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Procedure Dispatcher ( 
receiveRequest ( request ) 
mnt - QueueLoadMonitori 
det = ForkloadspikeDetectori ) 
bal - LoadBalancer ) 
while ( result ) : 

strategy - sendAllToOneQP 
???? 

???? ? if ( curTime mod strategyUpdateNindow spikeDeg = cet.getCurSciteDeg 0 ) 
if ( spikedeg == highSpike ) : 
strategy -- roundRobin 

else if ( spikeDeg - midSpike ) : 

else if ( spikeDeg == lowSpike ) : 
Strategy - mincy 

bal , dispatch ( request , strategy ) 
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Procedure LoadBalancer ( request , strategy ) : 
if ( strategy asendalliooneQ ? ) : 

qagetQueuePair ) 
send ( request , o 

if ( strategya - roundRobin ) : 
q = getQueuePairRoundRobin ( lastQueueID ) 
send ( request , q ) 
Yeturn 

if ( curTime mod queueStatusupdateilindow 
queue Status - mot.getQueueStatus ( ) 

if ( strategy -- JSQ ) : 
q = getQueuePairuso ( queueStatus.actualworkloadAmount ) 
send ( request , a 
return 

else if ( strategy -- mincy ) 
r = getQueuePairlincv ( queueStatus , actualWorkload & mount ) 
send ( request , a 
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*** 
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SYSTEMS AND METHODS FOR SPIKE 
DETECTION AND LOAD BALANCING 

RESOURCE MANAGEMENT 

CROSS - REFERENCE TO RELATED 
APPLICATION ( S ) 

[ 0001 ] This application claims priority to and the benefit 
of U.S. Provisional Application No. 62 / 913,536 , filed on 
Oct. 10 , 2019 , entitled “ SPIKE DETECTION AND LOAD 
BALANCING RESOURCE MANAGEMENT IN CLOUD 
COMPUTING , " and also claims priority and the benefit of 
U.S. Provisional Application No. 62 / 890,864 , filed on Aug. 
23 , 2019 , entitled “ SPIKE DETECTION AND LOAD BAL 
ANCING RESOURCE MANAGEMENT IN CLOUD 
COMPUTING , ” the content of both of which are incorpo 
rated herein by reference in their entirety . This application is 
also related to U.S. patent application Ser . No. 16 / 536,928 , 
filed on Aug. 9 , 2019 , and U.S. patent application Ser . No. 
16 / 459,166 , filed on Jul . 1 , 2019 , the content of both of 
which are incorporated herein by reference in their entirety . 

FIELD 

[ 0002 ] One or more aspects of example embodiments 
relate to workload traffic distribution , and more particularly 
to systems and methods for spike detection and load bal 
ancing . 

BACKGROUND 

[ 0003 ] Generally , the amount of traffic ( or load ) targeted 
towards cloud data centers fluctuate based on user requests . 
This traffic may be bursty ( e.g. , sudden peak in requests ) and 
may require a high degree of resource reallocation . Often , 
however , the nature of uncertain workload traffic my require 
many requests to be reallocated on - the - fly , which may result 
in performance degradation . For example , traffic arriving at 
a cloud data center may be proportional to scheduling 
delays , where the higher the variability the longer the 
scheduling delays . Thus , if resources are committed , chang 
ing schedules may result in unsatisfied Service - Level Agree 
ments ( SLA ) . 
[ 0004 ] These issues may be exacerbated for users who rent 
or own multiple server nodes ( e.g. , Docker containers , 
virtual machines , and the like ) to process ( or execute ) 
requests . For example , these server nodes are generally 
hosted by a cloud computing vendor , and may be located on 
physical servers that often host other users ' service nodes . 
Moreover , these physical servers are oftentimes oversold to 
multiple users , such that multiple users share the overprom 
ised resource . As a result , a user having a workload spike 
( e.g. , sending a large amount of jobs or requests ) may not 
only cause issues for the user on the shared resource , but 
may also slow down the physical host server to affect other 

pool of resource nodes connected to the centralized queue ; 
one or more processors ; and memory connected to the one 
or more processors and storing instructions that , when 
executed by the one or more processors , cause the one or 
more processors to : monitor a queue status of the centralized 
queue to identify a bursty traffic period ; calculate an index 
value for a load associated with the bursty traffic period ; 
select a load balancing strategy based on the index value ; 
distribute the load to the pool of resource nodes based on the 
load balancing strategy ; observe a state of the pool of 
resource nodes in response to the load balancing strategy ; 
calculate a reward based on the observed state ; and adjust 
the load balancing strategy based on the reward . 
[ 0008 ] In one or more example embodiments , the index 
value may correspond to a Gittins Index ( GI ) value . 
[ 0009 ] In one or more example embodiments , to calculate 
the index value , the instructions may further cause the one 
or more processors to : calculate a plurality of GI values for 
the load associated with the bursty traffic period ; and output 
a greatest one of the plurality of GI values as a new spike 
value . 
[ 0010 ] In one or more example embodiments , to distribute 
the load to the pool of resource nodes , the instructions may 
further cause the one or more processors to : adjust resource 
requirements for the pool of resource nodes based on the 
new spike value to generate a new compute environment ; 
and generate a schedule of job request distributions associ 
ated with the load for the new compute environment . 
[ 0011 ] In one or more example embodiments , to select the 
load balancing strategy , the instructions may further cause 
the one or more processors to : calculate an incremental load 
managing value for each resource in the pool of resource 
nodes ; and calculate a base resource parameter for each 
resource in the pool of resource nodes . 
[ 0012 ] In one or more example embodiments , the load 
balancing strategy may be selected based on the resource 
with the greatest base resource parameter . 
[ 0013 ] In one or more example embodiments , to calculate 
the reward , the instructions may further cause the one or 
more processors to : calculate a Q - function based on the 
index value , an input state , the selected load balancing 
strategy , and a reward function . 
[ 0014 ] In one or more example embodiments , the Q - func 
tion may be calculated according to : Q ( s , a ) : = r ( s , a ) + y max , Q 
( s ' , a ; ) , wherein : s and s ' may correspond to past and present 
state GI index values , respectively , a may correspond to 
different load values ; and r may correspond to an immediate 
reward parameter . 
[ 0015 ] In one or more example embodiments , the instruc 
tions may further cause the one or more processors to : apply 
an exponentially weighted moving average to the Q - function 
calculation . 
[ 0016 ] In one or more example embodiments , the load 
may correspond to a Poisson traffic distribution . 
[ 0017 ] According to one or more example embodiments , 
a method for load balancing , includes : monitoring , by one or 
more processors , a queue status of a centralized queue to 
identify a bursty traffic period ; calculating , by the one or 
more processors , an index value for a load associated with 
the bursty traffic period ; selecting , by the one or more 
processors , a load balancing strategy based on the index 
value ; distributing , by the one or more processors , the load 
to a pool of resource nodes based on the load balancing 
strategy ; observing , by the one or more processors , a state of 

users . 

[ 0005 ] Accordingly , systems and methods for spike detec 
tion and intelligent load balancing may be desired . 
[ 0006 ] The above information disclosed in this Back 
ground section is for enhancement of understanding of the 
background of the present disclosure , and therefore , it may 
contain information that does not constitute prior art . 

SUMMARY 

[ 0007 ] According to one or more example embodiments , 
a load balancing system , includes : a centralized queue ; a 



US 2021/0058453 A1 Feb. 25 , 2021 
2 

the pool of resource nodes in response to the load balancing 
strategy ; calculating , by the one or more processors , a 
reward based on the observed state ; and adjusting , by the 
one or more processors , the load balancing strategy based on 
the reward . 
[ 0018 ] In one or more example embodiments , the index 
value may correspond to a Gittins Index ( GI ) value . 
[ 0019 ] In one or more example embodiments , the calcu 
lating of the index value may include : calculating , by the one 
or more processors , a plurality of GI values for the load 
associated with the bursty traffic period ; and outputting , by 
the one or more processors , a greatest one of the plurality of 
GI values as a new spike value . 
[ 0020 ] In one or more example embodiments , the distrib 
uting of the load to the pool of resource nodes may include : 
adjusting , by the one or more processors , resource require 
ments for the pool of resource nodes based on the new spike 
value to generate a new compute environment ; and gener 
ating , by the one or more processors , a schedule of job 
request distributions associated with the load for the new 
compute environment . 
[ 0021 ] In one or more example embodiments , the select 
ing of the load balancing strategy may include : calculating , 
by the one or more processors , an incremental load manag 
ing value for each resource in the pool of resource nodes ; 
and calculating , by the one or more processors , a base 
resource parameter for each resource in the pool of resource 
nodes . 
[ 0022 ] In one or more example embodiments , the load 
balancing strategy may be selected based on the resource 
with the greatest base resource parameter . 
[ 0023 ] In one or more example embodiments , the calcu 
lating of the reward may include : calculating , by the one or 
more processors , a Q - function based on the index value , an 
input state , the selected load balancing strategy , and a reward 
function . 
[ 0024 ] In one or more example embodiments , the Q - func 
tion may be calculated according to : ( s.a ) : = r ( s , a ) + y max , Q 
( s ' , a ; ) , wherein : s and s ' may correspond to past and present 
state GI index values , respectively , a may correspond to 
different load values ; and r may correspond to an immediate 
reward parameter . 
[ 0025 ] In one or more example embodiments , the method 
may further include : applying , by the one or more proces 
sors , an exponentially weighted moving average to the 
Q - function calculation . 
[ 0026 ] In one or more example embodiments , the load 
may correspond to a Poisson traffic distribution . 

[ 0031 ] FIG . 4 illustrates a block diagram of a load bal 
ancing system operating under a first mode to balance loads , 
according to an example embodiment . 
[ 0032 ] FIG . 5A illustrates a flow chart of a method for 
selecting an appropriate load balancing strategy under the 
first mode , according to an example embodiment . 
[ 0033 ] FIG . 5B illustrates corresponding pseudocode for 
implementing the method of FIG . 5A . 
[ 0034 ] FIG . 6 illustrates a graph of the SCV - ACF based 
spike detection method , according to an example embodi 
ment . 
[ 0035 ] FIG . 7A is a block diagram illustrating a corre 
sponding load balancing strategy for each spike level deter 
mined by a spike detector , according to an example embodi 
ment . 
[ 0036 ] FIG . 7B illustrates example pseudocode for imple 
menting the various load balancing strategies of FIG . 7A , 
according to an example embodiment . 
[ 0037 ] FIG . 8 illustrates a block diagram of a load bal 
ancing system operating under a second mode to balance 
loads , according to an example embodiment . 
[ 0038 ] FIG . 9 is a system diagram of a load balancing 
system , according to an example embodiment . 
[ 0039 ] FIG . 10A illustrates an example flow diagram of a 
method for detecting spikes , according to an example 
embodiment . 
[ 0040 ] FIG . 10B is a corresponding pseudocode of the 
spike detection method of FIG . 10A . 
[ 0041 ] FIGS . 11A - 11C illustrate examples of an index 
policy filter for analyzing incoming traffic , according to 
example embodiments . 
[ 0042 ] FIG . 12 is a flow diagram illustrating an example 
method for generating a burst value , according to an 
example embodiment . 
[ 0043 ] FIG . 13A is a flow diagram of an example method 
of a machine learning process , according to an example 
embodiment . 
[ 0044 ] FIG . 13B is corresponding pseudocode for imple 
menting the process of FIG . 13A . 
[ 0045 ] FIG . 14 is a flow diagram of a bound calculator , 
according to an example embodiment . 
[ 0046 ] FIG . 154 illustrates parameter transmission 
between an index policy filter , a bound calculator , compo 
sition logic , and a resource pool scheduler , according to an 
example embodiment . 
[ 0047 ] FIG . 15B shows the resulting confidence bound 
levels of a load balancing agent , according to an example 
embodiment . 
[ 0048 ] FIG . 16 is a block diagram of a mode selector , 
according to an example embodiment . 
[ 0049 ] FIG . 17 is a flow diagram of a method for auto 
matically selecting between a first mode and a second mode , 
according to an example embodiment . 

