filter 806 at block 1205. The
incoming traffic is examined by the index policy filter 806 at
block 1210. For example , in some embodiments , the index
policy filter 806 may segregate the arrival groups into a
plurality of steps of a window . The Gi indices of each of
the steps in the analysis window may be computed at block
1215. For example , the index policy filter 806 may calculate
the Gittins index for each of the steps in the analysis
window . The representative largest value may be recorded at
block 1220. For example , the index policy filter 806 may
identify and record the largest Gittins index from among the
steps in the analysis window . The linear index measure is
achieved at block 1225. For example , the recorded Gittins
index provides a linear scale to represent the maximum
value considered for a burst .

[0120] In some embodiments , once the detection phase is
completed , the new spike values are used to produce new
load requirements . For example , in some embodiments , the
bound calculator 808 may calculate a bound calculation to
determine a desired resource (e.g. , from the resource pool)
to be pooled in . In some embodiments , once the bound
calculation is determined , all such future spike variations are
trained and the load request may be satisfied . The bound
calculator 808 will be described in more detail with refer
ence to FIGS . 14 to 15B .

[0121] Hereinafter , aspects and features of the load bal
ancing agent 812 for allocating resources in response to
traffic conditions will be described in more detail . In some
embodiments , the load balancing agent 812 may handle the
parameters needed to make decisions on the nodes (e.g. ,
VMs , containers , and / or the like) selected to satisfy the input
load . Table 6 defines some symbols and their related descrip
tions of the algorithms used by the bound calculator 808 and
the load balancing agent 812 , according to some embodi
ments .

TABLE 6

Symbol Description

21nN Incremental load bounds
calculated , allocations , load values I '

??

B ; = B ; + I ' Base resource parameter ,
updated base resource parameter

US 2021/0058453 A1 Feb. 25 , 2021
12

TABLE 6 - continued

Symbol Description

max (29p ? – r { b ;) ; VCEC ; Ve E E
iel jej

Time to completely traverse
stopping set S (a) T (S (a)) with
t > 0 : Xt \ in S (a) , discount
parameter

rape 1 , if the VMC serves the burst i
0 , otherwise

Reward definition based on
assigning a job to a
node

p : = { , otherwise 1 , if for a burst i that takes the extra resource e Reward definition based
on assigning a job to a
node

Q (s , a) : = r (s , a) + Àmaxa ; Q (s ' , a ;) Q function for Gittins index
measurement input state and
load balancing action a , discount
parameter and local maximum
q value with current and next states
modelling parameters @ (s , a) : = ab (s , a) + (1 - a) (s , a)

[0122] In some embodiments , as the degree of variability
is very high , a base resource parameter B ; may be deter
mined that is subjected to be assigned to loads j before the
peak detection . For example , from the time the burst began
until a stopping time , a total of N allocations may be
provided with n , referring to the incremental updates made
for the assignments . This is given by an estimated incre
mental load managing value I ' , as defined in Equation 21 .

21nN Equation 21
??

embodiment , and FIG . 13B is corresponding pseudocode for
implementing the process of FIG . 13A .
[0126] In some embodiments , a new time step triggers the
machine learning process at block 1305. For the new time
step , a change in the Gittins index GI value is determined at
block 1310. If there is no change in the Gittins index GI
value at block 1310 (e.g. , NO) , then the process continues
monitoring for a new time step at block 1305. On the other
hand , if there is a change in the Gittins index GI value at
block 1310 , then for each resource n ; at block 1315 , load
managing value I ' is determined at block 1320 , a base
resource parameter B , is determined at block 1325 , and the
confidence bounds for each of the resources n ; is calculated
at block 1330. The load balancing agent 812 takes an action
at block 1335. For example , in some embodiments , the load
balancing agent 812 selects the action with the highest
confidence bound . Finally , any Q - learning updates learned
from the selected action taken are applied at block 1340 .
[0127] For example , in some embodiments , the objective
of the load balancing agent 812 may be to maximize
provider profit . As it is difficult to estimate the changing
cloud environment conditions , it may be important to drive
resource assignment through a learning process , as a single
burst interval does not demarcate a successful all - in - one training . Accordingly , in some embodiments , the Q - learning
strategy is used as shown in Equation 24 .

