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Abstract:  
Charge transport in crystalline materials can be well understood through the use of Bloch functions, band theory, and 

extended state transport. Disordered materials do not allow the same luxury, and different methods have to be 

considered. It turns out that band structures still exist. Although extended state conduction can still occur, localized 

states within the band gap allow for alternative mechanisms of charge transport in disordered materials. Conduction 

can be understood through such models as hopping, multiple trapping, and percolation, but all of them can lead to a 

broad distribution of event times. For example, the hopping-time distribution proposed by Scher and Montroll based 

on continuous time random walk formalism to describe transient photocurrent time-of-flight experiments, ψ(t)∝ t-(1+α), 

where ‘α’ is referred to as the dispersion parameter. This form of distribution exhibits a long tail.  If the distribution 

of event times is broad enough to contain times on the order of the experiment then dispersive transport is observed. 

At sufficiently high temperatures or electric fields a transition from dispersive to normal transport can occur due to a 

shift in the occupancy of the states extending into the mobility gap to shallow traps. This results in shorter event times, 

leaving out times on the order of the experiment and dispersive transport is no longer observed. In the case of an 

exponential energetic density of states extending into the mobility gap, the dispersion parameter α is linearly 

proportional to either temperature or electric field. In overlapping regimes, descriptions are more complex. The 

dispersion parameter is scaled by the reciprocal of a characteristic energy that corresponds to the width of the density 

of states in the mobility gap and defines both a temperature and electric field corresponding to a transition from 

dispersive to normal transport when the dispersion parameter is one. These transition temperatures and fields appear 

to have significant meaning for a given material, such as the electric field strength associated with the onset of 

breakdown or a glassy transition temperature. While the dispersion parameter shows up in models involving other 

density of states, the simplicity of the insight is lost in more complex descriptions. 

1. Introduction 

A concrete understanding of the nature of electrical properties is elusive when it comes to disordered media. 

Insight has been gained through the help of dispersive transport models which can rely on a single parameter, the 

dispersion parameter. This gives rise to universal plots and hints at the energetic density of states in the mobility gap 

[1, 2, 9]. Transport models attempt to link the microscopic nature of the underlying physical processes to macroscopic 

properties such as measured conductivity and permittivity. The significance of the dispersion parameter in describing 

anomalous measurements and electrical properties of disordered media is the focus of this paper. 

Charge transport in crystalline material is well understood through the use of extended state Bloch functions. This 

leads to the concept of band structure and band gaps, which helps to navigate the electrical properties of crystalline 

materials [10]. These methods are all but thrown out the window when there is a departure from crystalline structure, 

such as that introduced by defects or outright disordered materials with no long-range order. The conduction 

mechanisms in disordered materials have come to be understood through various mechanisms such as thermally 

assisted hopping, variable range hopping, multiple trapping, and percolation theories. The common theme of these 

conduction mechanisms revolves around the idea of localization. These localized states appear within the band gap, 

that is fittingly referred to as the mobility gap for disordered media (refer to Fig. 1) [1, 11, 12].  

It turns out that small variations from crystalline/ordered materials can result in a broad distribution of event 

times. Event times can be hopping times, relaxation times, capture/release transition rates, etc. corresponding to 

characteristic times of an event related to a conduction mechanism. These broad event times result in dispersive 

transport [13], which can be seen in I(t) current versus time plots for experiments such as constant voltage conductivity 

(CVC) [4, 5, 14, 15], time-of-flight transient photoconduction [2, 9, 16, 17], and charge decay experiments [18-20]. 

Broad distribution functions of the form ψ(t)∝ t-(1+α) have been shown by Scher and Montroll [2] to reduce the 

dispersive transport problem to a single free parameter ‘α’. This was also accomplished by Cole and Cole [4, 15] with 

their semi-empirical description of the anomalous properties of the real and imaginary permittivity. This parameter is 

often referred to as the dispersion parameter. The dispersion parameter can then be used to define a characteristic 

width of the energetic density of states extending into the mobility gap [20, 21]. For example, in the case of an 

exponential density of states the temperature dependence of the dispersion parameter is scaled by the reciprocal of the 

width of the distribution (width defined as energy where density of states drops to 1/e). In other words, given that α = 

T/Tc, where kBTc = characteristic energy [6, 9, 20-28], the width of an exponential energetic density of states in the 

mobility gap is kBTc, where kB is the Boltzmann constant, T is temperature, and Tc is the characteristic temperature. It 
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may be that Tc is the glassy transition 

temperature in some materials. It appears that Tc 

corresponds to a characteristic energy (kBTc) 

related to the energetic density of states in the 

mobility gap and α relates to the occupancy of 

these states. 