BRIEF DESCRIPTION OF THE DRAWINGS 

DETAILED DESCRIPTION 

[ 0027 ] The above and other aspects and features of the 
present invention will become more apparent to those skilled 
in the art from the following detailed description of the 
example embodiments with reference to the accompanying 
drawings . 
[ 0028 ] FIG . 1 illustrates a load balancing system in a cloud 
environment , according to an example embodiment . 
[ 0029 ] FIG . 2 illustrates an example device for dispatch 
ing jobs from a centralized queue , according to an example 
embodiment . 
[ 0030 ] FIG . 3 illustrates a data structure topology of a job 
request , according to an example embodiment . 

[ 0050 ] Hereinafter , example embodiments will be 
described in more detail with reference to the accompanying 
drawings , in which like reference numbers refer to like 
elements throughout . The present invention , however , may 
be embodied in various different forms , and should not be 
construed as being limited to only the illustrated embodi 
ments herein . Rather , these embodiments are provided as 
examples so that this disclosure will be thorough and 
complete , and will fully convey the aspects and features of 
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the present invention to those skilled in the art . Accordingly , 
processes , elements , and techniques that are not necessary to 
those having ordinary skill in the art for a complete under 
standing of the aspects and features of the present invention 
may not be described . Unless otherwise noted , like reference 
numerals denote like elements throughout the attached 
drawings and the written description , and thus , descriptions 
thereof may not be repeated . 
[ 0051 ] One or more aspects and features of example 
embodiments of the present disclosure are directed to an 
end - to - end solution to detect workload traffic spikes ( also 
referred to as spike detection ) and to conduct intelligent load 
balancing across server nodes . In some embodiments , a load 
balancing system is provided to detect workload traffic 
spikes and to select one or more resources to assign new jobs 
for a client . In some embodiments , the load balancing 
system may be aware of other users ' behavior impacts on the 
shared hosting physical servers ( e.g. , through periodic moni 
toring of the service rate of its own server nodes ) . In some 
embodiments , the load balancing system may selectively 
operate under two modes : ( 1 ) a first mode , which may 
heuristic mode ; and ( 2 ) a second mode , which may be a 
machine learning mode such as , for example , a Reinforce 
ment Learning - Based Mode . 
[ 0052 ] In brief overview , the first mode ( e.g. , the heuristic 
mode ) is a relatively lightweight approach that handles 
uniform distribution incoming workloads . Under the first 
mode , spikes may be detected using a squared - coefficient of 
variation - autocorrelation ( SCV - ACF ) method , which is 
based on the dispersion of a stochastic process . Job requests 
may then be allocated using a Round Robin load balancing 
strategy , a Join Shortest Queue load balancing strategy , and 
a minCV ( minimum Coefficient of Variation ) load balancing 
strategy in response to high , middle , and low spike degrees 
( or spike ranges ) , respectively . 
[ 0053 ] The second mode ( e.g. , the learning mode ) is a 
machine learning mode based on a reinforcement learning 
based approach ( e.g. , Q - learning ) that uses an index ( e.g. , 
Gittins Index ) to predict a spike value ( or spike level ) within 
a specified job completion time . Under the second mode , the 
load balancing system may be enabled to respond to a broad 
spectrum of spike values ( or spike levels ) , when compared 
to the first mode in which the spike ranges are divided into 
predetermined ( or preset ) categories . In some embodiments , 
under the second mode , the load balancing system may 
adjust the load balancing strategies based on changing 
workload conditions over time , may be enabled to support 
critical or time - sensitive jobs that have an expire due time , 
and may support dynamic resource allocation ( e.g. , adding 
or removing resources ) in response to bursty traffic periods 
( e.g. , high traffic spike periods ) . 
[ 0054 ] In various embodiments , the load balancing system 
may be configured to operate under any one of the first mode 
or the second mode based on various desired aspects and 
features of the modes . In some embodiments , the load 
balancing system may include a mode selector to automati 
cally select between the modes as desired or needed based 
on the workload conditions of the resource node pool . 
[ 0055 ] Detecting and handling bursty requests ( e.g. , traffic 
spikes ) is a complex issue faced in many areas . The difficulty 
may lie in analyzing spikes within changing local and global 
environments . The widespread cloud computing market is 
an area where this issue is commonplace . Accordingly , while 
various embodiments are described herein within the context 

of a cloud environment in which the load balancing system 
assigns job requests to computer ( or server ) nodes , the 
present disclosure is not limited thereto , and it is to be 
understood that the same or equivalent functions and struc 
tures may be accomplished by different embodiments and in 
different environments ( e.g. , distributed processing environ 
ment in which compute tasks are assigned to worker nodes , 
disk input / output processing in which 1/0 requests are 
assigned to disk resources , or the like ) that are also intended 
to be encompassed within the spirit and scope of the present 
disclosure . 
[ 0056 ] FIG . 1 illustrates a load balancing system in a cloud 
environment , according to an example embodiment . As 
shown in FIG . 1 , the cloud environment 102 may be 
communicably connected to one or more customer devices 
( or client devices ) 104 to process requests ( or jobs ) 106 from 
the customer devices 104. In some embodiments , the cloud 
environment 102 may include a load balancing system 108 
connected to a resource node pool 110 to distribute the job 
requests to the resource node pool 110 according to various 
load balancing strategies . In some embodiments , the 
resource node pool 110 may include a plurality of resource 
nodes ( e.g. , server nodes ) , which is shown in the example of 
FIG . 1 as a plurality of virtual machines ( VM ) and corre 
sponding containers ( e.g. , data containers ) . However , the 
present disclosure is not limited thereto , and in other 
embodiments , the resource node pool 110 may include a 
plurality of worker nodes , a plurality of disk drives ( e.g. , 
storage resource ) , and / or a plurality of processors ( e.g. , 
computational resource ) . 
[ 0057 ] In a cloud environment , efficient allocation of 
resources to serve requests start at the clients ' side . Client 
applications demand resources differently , such that if a 
particular client application is in higher demand , computa 
tion resources should be re - assigned to that client applica 
tion . For example , applications having different execution 
requirements ( such as serialized loadable library or parallel 
process ) frequently demand resource reallocation . These 
requests , often incoming in short periods , are responsible for 
the spikes with higher rates of arrival . However , changing 
bursty workloads may degrade quality of service ( QoS ) , and 
may affect service provider profit . Therefore , the job arrival 
and completion rate of the workload may need to be opti 
mally considered without dropping requests . 
[ 0058 ] In some embodiments , the load balancing system 
108 may include a load balancing agent 112 , a resource pool 
scheduler 114 , and composition logic 116. As will be dis 
cussed in more detail below , in various embodiments , the 
load balancing agent 112 may distribute the load ( e.g. , job 
requests ) to the resource nodes in response to spikey arrival 
periods . In some embodiments , the load balancing system 
108 may operate under a first mode or a second mode as 
needed or desired to balance the load , in response to 
changing workload conditions . 
[ 0059 ] FIG . 2 illustrates an example device for dispatch 
ing jobs from a centralized queue , according to an example 
embodiment . Referring to FIG . 2 , the device 200 includes a 
centralized queue ( CQ ) 202 , a dispatcher 204 , and a plurality 
of server nodes 206a , 206 , 206c , and 206d . In some 
embodiments , each of the server nodes 206a , 206 , 206c , 
and 206d has a corresponding queue 208a , 2086 , 208c , and 
208d . In some embodiments , a cloud provider system ( e.g. , 
the cloud environment 102 of FIG . 1 ) queues user job 
requests in the centralized queue 202 based on a travel path 

?? 
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TABLE 1 - continued 

Parameter Ref . # Description 

value_size 
type 

operation 

310 
312 
314 

The size of the job object 
Content type of job service 
Request operations such as get , put , 
delete , etc. 
Timestamp such as Centralized Queue 
entry time , in order to capture job time 
sensitivity 

timestamp 316 

of the request . The travel path of the request , which may be 
determined by region , may be based on a “ physical - world ” 
geographical location ( e.g. , if the centralized queue is in 
New York , then a worker node in Chicago may be a better 
choice than a worker node with the same spec in Tokyo , 
Japan ) or may be based on network - topology - based location 
( e.g. , a closer location node's access speed may be slower 
than a farther location node's access speed ) . In some 
embodiments , the dispatcher 204 ( e.g. , the load balancing 
system ) may be connected to the centralized queue 202 to 
balance the load ( e.g. , the user job requests ) across corre 
sponding queues 208a , 2086 , 208c , and 208d of the region . 
[ 0060 ] For example , in some embodiments , all requests 
( e.g. , jobs ) destined for or assigned to the device 200 ( e.g. , 
based on region ) is queued in the centralized queue 202. The 
dispatcher 204 then distributes the queued requests to cor 
responding ones of the queues 208a , 2086 , 208c , and 208d 
of the server nodes 206a , 206 , 206c and 206d according to 
a queue strategy . Each of the queues 208a , 2086 , 208c , and 
208d have a characteristic arrival rate and service rate , but 
the service rates of the queues 208a , 2006 , 208c , and 208d 
may not be guaranteed to be the same as each other at a 
given time ( e.g. , runtime ) . 
[ 0061 ] In some embodiments , the goal of the dispatcher 
204 may be to balance the load across all of the queues 208a , 
2086 , 208c , and 208d in a selected region ( e.g. , geographical 
location ) . For example , in a simplified homogeneous sce 
nario , if the requests have the same or substantially the same 
amount of workload ( e.g. , spends the same makespan ) , then 
the dispatcher 204 may simply balance the queues based on 
the number of queued jobs . However , the requests are 
usually not homogeneous , and requests ( e.g. , jobs ) from a 
plurality of applications or even a single application may 
have significant differences ( e.g. , different workloads ) in 
real cases . 
[ 0062 ] Further , it may be possible for a request ( e.g. , job ) 
that is initially considered suitable for a server ( e.g. , a server 
node ) to later become unresponsive or “ stuck , ” for example , 
when resources suddenly change or are re - allocated . In this 
case , in some embodiments , the requests ( e.g. , jobs ) may be 
returned to a temporary queue , such that the request ( or job ) 
may be picked up by ( or distributed to ) other servers ( e.g. , 
other server nodes ) . In some embodiments , these unrespon 
sive or “ stuck ” requests may be returned to the centralized 
queue 202 before finally being dropped , in extreme cases . In 
some embodiments , the nature of such requests may be 
learned ( e.g. , via a learning mode ) in order to take an 
appropriate action , as will be discussed further below . 
[ 0063 ] FIG . 3 illustrates a data structure topology of a job 
request , according to an example embodiment . Each of the 
parameters shown in FIG . 3 are described in more detail in 
the following Table 1 . 