max « ; p : – 1 ; 6) ; VceC ; Vee E Equation 24
iel je

[0123] For example , when the load balancing agent 812 is
called for an initial time (e.g. , the first time) , an initial
expected B ; plus the load managing value I is computed ,
such that a new updated value is defined as Bj = Bj + I ' . This
calculation is performed by exploring all resource availabil
ity and favoring the composition with the highest gain . This
is referred to as the confidence bound of resource alloca
tions , such that at all times , the learning process favors the
actions with the highest confidence bounds . According to
some embodiments , the learning process may include a
reinforcement learning strategy also known as Q - learning .
That is , in some embodiments , a mean reward that an agent
(e.g. , the load balancing agent 812) could get out from the
environment (e.g. , cloud environment) is demarcated . For
example , in some embodiments , the load balancing agent
812 may approximate the expectation by using exponen
tially weighted moving average (EWMA) . For example , in
some embodiments , the load balancing agent 812 may
iterate over the state - action cycle as shown in Equation 22 ,
where S , S ' indicates past and present states of GI measure
ments , respectively , a indicates different load values , and r
defines an immediate reward parameter .

QUs , a) : = r (s , a) + maxaQs a) Equation 22 :

[0124] Using EWMA , Equation 22 may be rewritten as
shown in Equation 23 .

Ô (s , a) : = a? (s , a) + (1 - a) O (s , a) Equation 23 :

[0125] FIG . 13A is a flow diagram of an example method
of a machine learning process , according to an example

[0128] Where r , is defined by Equation 25 .

if the VM c serves the burst i Equation 25 = { 5 ; otherwise ment

[0129] A binary variable pie is defined by Equation 26 .

Equation 26
pe 1 , if for a burst i that takes the extra resource e

0 , otherwise

US 2021/0058453 A1 Feb. 25 , 2021
13

embodiment . In various embodiments , a load balancing
system is provided that may operate under either the first
mode (e.g. , the heuristic mode) or the second mode (e.g. , the
learning mode) , as described above . For example , in some
embodiments , the load balancing system may be configured
to operate under either of the first mode or the second mode
based on the desired aspects and features of each of the
modes described above . In other embodiments , the system
may automatically select between any of the first or second
modes , to selectively operate under each of the first and
second modes as needed or desired . For example , in some
embodiments , the load balancing system may include a
mode selector 1600 to automatically select between any of
the first mode 1605 or the second mode 1610 as needed or
desired .

[0137] In some embodiments , the mode selector 1600 may
include a counter 1602 to select between the first and second
modes . In some embodiments , the counter 1602 may be a
2 - bit counter that is not allowed to overflow or underflow ,
but the present disclosure is not limited thereto . In some
embodiments , the mode selector 1600 uses the counter 1602
to provide some resistance such that the system does not
switch between modes too frequently . For example , persis
tent context switching may adversely affect the learning
development of the load balancing agent 812. Accordingly ,
in some embodiments , the mode selector 1600 may use the
counter 1602 to ensure that mode switching is performed
after the load balancing agent 812 has been sufficiently
trained by demonstrating high performance for a period of
time .