The following sections will give a brief 

overview of crystalline conduction theory and 

conduction mechanisms that arise in disordered 

media, which lead to dispersive transport 

models. These models will be discussed in detail, 

particularly that of Scher and Montroll [2] based 

on continuous time random walks. Comparisons 

of various models and experiments will be made. 

Since a number of these models depend on the 

parameter α, this naturally leads to the discussion 

of the physical significance of this parameter.  

2. Electron Transport Theory 

Electron transport in crystalline materials 

can be understood through the introduction of a 

periodic potential in a lattice. It was discovered 

by F. Bloch that the Schrödinger equation can be 

solved analytically for any infinite periodic 

potential. The solutions are wavefunctions of the 

form, 

                                                                   

𝜓𝑘(𝑡) = 𝑢𝑘(𝒓)e
𝑖𝒌∙𝒓,                                                                                  (1) 

                                                                       

where, 𝑢𝑘(𝒓) is the periodic potential with the same period of the crystal lattice, k is the wave vector, and r is the 

position vector. This leads to the existence of band structures [10]. This allows for the differentiation of electronic 

properties according to the electron occupancies of the outermost band. In other words, the outermost band (in energy) 

is either partially filled (conductors) or exactly filled (semiconductors and insulators). The difference between 

semiconductors and insulators is the difference in energy between the filled band and the next available band. 

Semiconductors are somewhat arbitrarily defined as having a bandgap of ~100 times kBTroom or less, and insulators 

above that. In metals, electrons can move around essentially freely in extended states in the partially filled conduction 

band. 

In disordered materials, there is no longer any long-range order (refer to Fig. 2). This means that Bloch functions 

(Eqn. (1)) no longer apply due to a lack of a periodicity. However, it turns out that something like band structures still 

exist in amorphous materials as validated by experiments measuring a dispersion like relation, relating the real electron 

momentum, rather than the usual crystal momentum, to the energy [29-32]. For disordered materials, the band gap is 

referred to as the mobility gap and states within the mobility gap are localized (refer to Fig. 1). 

2.1 Amorphous Materials – Localization 

The understanding of materials through use of Bloch functions falls apart when disorder is introduced. The 

underlying assumption of periodicity can no longer be used. Some insight can still be gained through simple energetic 

and spatial perturbations from periodicity. These two perturbations correspond to two transitions from metal to 

insulators described by Mott [33, 34] and Anderson [35] by increasing spatial separation and adding energetic disorder 

respectively. Figures 3 and 4 show Mott and Anderson transitions respectively, as explained by Table 1. If the width 

‘W’ or energy ‘U’ is greater than the bandwidth ‘B’, then a transition to insulator with localized states occurs. This is 

qualitatively simple to understand, since it seems intuitive that at some point the states will no longer interact with 

each other to form extended states if they are separated enough in either energy or space. The underlying mathematics 

are much more complex [1, 11, 33-36]. 

Figure 1.  Idealized band diagrams for periodic (top) and 

amorphous non-conducting materials (bottom). From (Allen). 
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Often in crystalline materials, conduction via extended states dominate. In disordered materials where localized 

states are present, conduction can be dominated by hopping or multiple trapping. This is the topic of discussion in the 

following section. 

2.2 Amorphous Materials – Conduction Mechanisms 

Extended state conduction is still possible in disordered materials. However, sufficient energy must be given to 

an electron to excite it into the conduction band. This is more easily accessible for electrons in shallow traps near the 

mobility edge. Often, thermally assisted hopping (TAH) refers to the process of electrons excited due to thermal 

Figure 2.  2D representation of atoms in (a) crystalline material (b) glassy/disordered material (c) and gas. Crystals 

exhibit long range order. Glass can be seen to have short range order. Gas shows no order and the atoms do not 

have a steady state equilibrium point. From [1]. 

 

Figure 3. Schematic diagram of the Mott transition. 

When the spatial separation is enough to decrease the 

electron bandwidth B to be sufficiently smaller than 

the electron-electron energy U, correlation-induced 

localization takes place. From [1]. 
  