[ 0064 ] In some embodiments , from among the parameters 
shown in Table 1 , the value_size 310 parameter ( e.g. , data 
size ) and the operation 314 parameter ( e.g. , read , write , 
delete , and the like ) may have more impact on performance 
in terms of latency than the other parameters shown in Table 
1. For example , a first request having a 4 KB I / O read and 
a second request having a 10 MB I / O write will have 
different makespans ( e.g. , job finish times ) , and thus , a load 
balancer ( e.g. , the dispatcher ) should not treat the first and 
second requests equally . Accordingly , in some embodi 
ments , requests ( e.g. , jobs ) may be differentiated based on 
their characteristics and by determining an actual or esti 
mated workload ( e.g. , makespan ) associated with the 
request . 
[ 0065 ] FIG . 4 illustrates a block diagram of a load bal 
ancing system operating under a first mode ( e.g. , the heu 
ristic mode ) to balance loads , according to an example 
embodiment . As described in more detail below , the first 
mode is a relatively lightweight heuristic approach that 
statically distributes workloads ( e.g. , jobs or requests ) based 
on various spike ranges ( or degrees ) . For example , in the 
first mode , workloads ( e.g. , jobs or requests ) may be dis 
tributed to the resources using a Round Robin load balanc 
ing strategy in response to a high spike range ( or degree ) , a 
Join Shortest Queue load balancing strategy in response to 
a medium spike range , and / or a minimum coefficient of 
variation ( minCV ) strategy in response to a low spike range . 
In some embodiments , the workload spikes ( and corre 
sponding spike ranges ) may be detected based on a squared 
?? fficient of ation autocorrela ion ( SCV - ACF ) method , 
which is based on a dispersion of a stochastic process , for 
example . 
[ 0066 ] Referring to FIG . 4 , in some embodiments , the load 
balancing system 400 includes a load monitor 402 , a spike 
detector 404 , and a load balancer 406. The load monitor 402 
may monitor the resource pool ( e.g. , the node pool , server 
pool , and the like ) and may provide information associated 
with the contents of the resource pool ( e.g. , the correspond 
ing queues of each of the nodes ) . For example , in some 
embodiments , the load monitor 402 may collect load status 
information ( e.g. , number of queues , number of job requests , 
each request’s workload amount , and / or the like ) of a current 
queue in a region . This load status information may be used 
by the spike detector 404 to compute a degree ( or measure ) 
of the actual workload involved , instead of using just the 
number of jobs queued to compute the spike level . For 
example , in some embodiments , the spike detector 404 may 
detect ( e.g. , measure or compute ) a spike level of the current 
incoming jobs ( e.g. , requests ) for a user's centralized queue 
to the queues of the corresponding resource nodes . In some 
embodiments , the spike detector 404 may label a period 
( e.g. , time window ) associated with the current incoming 
jobs as a strong spiky period , a middle spiky period , or weak 
spiky period . 

TABLE 1 

Parameter Ref . # Description 

job_pkt_struct 302 

key_ptr 
value_struct 
value_ptr 

304 
306 
308 

The request instanced struct containing 
a key and a value object 
A pointer to a key 
An instanced value struct of the job object 
A pointer to the job object , such as the 
data / file to be operated on 
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FIG . 5B ) . For example , if the load balancer 406 determines 
that the spike degree is within a high spike range at block 
512 , then the round robin load balancing strategy may be 
enabled at block 514. If the load balancer 406 determines 
that the spike degree is within a middle spike range at block 
516 , then the join shortest queue load balancing strategy 
may be enabled at block 518. If the load balancer 406 
determines that the spike degree is within a low spike range 
at block 520 , then the minCV load balancing strategy may 
be enabled at block 522. Once a load balancing strategy has 
been determined , the system may lock that strategy at block 
510 , as discussed above . 
[ 0072 ] Each of the load monitor 402 , spike detector 404 , 
and load balancer 406 will be described in more detail with 
reference to Table 3 , which summarizes some symbols and 
their corresponding descriptions as used herein . 

TABLE 3 

[ 0067 ] In some embodiments , the load balancer 406 may 
use the label provided by the spike detector 404 to determine 
an appropriate load balancing strategy to use in distributing 
the workloads ( e.g. , jobs or requests ) . In some embodiments , 
based on the load status information and the label , the load 
balancer 406 may distribute the jobs ( or requests ) among the 
queues of the resource nodes to balance the load and 
improve system utilization . For example , in some embodi 
ments , during a low degree ( or range ) of bursty job arrivals 
( e.g. , a weak spiky period ) , the load balancer 406 may have 
more time to make more accurate decisions based on the 
minCV load balancing strategy . During a medium degree ( or 
range ) of job arrivals ( e.g. , a middle spiky period ) , the load 
balancer 406 may use the join shortest queue load balancing 
strategy using information corresponding to the workload 
state of the queues . During a high degree ( or range ) of 
incoming traffic ( e.g. , a high spikey period ) , status informa 
tion may be delayed so the load balancer 406 may use a 
round robin load balancing strategy . 
[ 0068 ] In more detail , FIG . 5A illustrates a flow chart of a 
method for selecting an appropriate load balancing strategy 
under the first mode , according to an example embodiment , 
and FIG . 5B illustrates corresponding pseudocode for imple 
menting the method of FIG . 5A . 
[ 0069 ] Referring to FIGS . 5A and 5B , when an assigned 
job request is received ( e.g. , from a cloud provider ) at block 
502 , the request is queued in a centralized queue ( e.g. , CQ 
202 of FIG . 2 ) . At block 504 , the system checks whether or 
not the node pool has multiple queues ( e.g. , line 7 in FIG . 
5B ) . If not ( e.g. , no ) , then there is only one queue so that all 
of the job requests are distributed to the single queue at 
block 506. On the other hand , if the node pool has multiple 
queues at block 504 ( e.g. , yes ) , then the system determines 
whether a current time corresponds to a new strategy update 
window ( e.g. , line 10 in FIG . 5B ) at block 508. For example , 
Table 2 describes two epoch windows and their functions 
used in the first mode . 

Symbols Description 

T < i , q ? 

S ; 
Vi 
H < viq ? 

ta 

lal , lel 

t cok , is TABLE 2 

Actual workload amount of request i in Queue q . The 
total makespan of the job . 
Job size of request i . 
Operation type of request i , e.g. , get , put , delete , etc. 
Queue q's Service Rate for request i's operation 
type . 
Total actual workload amount of all requests queued 
in the Queue q . 

{ q } Set of queued job requests in the Queue q . 
q , c Queue q , and Centralized Queue c in each Cloud 

queue region / port . Notice that this c is CQ , not User 
Application Layer Queues . 
The number of requests that are queued in the 
Queue q , and Centralized Queue c . 

lqlmax , Iclmax The preset maximal size of Queue q and Centralized 
Queue c , respectively . 

feq.k. Total actual workload amount of all requests queued 
in the Queue q , when the new job request i is 
assigned to Queue k . Notice that k may be the same 
or not the same as Queue q , thus it is a piecewise 
function . 
Mean total actual workload amount of all requests 
queued in all Queues in the Queue set Q if the new 
request i is assigned to Queue k . 
The set of Queues in the current Cloud queue 
region . 

Ng The number of queues in the Cloud queue region . 
The coefficient of variation ( CV ) of total workload 
amount of each Queue in the region . This value 
reflects the balance degree , e.g. , the larger the CV 
there is across the Queues . 

SCV Squared - coefficient of variation . 
? Spike level , or index of dispersion . The bigger it is , 

the higher the spike level is . 
An iterating lag's value and the preset maximal lag 
value ( usually to be very large or even infinity ) for 
auto - correlation function as shown in Eq . 3-3 . 
The variance of the Centralized Queue ( CQ ) queued 
job number . We assume that the arrival distribution 
follows a wide - sense stationary process which 
means it is a time - independent process . 
A knob to tune the weight of autocorrelation results , 
usually , we can set it to 2 or 3 . 

Icly , Icleo Centralized Queue ( CQ ) queued job numbers at time 
t and t + 0 , respectively . 
Mean value of the Centralized Queue ( CQ ) queued 
job numbers at time t and t + 0 , respectively . 

Epoch Window Name Description 

Strategy update window 
( W_SU ) < Q , k , 1 > A preset frequency for updating strategy 

as well as conducting detection 
of workload spike level 
A present frequency for updating the 
status of the queues in the report 

Queue status updating window 
( W_QSU ) 

? , ???? [ 0070 ] If the current time does not correspond to the 
strategy update window at block 508 ( e.g. , no ) , then the load 
balancer 406 may not change the load balancing strategy of 
the current epoch at block 510. In other words , once a load 
balancing strategy has been determined , the system will lock 
that strategy at block 510 , and the load monitor 402 will be 
invoked ( if necessary or desired ) to assist with dispatching 
the current load balancing strategy . This “ lazy ” strategy 
updating frequency may reduce updating costs associated 
with constantly updating the load balancing strategy . 
[ 0071 ] On the other hand , if the current time corresponds 
to the strategy update window at block 508 ( e.g. , yes ) , then 
the spike detector 404 is invoked to detect a spike degree ( or 
level ) of the current traffic in the centralized queue , and will 
send the spike degree result to the load balancer 406. The 
load balancer 406 may switch between the strategies 
depending on the spike degree results ( e.g. , lines 10-18 of 

Tele , Telite 

[ 0073 ] As discussed above , considering only the number 
of pending jobs ( or requests ) may not be enough , since the 
workload ( e.g. , makespan ) of a particular job may be dif 
ferent from that of another job . Accordingly , in some 
embodiments , the load monitor 402 may differentiate jobs 
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Equation 3 
E [ ( | C | + 0 - [ C ] + e ) - ( [ c ] . - Ich ) ] n - SCV | 1+ Q. 

( e.g. , requests ) based on their characteristics by converting 
them based on their actual ( or estimated ) workload ( e.g. , 
makespan ) . For example , in some embodiments , the load 
monitor 402 may determine ( e.g. , calculate or estimate ) the 
workload amount of a single job ( or request ) by dividing a 
size of the job request by a service rate of the queue q for the 
request's operation type as shown in Equation 1 . 

S ; Equation 1 
Tci , q > M < v ; , q > 

[ 0074 ] For a non - limiting example , considering a write 
I / O job having 1024 KB size and a write rate of that queue 
is 1024 MB / sec , then the workload amount ( e.g. , actual or 
estimated ) is around 0.001 seconds . Accordingly , the load 
monitor 402 may identify information of the job's size and 
type , as well as each queue's service rate for this type of job , 
in order to calculate the workload amount of the job using 
Equation 1. Although all queues in a same cloud region may 
have the same service rate for the same type of operation , 
Equation 1 supports queues in the same cloud region having 
heterogeneous service rates for the same type of operation 
( e.g. , as reflected by P < vi , g > in the denominator of Equation 
1 ) . 

