Skip to main content
Article
Polaris: Getting Accurate Indoor Orientations for Mobile Devices Using Ubiquitous Visual Patterns on Ceilings
ACM HotMobile 2012 (2012)
  • Zheng Sun, Carnegie Mellon University
Abstract

Ubiquitous computing applications commonly use digital compass sensors to obtain orientation of a device relative to the magnetic north of the earth. However, these compass readings are always prone to significant errors in indoor environments due to presence of metallic objects in close proximity. Such errors can adversely affect the performance and quality of user experience of the applications utilizing digital compass sensors.

In this paper, we propose Polaris, a novel approach to provide reliable orientation information for mobile devices in indoor environments. Polaris achieves this by aggregating pictures of the ceiling of an indoor environment and applies computer vision based pat- tern matching techniques to utilize them as orientation references for correcting digital compass readings. To show the feasibility of the Polaris system, we implemented the Polaris system on mobile devices, and field tested the system in multiple office buildings. Our results show that Polaris achieves 4.5-degree average orientation ac- curacy, which is about 3.5 times better than what can be achieved through sole use of raw digital compass readings.

Keywords
  • Orientation,
  • digital compass,
  • ceiling pictures
Publication Date
Spring February 28, 2012
Citation Information
Zheng Sun. "Polaris: Getting Accurate Indoor Orientations for Mobile Devices Using Ubiquitous Visual Patterns on Ceilings" ACM HotMobile 2012 (2012)
Available at: http://works.bepress.com/zhengs/9/