Figure 4. Schematic diagram of the Anderson transition. 

When the energetic disorder causes the width W to be 

sufficiently larger than the bandwidth B, disorder-

induced localization takes place. From [1]. 

Table 1. Metal insulator transitions. From [1] 
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energy from shallow trap states up into the conduction band where they can conduct for a time before they fall back 

into a trap state, as seen in paths C and D in Fig. 5 (a) [1]. This is more accurately referred to as multiple trapping 

(MT). MT is a more fitting name as hopping seems to imply a quantum tunneling aspect which is not applicable in 

this description of TAH. TAH also refers to hopping conduction such as depicted in paths A and B in Fig. 5 (a) with 

energetic and spatial separations of W and R respectively [7]. TAH will be referred to in this way (hopping) exclusively 

throughout the rest of the paper. Variable range hopping (VRH) dominates when the temperature is sufficiently low 

that MT is negligible and quantum effects take over. VRH is phonon assisted quantum tunneling (hopping). Referring 

to Fig. 5 (b), VRH includes a phonon assisted jump to a transport energy (highlighted in grey), where TAH like 

conduction occurs for a time before falling back into a deep trap state [7]. If excess energy is added through irradiation 

then radiation induced conductivity (RIC) can occur [14, 37-39]. Similarly to VRH, an electron in a deep trap state is 

excited into the conduction band in an extended state via irradiation (as opposed to a phonon assisted jump to a 

localized state within the mobility gap for VRH), where it will conduct for a time but will eventually fall back into a 

trap state. Schematically, this would correspond to a jump from a deeper trap, such as that shown in Fig 5 (b) with the 

grey area replaced with extended states in the conduction band.  From there, the electron may continue to undergo MT 

or fall back into a deep trap state. Analogously, these same mechanisms can apply to hole transport if the electron 

vacancies are now considered hole occupancies. In other words, the valence band is essentially the conduction band 

for holes [7]. The focus will be on electron transport throughout this paper. 

Another way to look at conduction in disordered materials is through percolation theories [1, 9, 28]. Zallen [1] 

explains it simply as if a saboteur was trying to cut communications between two locations, how many links would 

need to be cut before connection was completely cut-off? Refer to Fig. 6. This can be described as the fraction of 

links/bonds that need to be severed for a metal-insulator transition to occur. In other words, this critical percolation 

threshold defines an Anderson transition. This idea of blocked and unblocked sections of networks (or networks of 

resistors) can be extended to understand many different things. This will not be explored here, but a brief list of 

applications of percolation theory are shown in Table 2. An in depth review of percolation and fractal theory in the 

context of diffusion in disordered media is given by Havlin [40].  

It has been shown by Pfister and Scher [9] that any of these transport models (hopping, MT, and percolation) can 

lead to broad distributions of event times, and therefore dispersive transport.  

 

 

Figure 5. (a) Schematic diagram of electronic conduction in an amorphous material. Energy is the vertical direction 

and position in the horizontal. From [1]. (b) Depiction of VRH. (1) Charge carrier excited from deep trap; (2)-(4) 

TAH like conduction occurs; (5) Charge carrier falls back into deep trap [6]. 

(b) (a) 
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3. Anomalous Transport   

Anomalous transport in dielectrics has been studied for well 

over a century. The effects appear in experiments such as 

measurements of AC and DC conductivity [4, 5, 8, 15], 

photoconductivity [2, 9, 16, 17], radiation induced conductivity [14, 

37-39, 41-43], charge decay [3, 18], and electrostatic breakdown 

[44, 45]. The models of such anomalous behavior rely on a broad 

distribution of event times [2, 9, 13]. It turns out that the underlying 

mechanisms are of secondary importance for modeling. As Pfister 

[9] puts it “…all disordered solids will exhibit a broad dispersion of 

carrier transit times. These features are independent of the transport mechanism … trivial fluctuation in x [defects, 

trap states, etc.] induce large fluctuations in the event times. The resulting event time distribution can be sufficiently 

broad that the experimental transit time becomes part of the distribution.” In other words, disorder in materials causes 

broad event time distributions regardless of the underlying transport mechanisms. Note, an important point here is the 

distribution includes a time on the order of the experiment, such as the transit time. This is key as this is the determining 

factor of whether dispersive transport is observed [13].  