[ 0075 ] Based on Equation 1 , the total workload amount of 
all queued job requests in the queue q can be further 
calculated by summing up all the workload amounts of the 
requests in queue q , as shown in Equation 2 . 

Equation 2 
T < i , q > ) 

[ 0078 ] Accordingly , in some embodiments , the spike level 
may correspond to a squared - coefficient of variation ( SCV ) 
of an autocorrelation - based function ( ACF ) . In some 
embodiments , the joint presence of SCV and autocorrela 
tions may be sufficient to differentiate between job work 
loads with different spikes intensities . In Equation 3 , a may 
refer to a preset knob to adjust the weight of ACF ( e.g. 2 or 
3 ) , O refers to a lag time between t and t + 0 , and o refers to 
the variance of the Centralized Queue ( CQ ) queued job 
number . In some embodiments , Equation 2 assumes that the 
arrival distribution follows a wide - sense stationary process , 
meaning that it is a time - independent process . As a result , 
the autocorrelation depends only on the lag time 0 , since the 
correlation depends only on the time - distance ( or time 
period ) between the pair of values and not on their position 
in time . 
[ 0079 ] FIG . 6 illustrates a graph of the SCV - ACF based 
spike detection method , according to an example embodi 
ment . In the graph of FIG . 6 , a strong spike is represented 
by the reference symbol SS , a middle spike is represented by 
the reference symbol MS , and weak spike is represented by 
the reference symbol WS . As shown in FIG . 6 , I / O stream 
numbers that fall within a corresponding range may deter 
mine how the spike level is categorized . For example , if the 
I / O stream numbers fall within a first range ( e.g. , a weak 
spike range ) , the spike level may be categorized as a weak 
spike WS . If the I / O stream numbers fall within a second 
range ( e.g. , a middle spike range ) , the spike level may be 
categorized as a middle spike MS . If the I / O stream numbers 
fall within a third range ( e.g. , a strong spike range ) , the spike 
level may be categorized as a strong spike SS . Accordingly , 
in some embodiments , the spike detector 404 may catego 
rize each job request of the current epoch into one of the 
three spike levels shown in FIG . 6 based on the ranges ( e.g. , 
preset ranges ) of the spike level types . 
[ 0080 ] FIG . 7A is a block diagram illustrating a corre 
sponding load balancing strategy for each spike level deter 
mined by the spike detector 404 , according to an example 
embodiment , and FIG . 7B illustrates example pseudocode 
for implementing the various load balancing strategies of 
FIG . 7A , according to an example embodiment . 
[ 0081 ] As discussed above , workload imbalance may 
cause resource underutilization and / or system performance 
degradation . One challenge during load balancing is deter 
mining whether the queue status information is trustworthy . 
For example , constantly gathering the queue status infor 
mation ( e.g. , job size , job type , queue's service rate , and / or 
the like ) may require large overhead , whereas older status 
information may be out - of - date . Accordingly , in some 
embodiments , the system may detect the spike level to 
switch between the different load balancing strategies based 
on different trust levels of the queue status information . For 
example , queue status information that is gathered during 
high request traffic periods ( e.g. , high spike level ) is gener 
ally less trustworthy than queue status information gathered 
during low traffic times ( e.g. , weak spike level ) . 
[ 0082 ] Accordingly , as shown in FIG . 7A , in some 
embodiments , during high traffic periods ( e.g. , high spike 

M < v ; , q > 
ie { q } 

[ 0076 ] However , it may be costly to gather and calculate 
queue workload status frequently . Accordingly , in some 
embodiments , an epoch window ( e.g. , queueStatusUpdate 
Window ) , as discussed in Table 2 above , may be provided to 
set a periodic “ recalibrate ” queue status . While this can 
reduce overhead , it may also introduce an information delay 
which may lead to degregated dispatching solutions . For 
example , during a high traffic time ( e.g. , high job request 
spike time ) , this delay may lead to assigning all jobs to a 
queue that was the most idle in a last epoch , while other 
queues become idle after they have finished their queued 
jobs . This imbalance may not only wastes system resources 
but can cause backlogs . Accordingly , in some embodiments , 
the spike detector 404 may detect the spike level such that 
different load balancing strategies may be enabled for dif 
ferent spike levels . 
[ 0077 ] For example , in some embodiments , in order to 
enable the system to qualitatively capture job request spikes 
in a single score ( e.g. , a level or degree value ) , while 
predicting ( or identifying ) a start and an end of a spike 
period , the spike detector 404 may utilize the SCV - ACF 
based spike detection method . For example , the level of 
spikes may be defined as an index ( n ) of dispersion of a 
stochastic process , as shown in Equation 3 . 
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queued jobs to represent the workload amount . This imple 
mentation method may be beneficial in cases where the 
overall system utilization ratio is very high , since it may be 
faster than using actual ( or estimated ) workload amounts of 
each queue . Accordingly , in some embodiments , the load 
balancer 406 may enable the JSQ load balancing strategy to 
assign the incoming job request to the queue with the least 
number of queued request , as shown in Equation 6 . 

min : k +1 

s.t .: 

\ kl < \ klmax Equation 6 : 

level ) 702 , the load balancer 406 may select the round robin 
load balancing strategy 704. During medium traffic periods 
( e.g. , middle spike level ) 706 , the load balancer 406 may 
select the join shortest queue load balancing strategy 708 . 
During low traffic periods ( e.g. , weak spike level ) 710 , the 
load balancer 406 may select the minCV load balancing 
strategy 712. Each of these strategies will be discussed in 
more detail below . 
[ 0083 ] In the case of high traffic periods ( e.g. , a large 
number of requests are detected by the load monitor 402 ) , 
the load balancer 406 may enable the round robin load 
balancing strategy , which has low or no overhead since the 
queue status information or complicated load balancing 
calculations are not needed . For example , during such high 
traffic periods , determining the workload amount of each 
queue may be costly , and the queue status information may 
be frequently out - of - date due to delays from the high traffic . 
Such delays may mislead the system , for example , by 
sending all job requests to a previous lowest workload 
queue , which may result in imbalance due to saturation of 
that queue . In other words , since the queue status informa 
tion cannot be trusted , and there is no time to conduct 
complicated calculations on the large amount of high traffic , 
the round robin load balancing strategy may be enabled 
during high traffic periods . 
[ 0084 ] For example , in some embodiments , as shown in 
Equation 4 , the system may maintain the previous queue 
number k , and may add a one for each new job request . If 
the queue number k exceeds a boundary , it goes back to zero 
( e.g. , since the queue number is from 0 to Nq - 1 ) , as shown 
in Equation 4 

[ 0088 ] In some embodiments , given a set of queues Q , 
Equation 6 may be written as shown in Equation 7 . 

Equation 7 argmin 
( | k | + 1 ) 

ke { Q } 

[ 0089 ] While using the number of queued jobs may be 
faster than using actual ( or estimated ) workload amounts of 
each queue , the tradeoff may be accuracy since the number 
of queued jobs does not consider the load differences 
between the jobs . Accordingly , in some embodiments , to 
reflect the actual ( or estimated ) workload amount more 
accurately , the load balancer 406 may enable the JSQ load 
balancing strategy to further calculate the actual ( or esti 
mated ) workload amount of each queue , adding the new job 
request's ( converted ) workload amount . For example , in 
some embodiments , the load balancer 406 may first define 
the total actual workload amount of all job requests present 
in the queue q , when a new request I is assigned to the queue 
k . Given k , the queue q's total amount of workload may be 
calculated using Equation 8 . 

Equation 4 k + 1 , ke [ 0.Ng – 2 ] 
0 , k = Ng -1 

? ? ( ja ) » k?q Equation 8 
je { q } 

[ 0085 ] As shown from Equation 4 , the left - hand - side k 
represents a next round selection of k to assign the new job 
request , and this k value is based on its own previous value 
( k + 1 ) . Since the round robin load balancing strategy is 
independent on the characteristics of the new job request , the 
constraint is that we need to make sure the selected queue ( as 
well as all other queues ) is ( are ) not full , as shown in 
Equation 5 . 

liq , k , 1 ) 
? ? ( id ) 1 : 0 ) + + T ( 1,9 ) , k = 9 
je { f } 

\ k \ < \ klmax Equation 5 : [ 0090 ] As shown in Equation 8 , k may or may not be equal 
to q , and thus , is a piecewise function . Accordingly , as 
shown in Equation 9 , an optimization framework may be to 
find the queue k where the load is lowest ( including the 
newly added job if the queue is not full ) . Thus , the load 
balancer 406 may assign the incoming request to the queue 
with the least actual ( or estimated ) workload amount of 
queued requests using Equation 9 . 

[ 0086 ] In the case of middle ( or medium ) traffic periods , 
the load balancer 406 may enable the join shortest queue 
( JSQ ) load balancing strategy , which aims to balance the 
load across the queues while reducing the probability that 
any one queue has several jobs pending while the others are 
idle . During middle traffic periods , since the delay of the 
queue status information and the actual queue status is 
smaller than that of higher spike level epochs , the delayed 
queue status information may be more trustworthy than 
during high spike situations . Accordingly , during middle 
traffic periods , the load balancer 406 may have more time to 
retrieve and utilize more detailed queue status information . 
[ 0087 ] In various embodiments , the JSQ load balancing 
strategy may be implemented based on the number of 
queued jobs and / or based on the actual ( or estimated ) 
workload amount . For example , in some embodiments , the 
JSQ load balancing strategy may simply use the number of 

min : { x } , kçi ) Thisk ) + Tkijk ) + Tijk ) Equation 9 
je { k } 

s.t .: \ k ] < ] k max 

[ 0091 ] In some embodiments , given a set of queues Q and 
the new job request i , Equation 9 may be written as shown 
in Equation 10 . 
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-continued 
Equation 10 | k ] < \ klmax argmin 

ke { Q } l ( kki ) 

[ 0095 ] As shown in Equation 13 , an optimization frame 
work minCV is provided to minimize or reduce the objective 
function under three constraints ( e.g. , s.t. in Equation 13 ) . 
The first constraint ensures that q ( iterated queue ) and k 
( queue to assign the new job ) are in the set of all available 
queues in the region . The second and third constraints ensure 
that queues should not queue more than their preset queue 
capacity ( e.g. , lalmar and kl mar ) in the unit of job request 
numbers . This optimization framework is referred to as 
minCV , since it aims to minimize the CV of 
workload amounts by identifying the k to achieve the 
minimal value of CV , as shown in equation 14 . 