[0130] In the above Equations 24 to 26 , the variable e is
defined as any event that is aligned with changing burst
values GI .
[0131] In order to directly execute the load balancing
agent's 812 action on the resource pool (e.g. , node pool or
VM pool) , control is passed to the composition logic 810
and the resource pool scheduler 814. In some embodiments ,
the composition logic 810 includes logic to add and remove
resources , as composing resources may be an integral part of
a dynamic virtual environment . Accordingly , in some
embodiments , the composition logic 810 may adjust the
resource requirements based on the spike value (or burst
value) calculation . Once an initial detection has arrived , the
overall requirement may be computed based on which
resource (e.g. , a Virtual Machine) is chosen from the
resource pool (e.g. , a VM Pool) . In some embodiments , the
composition logic 810 may re - compose the resources (e.g. ,
the VMs) with the initial virtual network , thereby producing
a new virtual compute environment .
[0132] In some embodiments , the resource pool scheduler
814 may allocate a table of jobs into the appropriate queue ,
and may perform the dispatch . As the dispatcher , the
resource pool scheduler 814 feeds a part of the new virtual
compute environment schedule to the index policy filter 806
to complete the feed - back loop of learning and exploring . In
some embodiments , once the new schedule is prepared , all
new arrivals having a similar Gittins index value to the
previous ones may remain self - satisfied .
[0133] In some embodiments , as the load balancing agent
812 explores its possible actions , it avoids disadvantageous
actions experienced in prior similar situations . In other
words , in some embodiments , the load balancing agent 812
highlights actions that it is optimistic about based on the
confidence bounds calculated by the bound calculator 808 .
For example , in some embodiments , the bound calculator
808 evaluates the confidence bound of how well the load
balancing agent 812 considers requests are satisfied . In some
embodiments , the bound calculator 808 takes the output of
the index policy filter 806 as a spike requirement basis for
calculating load parameters , for example , to compute the
incremental load value I ' .
[0134] For example , FIG . 14 is flow diagram of the
bound calculator , according to an example embodiment .
Referring to FIG . 14 , in some embodiments , the B ; (B_j) and
I ' parameters may be acquired to calculate the n ; (n_j)
parameter in order to influence the Q - learning process of the
load balancing agent 812. For example , for a new time step
at block 1405 , the parameters used (e.g. , B ; and N) for
calculating the incremental load managing value I ' is
obtained at block 1410. An updated n ; parameter is obtained
according to the Gittins index G? at block 1415. The
incremental load managing value I ' is updated at block 1420 ,
and the B ; update is communicated at block 1425. The
confidence bound is then updated at block 1430 .
[0135] FIG . 154 illustrates parameter transmission
between the index policy filter 806 , the bound calculator
808 , the composition logic 810 , and the resource pool
scheduler 814 , according to an example embodiment . FIG .
15B shows the resulting confidence bound levels of the load
balancing agent 812 , according to an example embodiment .
[0136] FIG . 16 is a block diagram of a mode selector ,
according to an example embodiment . FIG . 17 is a flow
diagram of a method for automatically selecting between a
first mode and a second mode , according to an example

[0138] In brief overview , in some embodiments , the mode
selector 1600 uses the counter 1602 to determine whether to
operate in the first mode (e.g. , the heuristic mode) 1605 or
the second mode (e.g. , the learning mode) 1610. For
example , in some embodiments , a higher counter value (e.g. ,
above a middle counter value) may indicate a higher trust
level on the second mode (e.g. , the learning mode) 1610
(e.g. , indicating that the load balancing agent 812 has been
sufficiently trained) , whereas a lower counter value (e.g. ,
below the middle counter value) may indicate a higher trust
level on the first mode (e.g. , the heuristic mode) 1605. In
some embodiments , however , mode selection may be con
cerned when traffic resembles a uniform distribution , that is ,
when the Gittins index value falls in a corresponding thresh
old range (e.g. , a preset mid - range such as 0.5 , for example) .
In some embodiments , if both modes agree on a burst
scenario , then the mode selector 1600 selects the first mode
1605 , which may be more lightweight when compared to the
second mode 1610. On the other hand , in some embodi
ments , if the modes do not agree on the burst scenario , then
the counter value may be used to select between the modes .
[0139] In more detail , referring to FIG . 17 , the mode
selector 1600 initiates the counter 1602 at block 1702. For
example , the mode selector 1600 may set the counter 1602
to an initial counter value (e.g. , 0) at block 1702. The Gittins
index (GI) value may be retrieved at block 1704. In some
embodiments , the mode selector 1600 may compare the GI
value with a threshold range (e.g. , a preset mid - range such
as 0.5) to determine whether the GI value is within the
threshold range at block 1706. If the GI value is not within
the threshold range at block 1706 (e.g. , NO) , then the mode
selector 1600 may select the second mode (e.g. , the learning
mode) at block 1708. On the other hand , if the GI value is