The first mention of a broad distribution of event times as a reason for the observed anomalous/dispersive effects 

was in 1907 by v. Schweidler [46]. Later on in 1941, Cole and Cole [4, 15] published a few papers on the anomalous 

dispersion and absorption of dielectrics in AC and DC conditions. They use a modified version of Debye’s equation 

for dielectric dispersion and absorption to derive an equation for the current I(t) with dependencies on t and α identical 

to those in Scher and Montroll’s continuous time random walk (CTRW) theory describing transient photocurrent time-

of-flight experiments [2]. Note that the relation between the Cole and Cole ‘αcole’ and the Scher and Montroll ‘αSM’ is 

αSM = 1 – αcole. Throughout this paper αcole = α′ and αSM = α. 

An overview of models for the range of experiments, and their dependencies on the dispersion parameter, is 

presented here. 

3.1 AC and DC Experiments   

Interestingly enough, the description of AC and DC conductivity was explained in terms of the dispersion 

parameter over three decades [4, 15] before the landmark paper written by Scher and Montroll [2]. The semi-empirical 

formula starts from the classic theory of Debye for polar liquids [47]. This leads to equations for the real and imaginary 

parts of the permittivity. 

 

𝜀∗(𝜔) − 𝜀∞ =
(𝜀0 − 𝜀∞)

(1 + 𝑖𝜔𝜏0)
.                                                                               (2) 

 

Separating the real and imaginary components the equations are, 

                                                        

Table 2. Applications of percolation theory. From [1]. 

Figure 6. A simple example of percolation 

theory. At a critical fraction pc of uncut 

bonds there is a threshold to transition from 

current flowing or not. From [1]. 
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𝜀′ − 𝜀∞ =
(𝜀0 − 𝜀∞)

[1 + (𝜔𝜏0)
2]

 

 

 𝜀′′ =
(𝜀0 − 𝜀∞)𝜔𝜏0
[1 + (𝜔𝜏0)

2]
           (3) 

                                                                     

where ε* is the complex permittivity 

defined as, ε* = ε′ – iε′′, with ε′ and ε′′ 
being the real and imaginary parts of the 

permittivity, respectively. The parameters 

ε0 and ε∞ are the limiting values of the 

permittivity at very low and very high frequencies, respectively, ω = 2π·frequency, and τ0 ≡ 2𝜋/𝜔0 is a characteristic 

constant which may be called the relaxation time. Note that the relaxation time here differs from that defined by Debye 

by a constant factor which depends on the theory assumed for the static permittivity [48]. These equations have 

widespread applicability to explain dispersion, differing only in the significance of the parameters ε0, ε∞, and τ0, 

ranging from paramagnetic dispersion [49, 50], to that of elastic dispersion and damping in metals subjected to 

alternating stress [51].  

It is convenient to view these results in the form of an Argand diagram. This is where the real and imaginary parts 

of the complex permittivity are plotted against each other, each point corresponding to a different frequency. Cole and 

Cole [4] explain that Eqn. (2) can be written as 𝑢 + 𝑣 = 𝜀0 − 𝜀∞, where 𝑢 ≡ 𝜀∗ − 𝜀∞, 𝑣 ≡ 𝑖𝜔𝜏0(𝜀
∗ − 𝜀∞). The 

vectors u, v, are perpendicular in the complex plane with their sum being the constant real quantity 𝜀0 − 𝜀∞. Therefore 

these vectors inscribe a semi-circle of diameter 𝜀0 − 𝜀∞, as shown in Fig. 7 (a). For Eqn. (2), the semi-circle is centered 

on the ε’ axis (real axis) at 1/2(ε0 + ε∞)  where ε0 and ε∞ are the ε′ intercepts. However, for many materials this is not 

an accurate representation of the data. The center of the circle may shift down below the ε′ axis. Materials exhibiting 

this anomalous behavior can be modeled with a circular arc rather than a full semi-circle [refer to Fig. 7(b)].  