[ 0092 ] In case of low ( or weak ) traffic periods , the load 
balancer 406 may enable the minCV load balancing strategy , 
since the load balancer 406 may have more time to conduct 
a full optimization considering both actual ( or estimated ) 
workload amount , and a more accurate balance degree 
measurement . In some embodiments , the actual ( or esti 
mated ) workload amount may be calculated , for example , 
using Equations 1 and 2 discussed above . The balance 
degree measurement may be calculated using a standard 
deviation ( e.g. , the square root of the variance ) , but requires 
the same units ( e.g. , the absolute number of inputs ) as the 
mean . Accordingly , in some embodiments , the load balancer 
406 may evaluate the dispersion of the queue workload 
distribution using Coefficient of Variation ( CV ) , also known 
as Relative Standard Deviation ( RSD ) , which is the ratio of 
the standard deviation to the mean . For example , in some 
embodiments , for any given k ( which corresponds to the 
selected queue to be assigned the job request ) , the load 
balancer 406 may calculate a mean total actual workload 
amount of all requests queued in all queues in the queue set 
Q using Equation 11 . 

queue actual 

Equation 14 argmin 
?? , k , i ) k? Q 

flaki ) Equation 11 

f | Q , ki ) 
qEQ 

Na 

[ 0093 ] The load balancer 406 may then calculate the CV 
( represented by 2 in Equation 12 ) by dividing the standard 
deviation by the mean calculated in Equation 11 as shown in 
Equation 12 . 

( Pig , : k.i ) - P1Qk ) ) ? Equation 12 
GEO 

1210 , k , 1 ) Na 
l ( Q , k , 1 ) 

[ 0096 ] FIG . 8 illustrates a block diagram of a load bal 
ancing system operating under a second mode to balance 
loads , according to an example embodiment . FIG . 9 is a 
system diagram of the load balancing system of FIG . 8 , 
according to an example embodiment . As described in more 
detail below , the second mode is a machine learning ( e.g. , 
reinforcement learning ) based method that uses an index 
( e.g. , Gittins index ) to predict spike values within a particu 
lar job completion time . In some embodiments , when oper 
ating under the second mode , the system may be enabled to 
respond to a spectrum of spike values , instead of the spike 
levels of the first mode that are divided based on the 
configured ( e.g. , pre - configured ) ranges ( e.g. , weak spike 
range , middle spike range , and strong spike range ) . Further , 
in some embodiments , when operating under the second 
mode , the system may be enabled to dynamically adjust the 
load balancing strategies according to changing workload 
conditions over time , instead of being limited to the pre 
configured load balancing strategies ( e.g. , round robin , join 
shortest queue , and minCV ) of the first mode . In some 
embodiments , the system operating under the second mode 
may be enabled to support job requests having an expire due 
time ( e.g. , also referred to hereinafter as time - sensitive job 
requests ) , and / or may add or remove resources dynamically 
in response to bursty traffic periods . 
[ 0097 ] Referring to FIGS . 8 and 9 , in some embodiments , 
the system 800 may include an orchestrator 802 , a traffic 
monitor 804 , an index policy filter 806 , a load agent ( or load 
balancing agent ) 812 , a bound calculator 808 , composition 
logic 810 , and a resource pool ( or VM pool ) scheduler 814 . 
In some embodiments , the traffic monitor 804 may monitor 
the central queue ( e.g. , CQ 202 in FIG . 2 ) and may transmit 
status information of the central queue . In some embodi 
ments , the index policy filter 806 may manage time - critical 
information including time window decisions . In some 
embodiments , the load balancing agent 812 may enable 
various load balancing strategies based on machine learning 
methods ( e.g. , reinforcement learning ( Q - learning ) ) . For 
example , in some embodiments , as shown in FIG.9 , the load 
balancing agent 812 may distribute a load to the pool of 
resource nodes according to a selected load balancing strat 
egy ( e.g. , Action ) , observe a state of the pool of resource 

[ 0094 ] As shown in Equation 12 , given a queue k that is 
selected to accept a new request i , the balance degree of all 
queues in the queue set Q after the new request is added to 
k is 2 < Q , k , i > . In this case , a smaller CV value ( 2 ) indicates 
a better load balancing result in the cloud region / port . 
Accordingly , in some embodiments , the load balancer 406 
may implement the minCV load balancing strategy using 
Equation 13 , which aims to minimize or reduce the imbal 
ance degree . 

Equation 13 ( fig . ) - Pon ) ? 
gEQ 

min : 12 , k , 1 ) Na 
l ( Q , k , 1 ) 

s.t .: 9 , k?Q 
lal = almax 
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tor . For example , burstiness may be described based on a 
single parameter , and this parameter may allow learning 
traffic behavior and may provide feedback to the operator on 
the fly . More specifically , in some embodiments , the model 
fitting and trace generation is efficient , as it scales linearly 
with the size of the data . The system 800 , according to some 
embodiments , utilizes reinforcement learning as a machine 
learning strategy , since reinforcement learning is a “ fail - fast 
learn - fast ” approach . 
[ 0103 ] For example , in some embodiments , entropy may 
be defined as the uniformity of a discrete probability func 
tion P. An entropy value E ( P ) for an event P with probability 
P ; is defined in Equation 15 . 

n Equation 15 
E ( P ) = Epilog , 1 / pi 

i = 1 

[ 0104 ] Where the variables of Equation 15 are defined in 
Table 4 . 

TABLE 4 

Symbol Description 

E ( P ) 
Pi 

Entropy of event P 
Probability of an event p 

Calculation of Entropy 
E ( P ) = pilog , 1 / P : 

i = 1 

nodes in response to the load balancing strategy ( e.g. , State 
observation ) , calculate a reward based on the observed state 
( e.g. , Reward ) , and adjust the load balancing strategy based 
on the reward . In some embodiments , the bound calculator 
808 may communicate the load balancing agent's 812 
confidence in meeting job requirements . In some embodi 
ments , the composition logic 810 may enable the load 
balancing agent 812 to add or remove resources ( e.g. , from 
the resource pool ) . In some embodiments , the resource pool 
scheduler 814 may prepare job requests to be scheduled into 
an appropriate queue . 
[ 0098 ] In brief overview , the system 800 may be broken 
up into a detection phase and a dissemination phase as two 
main phases . In some embodiments , the traffic monitor 804 
and the index policy filter 806 are primarily involved with 
the detection phase ( e.g. , spike detection and time - critical 
job support functions ) , whereas the load balancing agent 
812 , the bound calculator 808 , the composition logic 810 , 
and the resource pool scheduler 814 are primarily involved 
with the dissemination phase ( e.g. , load balancing and 
dynamic resource adjustment ) . In some embodiments , the 
bound calculator 808 may be considered as the learning 
" glue ” that processes the detection information for load 
balancing action . 
[ 0099 ] In some embodiments , during the detection phase , 
the orchestrator 802 receives input from a local traffic 
monitor 804 concerning the job request arrivals . The job 
request arrivals are passed through the index policy filter 
806 where each window of burst is time stamped . For 
example , a Gittins index of 0.7 suggests that 70 % of the job 
requests arrive in half the time interval , and the remaining 
30 % of the job requests arrive in the other half of the time 
interval . In some embodiments , during this arrival process 
two kinds of actions may be taken . A first action that may be 
taken is the overall optimal strategy for preempting traffic , 
and a second action that may be taken is computation of the 
Gittins index . In some embodiments , an optimal strategy of 
allocating compute resources may be computed based on 
how the traffic construction grows over time . 
[ 0100 ] For example , an initial construction may begin 
with a two time period division of a window , and gradually 
resources over number of requests may be generated on each 
half of the time axis according to the Gittins index compu 
tation . The output may be sent to the bound calculator 808 , 
where an incremental load value may be calculated based on 
the predicted spike requirement . The calculated incremental 
load value may then be used in the next phase ( e.g. , the 
dissemination phase ) to reallocate resources , for example . 
[ 0101 ] During the dissemination phase , the orchestrator 
802 may measure a resource increment ( I ) used for the 
change in the initial allocation , and may perform re - com 
putation of the desired resource requirement . This may be 
given as input to a composition logic 810. Accordingly , the 
dissemination phase may work in cooperation with the 
infrastructure that plays an integral role in resource provi 
sioning in the cloud . For example , the composition logic 810 
may perform the requested resource VM chaining tailoring 
to the service demands in the SLA ( Service Level Agree 
ment ) or QoS ( Quality of Service ) . 
[ 0102 ] According to some embodiments , a spike indica 
tion parameter based on the Gittins index enables the system 
800 to predict the spike value within a specified job comple 
tion time with very few parameters . This enables the system 
800 to balance loads while maximizing profits for an opera 

[ 0105 ] As shown in Equation 15 , when all the probability 
values are equal ( or the same ) , then entropy reaches a 
maximum value . On the other hand , if one event dominates , 
then entropy approaches zero . Thus , in some embodiments , 
entropy describes the burstiness , and a global value of 
burstiness per se is judged by a Hurst parameter . It is actually 
a notion of self - similarity , but self - similar processes do not 
always generate a bursty sequence . In addition , the Hurst 
parameter pertains to usage over large time scales . Accord 
ingly , in some embodiments , inspiration is drawn from a 
statistical index called the Gittins index . 
[ 0106 ] Typically , the Gittins index is used as a parameter 
that demarcates requests within a time interval . For example , 
a Gittins index of 0.7 suggests that 70 % of the requests 
arrive in half the time interval and the remaining 30 % in the 
other half . During this arrival process , two kinds of actions 
may be taken , one action is the overall optimal strategy for 
pre - empting traffic , and the other action is computation of 
the Gittins index . In some embodiments , the optimal strat 
egy of allocating computing resources may be determined 
based on how traffic construction grows over time . For 
example , the initial construction begins with the two - time 
division and gradually recurses over the number of requests 
generated on each half of the time axis according to the 
Gittins index computation . In some embodiments , how fast 
the Gittins index can be computed is not the intention , but 
instead , the insights gained by using the index as an input to 
learn the traffic characteristics . For example , in some 
embodiments , as the value of the Gittins index approaches 
1 , higher traffic irregularity may be assumed since uniform 
traffic index values are typically around 0.5 . 
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TABLE 5 - continued 

Symbol Description 

T ( S ( a ) ) , B Time to completely traverse stopping 
set S ( a ) 
T ( S ( a ) ) with t > 0 : Xt \ in S ( a ) , 
discount parameter 
reward for state space ( Xt ) , T ( S ( a ) ) 
with t > 0 : Xt \ in S ( a ) , Identity Matrix 

r * ( X . ) , I 

Paba Markovian update function , Cu = { if be C ( ak ) 
otherwise 

dak GI calculation formula 

[ T ( S ( a ) ) 