US 2021/0058453 A1 Feb. 25 , 2021
14

within the threshold range at block 1706 (e.g. , YES) , then
the mode selector 1600 may retrieve the SCV value at block
1710 .
[0140] At block 1712 , the mode selector 1600 may deter
mine whether the first and second modes agree on a burst
scenario . If both the first and second modes agree on a burst
scenario at block 1712 (e.g. , YES) , then the mode selector
1600 may select the first mode (e.g. , the heuristic mode) at
block 1714. On the other hand , if the first and second modes
do not agree on a burst scenario at block 1712 (e.g. , NO) ,
then the counter value of the counter 1602 is compared with
a counter threshold value (e.g. , the mid - point counter value
of 2 in this example) to determine whether the counter value
is less than the counter threshold value . If the counter value
is less than the counter threshold value at block 1716 (e.g. ,
YES) , then the first mode is selected at block 1718. The
mode selector 1600 then determines whether the failure rate
improves (or is maintained) at block 1720 under the first
mode . If the failure rate does not improve (or is maintained)
at block 1720 (e.g. , NO) , then the counter 1602 is incre
mented at block 1722 (e.g. , if not already at a maximum
value of 3 in this example of a 2 - bit counter) . If the failure
rate improves at block 1720 , then the counter 1602 is
decremented at block 1728 (e.g. , if not already at a minimum
value of 0 in this example) .
[0141] On the other hand , if the counter value is greater
than the counter threshold value at block 1716 (e.g. , NO) ,
then the mode selector 1600 may select the second mode at
block 1724. The mode selector 1600 then determines
whether the failure rate improves (or is maintained) at block
1726 under the second mode . If the failure rate does not
improve (or is maintained) at block 1726 (e.g. , NO) , then the
counter 1602 is decremented at block 1728 (e.g. , if not
already at a minimum value of 0 in this example) . On the
other hand , if the failure rate improves at block 1726 , then
the counter 1602 is incremented at block 1722 (e.g. ,
already at a maximum value of 3 in this example of a 2 - bit
counter) .
[0142] Some or all of the operations described herein may
be performed by one or more processing circuits . The term
“ processing circuit ” is used herein to mean any combination
of hardware , firmware , and software , employed to process
data or digital signals . Processing circuit hardware may
include , for example , application specific integrated circuits
(ASICs) , general purpose or special purpose central pro
cessing units (CPUs) , digital signal processors (DSPs) ,
graphics processing units (GPUs) , and programmable logic
devices such as field programmable gate arrays (FPGAs) . In
a processing circuit , as used herein , each function is per
formed either by hardware configured , i.e. , hard - wired , to
perform that function , or by more general purpose hardware ,
such as a CPU , configured to execute instructions stored in
a non - transitory storage medium . A processing circuit may
be fabricated on a single printed circuit board (PCB) or
distributed over several interconnected PCBs . A processing
circuit may contain other processing circuits ; for example a
processing circuit may include two processing circuits , an
FPGA and a CPU , interconnected on a PCB .
[0143] It will be understood that , although the terms
" first " , " second ” , “ third ” , etc. , may be used herein to
describe various elements , components , regions , layers and /
or sections , these elements , components , regions , layers
and / or sections should not be limited by these terms . These
terms are only used to distinguish one element , component ,