With consideration of Fig. 7, it can be easily deduced through a geometrical argument that, 

 

ε∗ − ε∞ =
(ε0 − ε∞)

[1 + 𝑖(1−𝛼𝑐𝑜𝑙𝑒)𝑓(𝜔)]
,                                                                          (4) 

                                                           

where f(ω) is a (real) undetermined function of the frequency and other parameters. Note that this leads to the 

conclusion that there is a distribution of relaxation times rather than a single relaxation function as assumed in Debye 

theories [52]. Cole and Cole [4] then go on to argue that the frequency dependence resulting from an assumed applied 

field of 𝐸 = 𝐸0𝑒
𝑖𝜔𝑡  will be of the form 𝜔1−𝛼𝑐𝑜𝑙𝑒 (which is in agreement with Pfister, Scher, and Lax if 1 – 𝛼𝑐𝑜𝑙𝑒 = s 

[9, 16, 17]). Cole and Cole state that any theory in which ω appears as the result of linear operations on the complex 

exponential must lead to the same functional dependence on both i and ω. This leads to a new equation for the complex 

permittivity. 

 

ε∗ − ε∞ =
(ε0 − ε∞)

[1 + (𝑖𝜔𝜏0)
1−𝛼𝑐𝑜𝑙𝑒]

.                                                                            (5) 

                                                            

This is verified with experiment as seen in [4]. It can also be seen that for values of αcole = 0 (αSM = 1), the equations 

reduce to that of the Debye expressions for a single relaxation time.  

With Eqn. (5) established, a theoretical description of the current for the DC case can be made. Starting with Eqn. 

(5), one can obtain an expression for the current as a function of time [15]. 

 

𝐼(𝑡) =
ε0 − ε∞
𝜏0

(1 − 𝛼𝑐𝑜𝑙𝑒) (
𝑡

𝜏0
)
−(2−𝛼𝑐𝑜𝑙𝑒)

∑
𝑛(−1)𝑛−1

𝛤[1 − 𝑛(1 − 𝛼𝑐𝑜𝑙𝑒)]

∞

𝑛=1

(
𝑡

𝜏0
)
−(𝑛−1)(1−𝛼𝑐𝑜𝑙𝑒)

.                     (6) 

                         

If Eqn. (6) is then taken to its asymptotic limits in t/τ0 then,  

 

𝐼(𝑡) =
ε0 − ε∞
𝜏0

1

𝛤(1 − 𝛼𝑐𝑜𝑙𝑒)
(
𝑡

𝜏0
)
−𝛼𝑐𝑜𝑙𝑒

,     𝑡 ≪ 𝜏0 

Figure 7. Above are plotted the (a) semi-circle Debye theory, and 

(b) circular arc as required by experimental data. From [4]. 

 

(b) (a) 
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𝐼(𝑡) =
ε0 − ε∞
𝜏0

(1 − 𝛼𝑐𝑜𝑙𝑒)

𝛤(𝛼𝑐𝑜𝑙𝑒)
(
𝑡

𝜏0
)
−(2−𝛼𝑐𝑜𝑙𝑒)

,    𝑡 ≫ 𝜏0,                                                         (7) 

                                                    

where 𝛤 is the gamma function. Note that this is similar to the mathematical approach taken by Scher and Montroll 

and one can easily show equivalent t and α dependencies by replacing α = 1 - α′ in Eqns. (7) [2]. This is shown in 

Appendix A. There is an easy check to this theory by observing that the slopes before and after the transition/kink in 

a double logarithmic I(t) plot add up to -2 because (-α′) + (-2+ α′) = -2. This is independent of the α′ (or α) value.   

The ‘kink’ in the double logarithmic I(t) curves can be seen in CVC data taken by the Materials Physics Group 

at Utah State University (MPG) (refer to Fig. 8) [5, 8]. The data can be understood using the equation [5, 7, 8, 53], 

 

𝜎(𝑡) = 𝜎𝑃
−𝑡
𝜏𝑃 + {𝜎𝑑𝑖𝑠𝑝𝑡

−(1−𝛼)𝜃(𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡 − 𝑡) + 𝜎𝑡𝑟𝑎𝑛𝑠𝑡
−(1+𝛼)𝜃(𝑡 − 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡)} + 𝜎𝐷𝐶 ,                     (8) 

           

where τtransit is the transit time, τp is the polarization time constant, σp is the polarization conductivity, σdisp is the initial 

dispersive transport conductivity before the transit time, σtrans is the initial dispersive transport conductivity after the 

Figure 8. Double logarithmic plots of conductivity as a function of time with a constant voltage applied for low-

density polyethylene (LDPE). Plot (a) is a zoomed in portion of the transition/kink denoting the transit time [5]. 

Plot (b) has fits using Eqn. (8) with each contribution to the conductivity shown separately and all together [8]. 