El Br " ( X :) Xo = a 
Expectation of the reward based on 
prior knowledge 

t = 0 

[ T ( S ( a ) ) maximum value of the Bayesian 
expectation E Br " ( X ) Xo = a 

t = 0 
max 

[ T ( S ( a ) ) 
E | ? ? ' | ?? = 0 

I = 0 

[ 0107 ] In some embodiments , the second mode ( e.g. , the 
learning mode ) may be used to cater to an arbitrary distri 
bution ( e.g. , unlike the first mode catering to a uniform 
distribution ) . For example , in some embodiments , the sec 
ond mode may encompass uniform distribution as a special 
case scenario . In some embodiments , the traffic considered 
in most scenarios under the second mode may be described 
as a poisson traffic that is not always self - similar . For 
example , different user requests ranging from multimedia , 
gaming applications , to web apps have shown the drastic 
need to manage quality of service in such environments . 
Typically , when the load in a network goes beyond a usual 
load barometer there is a need to manage such a change . 
Hence , such distributions are arbitrary and may need to be 
brought under an indexable umbrella . In other words , the 
indexability of the second mode may enable converting a non - machine learning problem into a machine learning 
problem . In some embodiments , the function is monotoni 
cally increasing making the overall traffic indexing easier . 
Further , in some embodiments , the arrival distributions may 
be mapped as an onto function to the traffic arrival . 
[ 0108 ] In some embodiments , the Gittins index enables 
job preemption , that is , time critical jobs may be performed 
first , instead of following a first come first serve ( e.g. , FCFS ) 
job completion . For example , consider a scenario where the 
overall jobs being queued is of two types , namely , best effort 
and time sensitive traffic . In some embodiments , the fresh 
arrival time and schedule based on the Gittins index is 
computed to stall the traffic that is either stagnant in the 
queue or who's resource occupation is unknown . 
[ 0109 ] In more detail , FIG . 10A illustrates an example 
flow diagram of a method for detecting spikes , according to 
an example embodiment , and FIG . 10B is a corresponding 
pseudocode of the spike detection method of FIG . 10A . 
Referring to FIGS . 8 , 9 , 10A , and 10B , in some embodi 
ments , the flow of control starts from detection . Once the 
detection occurs , the index ( e.g. , the Gittins index ) allows 
the traffic to be segregated as time critical and best effort 
traffic . Likewise , the index can characterize the traffic based 
on how bursty it is and the degree of burst defined from the 
Hurst parameter . In some embodiments , in order to satisfy 
the burst request , more resource requirements may be 
desired in such scenarios , which can be satisfied by com 
posing a new virtual compute environment . In some 
embodiments , the load balancer includes the bound calcu 
lation parameters ( e.g. , as calculated by the bound calculator 
808 ) and a new load increment value ( e.g. , based on the 
degree of burst ) . In some embodiments , the time critical 
nature of jobs may be monitored by both the index policy 
filter 806 and the traffic monitor 804 . 
[ 0110 ] For example , in some embodiments , as job requests 
are queued ( e.g. , in the CQ 202 of FIG . 2 ) , the traffic monitor 
804 monitors the queue for spike detection . In some embodi 
ments , the traffic monitor 804 may calculate a Gittins index 
metric to segregate the traffic . For example , Table 5 defines 
some symbols and their related descriptions of the algo 
rithms used for spike detection , according to some embodi 
ments . 

[ 0111 ] Referring to FIGS . 10A and 10B , consider time 
t = 1 , a first spike is received in the network . A decision to be 
made here ( e.g. , the ultimate decision of flow diagram of 
FIG . 10A , may be referred to as successful spike detection . 
Accordingly , for any other value determined by the flow 
diagram of FIG . 10A may be considered to be a failure . For 
example , the decision to be made by the flow diagram of 
FIG . 10A may follow a Bernoulli decision of success and 
failures . In some embodiments , as this problem may likely 
evolve exponentially based on service rates , this problem 
may be proved as NP - complete ( or in other words , increase 
of service rate leads to increase of computation time which 
is not in the polynomial order . Accordingly , in some embodi 
ments , a scalar may be modeled based on a stopping time T , 
which is a time when the detection phase transitions to the 
dissemination phase . 
[ 0112 ] For example , at block 1005 , the traffic monitor 804 
may initialize . During initialization , the traffic monitor 804 
may determine the highest Gittins index ( GI ) , § using 
Equation 16. The stopping phase for a state a may be defined 
as S ( a ) , such that if a , has the highest GI , then Ç = S ( Q ) . 

Equation 16 
Ma ) = max 

El S " Br ( X ) [ Xo = x ] 
B [ Xo = a ] 

where 
E [ X = 0 T ( S ( a ) ) 

TABLE 5 S ( a ) cs 

Symbol Description 

S ( a ) , C ( ay ) State a , Stopping set S ( a ) , Continuing 
set ( C ( a ) 
Gittins Index Value for ' a ' , Globally 
initialized Gittins Index value 

( a ) , t 
[ 0113 ] Within the stopping phase S for the state ai at block 
1010 , blocks 1015 , 1020 , and 1025 are iterated over the ai 
state such that if C ( ak ) = al ... ak - 1 represents the next kth 
largest GI , this may be represented by Equation 17 . 
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Equation 17 Qs = { Pict , it be clou ) otherwise 

[ 0114 ] In Equation 17 , P ab represents the reward function 
using an mxl matrix . Further , if I represents the mxm 
identity matrix , then we may compute the value of Gittins 
index GI by first using two assistant equations ( Equations 18 
and 19 ) : 

( k ) = [ I - BQK ) ] ' S Equation 18 : 

( = [ I - BOWk - 1 Equation 19 : 

[ 0115 ] Based on Equations 18 and 19 , the value of the 
Gittins index GI may be computed from Equation 20 . 

dick Equation 20 

[ 011 ] After the value of the Gittins index GI is computed 
( e.g. , at block 1015 ) , sorted ( e.g. , at block 1020 ) , and 
determined to be the largest kth value ( e.g. , at block 1025 ) , 
the GI value ( e.g. , the largest kth GI value ) is compared to 
a GI threshold value ( e.g. , 0.5 in this example ) to determine 
the best completion rate for a time T , which is the stopping 
time . In this case , if the Gittin index GI is greater than the 
GI threshold value , a burst flag is set to on to call the load 
balancing agent 812 at block 1035 . 
[ 0117 ] FIGS . 11A - 11C illustrate examples of an index 
policy filter for analyzing incoming traffic , according to 
example embodiments . While some non - limiting example 
waveforms of the incoming traffic are illustrated in FIGS . 
11A - 11C , the present disclosure is not limited to the 
examples shown in FIGS . 11A - 11C , and the actual wave 
forms of the incoming traffic may differ from those shown . 
In some embodiments , after the monitoring procedure , the 
index policy filter 806 may mark the incoming traffic based 
on indexability to determine a proper spike value ( e.g. , burst 
value ) of the incoming traffic . For example , in some embodi 
ments , the index policy filter 806 analyzes incoming traffic 
of various distributions for bursts using the Gittins indices . 
The Gittins index provides a linear scale to represent the 
maximum value considered for a burst . 
[ 0118 ] For example , in some embodiments , the index 
policy filter 806 may include a Gittins Index ( GI ) analyzer 
1105. In some embodiments , the GI analyzer 1105 computes 
the Gittins index for arrival groups in steps of a window , and 
may output a representative value ( e.g. , a burst value ) 
corresponding to the spike value for the window . For 

example , as shown in FIG . 11A , the GI analyzer 1105 may 
analyze the incoming traffic to generate randomly changing 
spike values ( e.g. , Gittins index values or GI values ) . As 
shown in FIG . 11A , linear increase in traffic arrival with the 
highest burst ( e.g. , highest burst value ) may be segregated . 
As shown in FIG . 11B , linearly increasing burst values may 
result in the GI analyzer 1105 outputting the highest value 
( e.g. , the highest burst value ) as the new spike value . As 
shown in FIG . 11C , increasing burst values with a different 
set of random values may result in the GI analyzer output 
ting the highest value ( e.g. , the highest burst value ) as the 
new spike value . 
[ 0119 ] FIG . 12 is a flow diagram illustrating an example 
method for generating a burst value , according to an 
example embodiment . Referring to FIG . 12 , incoming traffic 
is received by the index policy filter 806 at block 1205. The 
incoming traffic is examined by the index policy filter 806 at 
block 1210. For example , in some embodiments , the index 
policy filter 806 may segregate the arrival groups into a 
plurality of steps of a window . The Gi indices of each of 
the steps in the analysis window may be computed at block 
1215. For example , the index policy filter 806 may calculate 
the Gittins index for each of the steps in the analysis 
window . The representative largest value may be recorded at 
block 1220. For example , the index policy filter 806 may 
identify and record the largest Gittins index from among the 
steps in the analysis window . The linear index measure is 
achieved at block 1225. For example , the recorded Gittins 
index provides a linear scale to represent the maximum 
value considered for a burst . 

[ 0120 ] In some embodiments , once the detection phase is 
completed , the new spike values are used to produce new 
load requirements . For example , in some embodiments , the 
bound calculator 808 may calculate a bound calculation to 
determine a desired resource ( e.g. , from the resource pool ) 
to be pooled in . In some embodiments , once the bound 
calculation is determined , all such future spike variations are 
trained and the load request may be satisfied . The bound 
calculator 808 will be described in more detail with refer 
ence to FIGS . 14 to 15B . 

[ 0121 ] Hereinafter , aspects and features of the load bal 
ancing agent 812 for allocating resources in response to 
traffic conditions will be described in more detail . In some 
embodiments , the load balancing agent 812 may handle the 
parameters needed to make decisions on the nodes ( e.g. , 
VMs , containers , and / or the like ) selected to satisfy the input 
load . Table 6 defines some symbols and their related descrip 
tions of the algorithms used by the bound calculator 808 and 
the load balancing agent 812 , according to some embodi 
ments . 

TABLE 6 

Symbol Description 

21nN Incremental load bounds 
calculated , allocations , load values I ' 

?? 

B ; = B ; + I ' Base resource parameter , 
updated base resource parameter 
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TABLE 6 - continued 

Symbol Description 

max ( 29p ? – r { b ; ) ; VCEC ; Ve E E 
iel jej 

Time to completely traverse 
stopping set S ( a ) T ( S ( a ) ) with 
t > 0 : Xt \ in S ( a ) , discount 
parameter 

rape 1 , if the VMC serves the burst i 
0 , otherwise 

Reward definition based on 
assigning a job to a 
node 

p : = { , otherwise 1 , if for a burst i that takes the extra resource e Reward definition based 
on assigning a job to a 
node 

Q ( s , a ) : = r ( s , a ) + Àmaxa ; Q ( s ' , a ; ) Q function for Gittins index 
measurement input state and 
load balancing action a , discount 
parameter and local maximum 
q value with current and next states 
modelling parameters @ ( s , a ) : = ab ( s , a ) + ( 1 - a ) ( s , a ) 

[ 0122 ] In some embodiments , as the degree of variability 
is very high , a base resource parameter B ; may be deter 
mined that is subjected to be assigned to loads j before the 
peak detection . For example , from the time the burst began 
until a stopping time , a total of N allocations may be 
provided with n , referring to the incremental updates made 
for the assignments . This is given by an estimated incre 
mental load managing value I ' , as defined in Equation 21 . 