region , layer or section from another element , component ,
region , layer or section . Thus , a first element , component ,
region , layer or section discussed herein could be termed a
second element , component , region , layer or section , with
out departing from the spirit and scope of the inventive
concept .
[0144] Spatially relative terms , such as “ beneath ” ,
“ below ” , “ lower ” , “ under ” , “ above ” , “ upper ” and the like ,
may be used herein for ease of description to describe one
element or feature’s relationship to another element (s) or
feature (s) as illustrated in the figures . It will be understood
that such spatially relative terms are intended to encompass
different orientations of the device in use or in operation , in
addition to the orientation depicted in the figures . For
example , if the device in the figures is turned over , elements
described as “ below ” or “ beneath ” or “ under ” other ele
ments or features would then be oriented " above ” the other
elements or features . Thus , the example terms “ below ” and
“ under ” can encompass both an orientation of above and
below . The device may be otherwise oriented (e.g. , rotated
90 degrees or at other orientations) and the spatially relative
descriptors used herein should be interpreted accordingly . In
addition , it will also be understood that when a layer is
referred to as being “ between ” two layers , it can be the only
layer between the two layers , or one or more intervening
layers may also be present .
[0145] The terminology used herein is for the purpose of
describing particular embodiments only and is not intended
to be limiting of the inventive concept . As used herein , the
terms “ substantially , ” “ about , ” and similar terms are used as
terms of approximation and not as terms of degree , and are
intended to account for the inherent deviations in measured
or calculated values that would be recognized by those of
ordinary skill in the art .
[0146] As used herein , the singular forms “ a ” and “ an ” are
intended to include the plural forms as well , unless the
context clearly indicates otherwise . It will be further under
stood that the terms “ comprises ” and / or “ comprising ” , when
used in this specification , specify the presence of stated
features , integers , steps , operations , elements , and / or com
ponents , but do not preclude the presence or addition of one
or more other features , integers , steps , operations , elements ,
components , and / or groups thereof . As used herein , the term
" and / or ” includes any and all combinations of one or more
of the associated listed items . Expressions such as “ at least
one of , ” when preceding a list of elements , modify the entire
list of elements and do not modify the individual elements
of the list . Further , the use of “ may ” when describing
embodiments of the inventive concept refers to “ one or more
embodiments of the present disclosure ” . Also , the term
" exemplary ” is intended to refer to an example or illustra
tion . As used herein , the terms “ use , ” “ using , ” and “ used ”
may be considered synonymous with the terms " utilize , "
" utilizing , " and " utilized , " respectively .
[0147] It will be understood that when an element or layer
is referred to as being “ on ” , “ connected to ” , “ coupled to ” , or
“ adjacent to ” another element or layer , it may be directly on ,
connected to , coupled to , or adjacent to the other element or
layer , or one or more intervening elements or layers may be
present . In contrast , when an element or layer is referred to
as being “ directly on ” , “ directly connected to ” , “ directly
coupled to ” , or “ immediately adjacent to ” another element
or layer , there are no intervening elements or layers present .

if not

US 2021/0058453 A1 Feb. 25 , 2021
15

[0148] Any numerical range recited herein is intended to
include all sub - ranges of the same numerical precision
subsumed within the recited range . For example , a range of
“ 1.0 to 10.0 ” is intended to include all subranges between
(and including) the recited minimum value of 1.0 and the
recited maximum value of 10.0 , that is , having a minimum
value equal to or greater than 1.0 and a maximum value
equal to or less than 10.0 , such as , for example , 2.4 to 7.6 .
Any maximum numerical limitation recited herein is
intended to include all lower numerical limitations sub
sumed therein and any minimum numerical limitation
recited in this specification is intended to include all higher
numerical limitations subsumed therein .
[0149] Although exemplary embodiments of systems and
methods for spike detection and intelligent load balancing
have been specifically described and illustrated herein , many
modifications and variations will be apparent to those skilled
in the art . Accordingly , it is to be understood that systems
and methods for spike detection and intelligent load balanc
ing constructed according to principles of this disclosure
may be embodied other than as specifically described herein .
The invention is also defined in the following claims , and
equivalents thereof .

1. A load balancing system , comprises :
a centralized queue ;
a pool of resource nodes coupled to the centralized queue ;
one or more processors ; and
memory coupled to the one or more processors and

storing instructions that , when executed by the one or
more processors , cause the one or more processors to :

monitor a queue status of the centralized queue to identify
a bursty traffic period ;

calculate an index value for a load associated with the
bursty traffic period ;

select a load balancing strategy based on the index value ;
distribute the load to the pool of resource nodes based on

the load balancing strategy ;
observe a state of the pool of resource nodes in response

to the load balancing strategy ;
calculate a reward based on the observed state according

to a reward function ; and
adjust the load balancing strategy based on the reward .
2. The system of claim 1 , wherein the index value

corresponds to a Gittins Index (GI) value .
3. The system of claim 2 , wherein to calculate the index

value , the instructions further cause the one or more pro
cessors to :

calculate a plurality of GI values for the load associated
with the bursty traffic period ; and

output a greatest one of the plurality of GI values as a new
spike value .

4. The system of claim 3 , wherein to distribute the load to
the pool of resource nodes , the instructions further cause the
one or more processors to :

adjust resource requirements for the pool of resource
nodes based on the new spike value to generate a new
compute environment ; and

generate a schedule of job request distributions associated
with the load for the new compute environment .

5. The system of claim 1 , wherein to select the load
balancing strategy , the instructions further cause the one or
more processors to :

calculate an incremental load managing value for each
resource in the pool of resource nodes ; and

calculate a base resource parameter for each resource in
the pool of resource nodes .