21nN Equation 21 
?? 

embodiment , and FIG . 13B is corresponding pseudocode for 
implementing the process of FIG . 13A . 
[ 0126 ] In some embodiments , a new time step triggers the 
machine learning process at block 1305. For the new time 
step , a change in the Gittins index GI value is determined at 
block 1310. If there is no change in the Gittins index GI 
value at block 1310 ( e.g. , NO ) , then the process continues 
monitoring for a new time step at block 1305. On the other 
hand , if there is a change in the Gittins index GI value at 
block 1310 , then for each resource n ; at block 1315 , load 
managing value I ' is determined at block 1320 , a base 
resource parameter B , is determined at block 1325 , and the 
confidence bounds for each of the resources n ; is calculated 
at block 1330. The load balancing agent 812 takes an action 
at block 1335. For example , in some embodiments , the load 
balancing agent 812 selects the action with the highest 
confidence bound . Finally , any Q - learning updates learned 
from the selected action taken are applied at block 1340 . 
[ 0127 ] For example , in some embodiments , the objective 
of the load balancing agent 812 may be to maximize 
provider profit . As it is difficult to estimate the changing 
cloud environment conditions , it may be important to drive 
resource assignment through a learning process , as a single 
burst interval does not demarcate a successful all - in - one training . Accordingly , in some embodiments , the Q - learning 
strategy is used as shown in Equation 24 . 

max « ; p : – 1 ; 6 ) ; VceC ; Vee E Equation 24 
iel je 

[ 0123 ] For example , when the load balancing agent 812 is 
called for an initial time ( e.g. , the first time ) , an initial 
expected B ; plus the load managing value I is computed , 
such that a new updated value is defined as Bj = Bj + I ' . This 
calculation is performed by exploring all resource availabil 
ity and favoring the composition with the highest gain . This 
is referred to as the confidence bound of resource alloca 
tions , such that at all times , the learning process favors the 
actions with the highest confidence bounds . According to 
some embodiments , the learning process may include a 
reinforcement learning strategy also known as Q - learning . 
That is , in some embodiments , a mean reward that an agent 
( e.g. , the load balancing agent 812 ) could get out from the 
environment ( e.g. , cloud environment ) is demarcated . For 
example , in some embodiments , the load balancing agent 
812 may approximate the expectation by using exponen 
tially weighted moving average ( EWMA ) . For example , in 
some embodiments , the load balancing agent 812 may 
iterate over the state - action cycle as shown in Equation 22 , 
where S , S ' indicates past and present states of GI measure 
ments , respectively , a indicates different load values , and r 
defines an immediate reward parameter . 

QUs , a ) : = r ( s , a ) + maxaQs a ) Equation 22 : 

[ 0124 ] Using EWMA , Equation 22 may be rewritten as 
shown in Equation 23 . 

Ô ( s , a ) : = a? ( s , a ) + ( 1 - a ) O ( s , a ) Equation 23 : 

[ 0125 ] FIG . 13A is a flow diagram of an example method 
of a machine learning process , according to an example 

[ 0128 ] Where r , is defined by Equation 25 . 

if the VM c serves the burst i Equation 25 = { 5 ; otherwise ment 

[ 0129 ] A binary variable pie is defined by Equation 26 . 

Equation 26 
pe 1 , if for a burst i that takes the extra resource e 

0 , otherwise 
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embodiment . In various embodiments , a load balancing 
system is provided that may operate under either the first 
mode ( e.g. , the heuristic mode ) or the second mode ( e.g. , the 
learning mode ) , as described above . For example , in some 
embodiments , the load balancing system may be configured 
to operate under either of the first mode or the second mode 
based on the desired aspects and features of each of the 
modes described above . In other embodiments , the system 
may automatically select between any of the first or second 
modes , to selectively operate under each of the first and 
second modes as needed or desired . For example , in some 
embodiments , the load balancing system may include a 
mode selector 1600 to automatically select between any of 
the first mode 1605 or the second mode 1610 as needed or 
desired . 

[ 0137 ] In some embodiments , the mode selector 1600 may 
include a counter 1602 to select between the first and second 
modes . In some embodiments , the counter 1602 may be a 
2 - bit counter that is not allowed to overflow or underflow , 
but the present disclosure is not limited thereto . In some 
embodiments , the mode selector 1600 uses the counter 1602 
to provide some resistance such that the system does not 
switch between modes too frequently . For example , persis 
tent context switching may adversely affect the learning 
development of the load balancing agent 812. Accordingly , 
in some embodiments , the mode selector 1600 may use the 
counter 1602 to ensure that mode switching is performed 
after the load balancing agent 812 has been sufficiently 
trained by demonstrating high performance for a period of 
time . 

[ 0130 ] In the above Equations 24 to 26 , the variable e is 
defined as any event that is aligned with changing burst 
values GI . 
[ 0131 ] In order to directly execute the load balancing 
agent's 812 action on the resource pool ( e.g. , node pool or 
VM pool ) , control is passed to the composition logic 810 
and the resource pool scheduler 814. In some embodiments , 
the composition logic 810 includes logic to add and remove 
resources , as composing resources may be an integral part of 
a dynamic virtual environment . Accordingly , in some 
embodiments , the composition logic 810 may adjust the 
resource requirements based on the spike value ( or burst 
value ) calculation . Once an initial detection has arrived , the 
overall requirement may be computed based on which 
resource ( e.g. , a Virtual Machine ) is chosen from the 
resource pool ( e.g. , a VM Pool ) . In some embodiments , the 
composition logic 810 may re - compose the resources ( e.g. , 
the VMs ) with the initial virtual network , thereby producing 
a new virtual compute environment . 
[ 0132 ] In some embodiments , the resource pool scheduler 
814 may allocate a table of jobs into the appropriate queue , 
and may perform the dispatch . As the dispatcher , the 
resource pool scheduler 814 feeds a part of the new virtual 
compute environment schedule to the index policy filter 806 
to complete the feed - back loop of learning and exploring . In 
some embodiments , once the new schedule is prepared , all 
new arrivals having a similar Gittins index value to the 
previous ones may remain self - satisfied . 
[ 0133 ] In some embodiments , as the load balancing agent 
812 explores its possible actions , it avoids disadvantageous 
actions experienced in prior similar situations . In other 
words , in some embodiments , the load balancing agent 812 
highlights actions that it is optimistic about based on the 
confidence bounds calculated by the bound calculator 808 . 
For example , in some embodiments , the bound calculator 
808 evaluates the confidence bound of how well the load 
balancing agent 812 considers requests are satisfied . In some 
embodiments , the bound calculator 808 takes the output of 
the index policy filter 806 as a spike requirement basis for 
calculating load parameters , for example , to compute the 
incremental load value I ' . 
[ 0134 ] For example , FIG . 14 is flow diagram of the 
bound calculator , according to an example embodiment . 
Referring to FIG . 14 , in some embodiments , the B ; ( B_j ) and 
I ' parameters may be acquired to calculate the n ; ( n_j ) 
parameter in order to influence the Q - learning process of the 
load balancing agent 812. For example , for a new time step 
at block 1405 , the parameters used ( e.g. , B ; and N ) for 
calculating the incremental load managing value I ' is 
obtained at block 1410. An updated n ; parameter is obtained 
according to the Gittins index G? at block 1415. The 
incremental load managing value I ' is updated at block 1420 , 
and the B ; update is communicated at block 1425. The 
confidence bound is then updated at block 1430 . 
[ 0135 ] FIG . 154 illustrates parameter transmission 
between the index policy filter 806 , the bound calculator 
808 , the composition logic 810 , and the resource pool 
scheduler 814 , according to an example embodiment . FIG . 
15B shows the resulting confidence bound levels of the load 
balancing agent 812 , according to an example embodiment . 
[ 0136 ] FIG . 16 is a block diagram of a mode selector , 
according to an example embodiment . FIG . 17 is a flow 
diagram of a method for automatically selecting between a 
first mode and a second mode , according to an example 

[ 0138 ] In brief overview , in some embodiments , the mode 
selector 1600 uses the counter 1602 to determine whether to 
operate in the first mode ( e.g. , the heuristic mode ) 1605 or 
the second mode ( e.g. , the learning mode ) 1610. For 
example , in some embodiments , a higher counter value ( e.g. , 
above a middle counter value ) may indicate a higher trust 
level on the second mode ( e.g. , the learning mode ) 1610 
( e.g. , indicating that the load balancing agent 812 has been 
sufficiently trained ) , whereas a lower counter value ( e.g. , 
below the middle counter value ) may indicate a higher trust 
level on the first mode ( e.g. , the heuristic mode ) 1605. In 
some embodiments , however , mode selection may be con 
cerned when traffic resembles a uniform distribution , that is , 
when the Gittins index value falls in a corresponding thresh 
old range ( e.g. , a preset mid - range such as 0.5 , for example ) . 
In some embodiments , if both modes agree on a burst 
scenario , then the mode selector 1600 selects the first mode 
1605 , which may be more lightweight when compared to the 
second mode 1610. On the other hand , in some embodi 
ments , if the modes do not agree on the burst scenario , then 
the counter value may be used to select between the modes . 
[ 0139 ] In more detail , referring to FIG . 17 , the mode 
selector 1600 initiates the counter 1602 at block 1702. For 
example , the mode selector 1600 may set the counter 1602 
to an initial counter value ( e.g. , 0 ) at block 1702. The Gittins 
index ( GI ) value may be retrieved at block 1704. In some 
embodiments , the mode selector 1600 may compare the GI 
value with a threshold range ( e.g. , a preset mid - range such 
as 0.5 ) to determine whether the GI value is within the 
threshold range at block 1706. If the GI value is not within 
the threshold range at block 1706 ( e.g. , NO ) , then the mode 
selector 1600 may select the second mode ( e.g. , the learning 
mode ) at block 1708. On the other hand , if the GI value is 
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within the threshold range at block 1706 ( e.g. , YES ) , then 
the mode selector 1600 may retrieve the SCV value at block 
1710 . 
[ 0140 ] At block 1712 , the mode selector 1600 may deter 
mine whether the first and second modes agree on a burst 
scenario . If both the first and second modes agree on a burst 
scenario at block 1712 ( e.g. , YES ) , then the mode selector 
1600 may select the first mode ( e.g. , the heuristic mode ) at 
block 1714. On the other hand , if the first and second modes 
do not agree on a burst scenario at block 1712 ( e.g. , NO ) , 
then the counter value of the counter 1602 is compared with 
a counter threshold value ( e.g. , the mid - point counter value 
of 2 in this example ) to determine whether the counter value 
is less than the counter threshold value . If the counter value 
is less than the counter threshold value at block 1716 ( e.g. , 
YES ) , then the first mode is selected at block 1718. The 
mode selector 1600 then determines whether the failure rate 
improves ( or is maintained ) at block 1720 under the first 
mode . If the failure rate does not improve ( or is maintained ) 
at block 1720 ( e.g. , NO ) , then the counter 1602 is incre 
mented at block 1722 ( e.g. , if not already at a maximum 
value of 3 in this example of a 2 - bit counter ) . If the failure 
rate improves at block 1720 , then the counter 1602 is 
decremented at block 1728 ( e.g. , if not already at a minimum 
value of 0 in this example ) . 
[ 0141 ] On the other hand , if the counter value is greater 
than the counter threshold value at block 1716 ( e.g. , NO ) , 
then the mode selector 1600 may select the second mode at 
block 1724. The mode selector 1600 then determines 
whether the failure rate improves ( or is maintained ) at block 
1726 under the second mode . If the failure rate does not 
improve ( or is maintained ) at block 1726 ( e.g. , NO ) , then the 
counter 1602 is decremented at block 1728 ( e.g. , if not 
already at a minimum value of 0 in this example ) . On the 
other hand , if the failure rate improves at block 1726 , then 
the counter 1602 is incremented at block 1722 ( e.g. , 
already at a maximum value of 3 in this example of a 2 - bit 
counter ) . 
[ 0142 ] Some or all of the operations described herein may 
be performed by one or more processing circuits . The term 
“ processing circuit ” is used herein to mean any combination 
of hardware , firmware , and software , employed to process 
data or digital signals . Processing circuit hardware may 
include , for example , application specific integrated circuits 
( ASICs ) , general purpose or special purpose central pro 
cessing units ( CPUs ) , digital signal processors ( DSPs ) , 
graphics processing units ( GPUs ) , and programmable logic 
devices such as field programmable gate arrays ( FPGAs ) . In 
a processing circuit , as used herein , each function is per 
formed either by hardware configured , i.e. , hard - wired , to 
perform that function , or by more general purpose hardware , 
such as a CPU , configured to execute instructions stored in 
a non - transitory storage medium . A processing circuit may 
be fabricated on a single printed circuit board ( PCB ) or 
distributed over several interconnected PCBs . A processing 
circuit may contain other processing circuits ; for example a 
processing circuit may include two processing circuits , an 
FPGA and a CPU , interconnected on a PCB . 
[ 0143 ] It will be understood that , although the terms 
" first " , " second ” , “ third ” , etc. , may be used herein to 
describe various elements , components , regions , layers and / 
or sections , these elements , components , regions , layers 
and / or sections should not be limited by these terms . These 
terms are only used to distinguish one element , component , 