6. The system of claim 5 , wherein the load balancing
strategy is selected based on the resource with the greatest
base resource parameter .

7. The system of claim 1 , wherein to calculate the reward ,
the instructions further cause the one or more processors to :

calculate a Q - function based on the index value , an input
state , the selected load balancing strategy , and the
reward function .

8. The system of claim 7 , wherein the Q - function is
calculated according to :

Ô (s , a) : = r (s , a) + y max ,, (s ' , a ;) ,
wherein :

s and s ' corresponds to past and present state GI index
values , respectively ,

a corresponds to different load values ; and
r corresponds to an immediate reward parameter .

9. The system of claim wherein the instructions further
cause the one or more processors to :

apply an exponentially weighted moving average to the
Q - function calculation .

10. The system of claim 1 , wherein the load corresponds
to a Poisson traffic distribution .

11. A method for load balancing , the method comprises :
monitoring , by one or more processors , a queue status of

a centralized queue to identify a bursty traffic period ;
calculating , by the one or more processors , an index value

for a load associated with the bursty traffic period ;
selecting , by the one or more processors , a load balancing

strategy based on the index value ;
distributing , by the one or more processors , the load to a

pool of resource nodes based on the load balancing
strategy ;

observing , by the one or more processors , a state of the
pool of resource nodes in response to the load balanc
ing strategy ;

calculating , by the one or more processors , a reward based
on the observed state according to a reward function ;
and

adjusting , by the one or more processors , the load bal
ancing strategy based on the reward .

12. The method of claim 11 , A method for load balancing ,
the method comprises :

monitoring , by one or more processors , a queue status of
a centralized queue to identify a bursty traffic period ;

calculating , by the one or more processors , an index value
for a load associated with the bursty traffic period ;

selecting , by the one or more processors , a load balancing
strategy based on the index value ;

distributing , by the one or more processors , the load to a
pool of resource nodes based on the load balancing
strategy ;

observing , by the one or more processors , a state of the
pool of resource nodes in response to the load balanc
ing strategy ;

calculating , by the one or more processors , a reward based
on the observed state ; and

adjusting , by the one or more processors , the load bal
ancing strategy based on the reward ,

wherein the index value corresponds to a Gittins Index
(GI) value .

US 2021/0058453 A1 Feb. 25 , 2021
16

13. The method of claim 12 , wherein the calculating of the
index value comprises :

calculating , by the one or more processors , a plurality of
GI values for the load associated with the bursty traffic
period ; and

outputting , by the one or more processors , a greatest one
of the plurality of GI values as a new spike value .

14. The method of claim 13 , wherein the distributing of
the load to the pool of resource nodes comprises :

adjusting , by the one or more processors , resource
requirements for the pool of resource nodes based on
the new spike value to generate a new compute envi
ronment ; and

generating , by the one or more processors , a schedule of
job request distributions associated with the load for the
new compute environment .

15. The method of claim 11 , wherein the selecting of the
load balancing strategy comprises :

calculating , by the one or more processors , an incremental
load managing value for each resource in the pool of
resource nodes ; and

calculating , by the one or more processors , a base
resource parameter for each resource in the pool of
resource nodes .

16. The method of claim 15 , wherein the load balancing
strategy is selected based on the resource with the greatest
base resource parameter .

17. The method of claim 11 , wherein the calculating of the
reward comprises :

calculating , by the one or more processors , a Q - function
based on the index value , an input state , the selected
load balancing strategy , and the reward function .

18. The method of claim 17 , wherein the Q - function is
calculated according to :

Ô (s , a) : = r (s , a) + y max , Q (s ' , a ;) ,
wherein :

s and s ' corresponds to past and present state GI index
values , respectively ,

a corresponds to different load values ; and
r corresponds to an immediate reward parameter .

19. The method of claim 17 , further comprising :
applying , by the one or more processors , an exponentially

weighted moving average to the Q - function calcula
tion .

20. The method of claim 11 , wherein the load corresponds
to a Poisson traffic distribution .

	Northeastern University
	From the SelectedWorks of Zhengyu Yang
	2019

	Systems and Methods for Spike Detection and Load Balancing Resource Management
	US020210058453A120210225