region , layer or section from another element , component , 
region , layer or section . Thus , a first element , component , 
region , layer or section discussed herein could be termed a 
second element , component , region , layer or section , with 
out departing from the spirit and scope of the inventive 
concept . 
[ 0144 ] Spatially relative terms , such as “ beneath ” , 
“ below ” , “ lower ” , “ under ” , “ above ” , “ upper ” and the like , 
may be used herein for ease of description to describe one 
element or feature’s relationship to another element ( s ) or 
feature ( s ) as illustrated in the figures . It will be understood 
that such spatially relative terms are intended to encompass 
different orientations of the device in use or in operation , in 
addition to the orientation depicted in the figures . For 
example , if the device in the figures is turned over , elements 
described as “ below ” or “ beneath ” or “ under ” other ele 
ments or features would then be oriented " above ” the other 
elements or features . Thus , the example terms “ below ” and 
“ under ” can encompass both an orientation of above and 
below . The device may be otherwise oriented ( e.g. , rotated 
90 degrees or at other orientations ) and the spatially relative 
descriptors used herein should be interpreted accordingly . In 
addition , it will also be understood that when a layer is 
referred to as being “ between ” two layers , it can be the only 
layer between the two layers , or one or more intervening 
layers may also be present . 
[ 0145 ] The terminology used herein is for the purpose of 
describing particular embodiments only and is not intended 
to be limiting of the inventive concept . As used herein , the 
terms “ substantially , ” “ about , ” and similar terms are used as 
terms of approximation and not as terms of degree , and are 
intended to account for the inherent deviations in measured 
or calculated values that would be recognized by those of 
ordinary skill in the art . 
[ 0146 ] As used herein , the singular forms “ a ” and “ an ” are 
intended to include the plural forms as well , unless the 
context clearly indicates otherwise . It will be further under 
stood that the terms “ comprises ” and / or “ comprising ” , when 
used in this specification , specify the presence of stated 
features , integers , steps , operations , elements , and / or com 
ponents , but do not preclude the presence or addition of one 
or more other features , integers , steps , operations , elements , 
components , and / or groups thereof . As used herein , the term 
" and / or ” includes any and all combinations of one or more 
of the associated listed items . Expressions such as “ at least 
one of , ” when preceding a list of elements , modify the entire 
list of elements and do not modify the individual elements 
of the list . Further , the use of “ may ” when describing 
embodiments of the inventive concept refers to “ one or more 
embodiments of the present disclosure ” . Also , the term 
" exemplary ” is intended to refer to an example or illustra 
tion . As used herein , the terms “ use , ” “ using , ” and “ used ” 
may be considered synonymous with the terms " utilize , " 
" utilizing , " and " utilized , " respectively . 
[ 0147 ] It will be understood that when an element or layer 
is referred to as being “ on ” , “ connected to ” , “ coupled to ” , or 
“ adjacent to ” another element or layer , it may be directly on , 
connected to , coupled to , or adjacent to the other element or 
layer , or one or more intervening elements or layers may be 
present . In contrast , when an element or layer is referred to 
as being “ directly on ” , “ directly connected to ” , “ directly 
coupled to ” , or “ immediately adjacent to ” another element 
or layer , there are no intervening elements or layers present . 

if not 
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[ 0148 ] Any numerical range recited herein is intended to 
include all sub - ranges of the same numerical precision 
subsumed within the recited range . For example , a range of 
“ 1.0 to 10.0 ” is intended to include all subranges between 
( and including ) the recited minimum value of 1.0 and the 
recited maximum value of 10.0 , that is , having a minimum 
value equal to or greater than 1.0 and a maximum value 
equal to or less than 10.0 , such as , for example , 2.4 to 7.6 . 
Any maximum numerical limitation recited herein is 
intended to include all lower numerical limitations sub 
sumed therein and any minimum numerical limitation 
recited in this specification is intended to include all higher 
numerical limitations subsumed therein . 
[ 0149 ] Although exemplary embodiments of systems and 
methods for spike detection and intelligent load balancing 
have been specifically described and illustrated herein , many 
modifications and variations will be apparent to those skilled 
in the art . Accordingly , it is to be understood that systems 
and methods for spike detection and intelligent load balanc 
ing constructed according to principles of this disclosure 
may be embodied other than as specifically described herein . 
The invention is also defined in the following claims , and 
equivalents thereof . 

1. A load balancing system , comprises : 
a centralized queue ; 
a pool of resource nodes coupled to the centralized queue ; 
one or more processors ; and 
memory coupled to the one or more processors and 

storing instructions that , when executed by the one or 
more processors , cause the one or more processors to : 

monitor a queue status of the centralized queue to identify 
a bursty traffic period ; 

calculate an index value for a load associated with the 
bursty traffic period ; 

select a load balancing strategy based on the index value ; 
distribute the load to the pool of resource nodes based on 

the load balancing strategy ; 
observe a state of the pool of resource nodes in response 

to the load balancing strategy ; 
calculate a reward based on the observed state according 

to a reward function ; and 
adjust the load balancing strategy based on the reward . 
2. The system of claim 1 , wherein the index value 

corresponds to a Gittins Index ( GI ) value . 
3. The system of claim 2 , wherein to calculate the index 

value , the instructions further cause the one or more pro 
cessors to : 

calculate a plurality of GI values for the load associated 
with the bursty traffic period ; and 

output a greatest one of the plurality of GI values as a new 
spike value . 

4. The system of claim 3 , wherein to distribute the load to 
the pool of resource nodes , the instructions further cause the 
one or more processors to : 

adjust resource requirements for the pool of resource 
nodes based on the new spike value to generate a new 
compute environment ; and 

generate a schedule of job request distributions associated 
with the load for the new compute environment . 

5. The system of claim 1 , wherein to select the load 
balancing strategy , the instructions further cause the one or 
more processors to : 

calculate an incremental load managing value for each 
resource in the pool of resource nodes ; and 

calculate a base resource parameter for each resource in 
the pool of resource nodes . 

6. The system of claim 5 , wherein the load balancing 
strategy is selected based on the resource with the greatest 
base resource parameter . 

7. The system of claim 1 , wherein to calculate the reward , 
the instructions further cause the one or more processors to : 

calculate a Q - function based on the index value , an input 
state , the selected load balancing strategy , and the 
reward function . 

8. The system of claim 7 , wherein the Q - function is 
calculated according to : 

Ô ( s , a ) : = r ( s , a ) + y max ,, ( s ' , a ; ) , 
wherein : 

s and s ' corresponds to past and present state GI index 
values , respectively , 

a corresponds to different load values ; and 
r corresponds to an immediate reward parameter . 

9. The system of claim wherein the instructions further 
cause the one or more processors to : 

apply an exponentially weighted moving average to the 
Q - function calculation . 

10. The system of claim 1 , wherein the load corresponds 
to a Poisson traffic distribution . 

11. A method for load balancing , the method comprises : 
monitoring , by one or more processors , a queue status of 

a centralized queue to identify a bursty traffic period ; 
calculating , by the one or more processors , an index value 

for a load associated with the bursty traffic period ; 
selecting , by the one or more processors , a load balancing 

strategy based on the index value ; 
distributing , by the one or more processors , the load to a 

pool of resource nodes based on the load balancing 
strategy ; 

observing , by the one or more processors , a state of the 
pool of resource nodes in response to the load balanc 
ing strategy ; 

calculating , by the one or more processors , a reward based 
on the observed state according to a reward function ; 
and 

adjusting , by the one or more processors , the load bal 
ancing strategy based on the reward . 

12. The method of claim 11 , A method for load balancing , 
the method comprises : 

monitoring , by one or more processors , a queue status of 
a centralized queue to identify a bursty traffic period ; 

calculating , by the one or more processors , an index value 
for a load associated with the bursty traffic period ; 

selecting , by the one or more processors , a load balancing 
strategy based on the index value ; 

distributing , by the one or more processors , the load to a 
pool of resource nodes based on the load balancing 
strategy ; 

observing , by the one or more processors , a state of the 
pool of resource nodes in response to the load balanc 
ing strategy ; 

calculating , by the one or more processors , a reward based 
on the observed state ; and 

adjusting , by the one or more processors , the load bal 
ancing strategy based on the reward , 

wherein the index value corresponds to a Gittins Index 
( GI ) value . 
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13. The method of claim 12 , wherein the calculating of the 
index value comprises : 

calculating , by the one or more processors , a plurality of 
GI values for the load associated with the bursty traffic 
period ; and 

outputting , by the one or more processors , a greatest one 
of the plurality of GI values as a new spike value . 

14. The method of claim 13 , wherein the distributing of 
the load to the pool of resource nodes comprises : 

adjusting , by the one or more processors , resource 
requirements for the pool of resource nodes based on 
the new spike value to generate a new compute envi 
ronment ; and 

generating , by the one or more processors , a schedule of 
job request distributions associated with the load for the 
new compute environment . 

15. The method of claim 11 , wherein the selecting of the 
load balancing strategy comprises : 

calculating , by the one or more processors , an incremental 
load managing value for each resource in the pool of 
resource nodes ; and 

calculating , by the one or more processors , a base 
resource parameter for each resource in the pool of 
resource nodes . 

16. The method of claim 15 , wherein the load balancing 
strategy is selected based on the resource with the greatest 
base resource parameter . 

17. The method of claim 11 , wherein the calculating of the 
reward comprises : 

calculating , by the one or more processors , a Q - function 
based on the index value , an input state , the selected 
load balancing strategy , and the reward function . 

18. The method of claim 17 , wherein the Q - function is 
calculated according to : 

Ô ( s , a ) : = r ( s , a ) + y max , Q ( s ' , a ; ) , 
wherein : 

s and s ' corresponds to past and present state GI index 
values , respectively , 

a corresponds to different load values ; and 
r corresponds to an immediate reward parameter . 

19. The method of claim 17 , further comprising : 
applying , by the one or more processors , an exponentially 

weighted moving average to the Q - function calcula 
tion . 

20. The method of claim 11 , wherein the load corresponds 
to a Poisson traffic distribution . 
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