 

(a) 

(b) 
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transit time, σDC is the dark current DC conductivity, and 𝜃 is the Heaviside function. The first term is due to 

polarization, the terms enclosed by the brackets are the conductivity before and after the transit time respectively 

(making use of the Heaviside function), and the last term is the dark conductivity. Each of these terms can be seen 

plotted along with the data in Fig. 8 (b). It is clear that the dispersive transport terms have the same t and α 

dependencies as that of Eqn. (7). Although this is conductivity and not current, it is clear through Ohm’s law, J = σE, 

that they should share the same dependencies. 

 Another form of the complex permittivity ε’’ (for polar polymers) is modeled by Kirkwood and Fuoss as [54, 

55], 

 

  𝜀′′ ≈ 𝐴 sech(𝛼𝑥) →  𝐻(𝑥) = 𝐻(0) sech(𝛼𝑥)                                                       (9). 
                                                                

Where H(x) is an approximation to the imaginary permittivity and x is the natural logarithm of the ratio of frequency 

that maximizes H(x) over the measured frequency, x = ln ωm/ω. This can be seen to be equivalent to the Debye case 

when α = 1, which corresponds to a single relaxation time. In the limit of α=0, there is an infinitely broad distribution 

of relaxation times. It is shown in Appendix B that this relation can be derived starting from Eqn. (5), but is only a 

good approximation when α≈1. Kirkwood and Fuoss [55] show that H(0) = α/2, where H(0) is the maximum value of 

the function H(x). They found only qualitative agreement with their data; the exact form derived in Appendix B should 

be tried as a potentially better fit for experimental data. There is an interesting discussion in [56] about the relation 

between Cole and Cole equations, Fuoss and Kirkwood approximation and how these models can also apply to 

mechanical properties of polymers. 

 Note that the α values determined by CVC and other data are not always self-consistent. In other words, α will 

occasionally be different before and after the transit time [9, 28]. This is indicative that the density of states is not 

exponential and may be Gaussian or some other distribution [57]. A good overview of various density of states is 

given in [14] and [7].  

3.2 Irradiation Experiments 

Various conduction mechanisms in disordered media were described in Section 2. These hopping mechanisms 

are considered stochastic processes. Macroscopic properties of conduction in disordered media have been described 

semi-empirically in the previous section with use of a perturbed Debye equation for permittivity via the dispersion 

parameter, but to start to understand what is happening on a microscopic level a new approach is needed. This is why 

the Scher and Montroll paper [2] was deemed by Zallen [1] as the “anomalous to obvious” transition paper to describe 

dispersive transport via time of flight experiments in disordered media. This section will present a stochastic charge 

transport model via a random walk through a disordered material. 

 The stochastic theory of continuous time random walks (CTRW) is paramount for the modeling of time-of-flight 

transient photocurrent data, here on referred to as TOF experiments. Montroll has published a series of papers spanning 

two decades on random walks on lattices to develop CTRW formalism and show its equivalency to random walks 

[58-61]. A random walk describes a walker (in this case a charge carrier, either a hole or electron) on a spatially 

random lattice, while a continuous time random walk shifts to adding disorder via a distribution of event times. In 

other words, random walks are continuous (disordered) in space and discrete in time while CTRW are discrete in 

space (ordered lattice) and continuous in time (broad event-time distribution function). The distribution of event times 

contains the disorder. A small variation in properties related to the conduction mechanisms leads to broad distributions 

of event times [9, 16, 17, 61]. Before discussing the model and novel distributions presented by Scher and Montroll 

[2], a discussion of a series of papers by Scher and Lax [16, 17] is necessary. Scher and Lax start from first principles 

to build their theory, and their model can be shown to be equivalent to Scher and Montroll’s results when t~ttransit. This 

comparison is used as a physical justification of the Scher and Montroll model. 

 Scher and Lax use CTRW on a lattice to approach the problem of transport in disordered solids. The approach 

is to model charge transport through stochastic theory in a way that is tractable analytically. This is the reason a CTRW 

on a discrete lattice is used rather than a random walk on a spatially disordered lattice with discrete event times. This 

allows a distribution of event times to be used to represent the stochastic processes of conduction rather than an 

ensemble average of spatial disorder. This is justified by equivocating random walks and CTRW in their appendix 

[17]. The mathematical justification will not reproduced here. This allows all of the disorder to be included through 

the use of a distribution of event times. 

 The goal is to obtain a function for the conductivity as a function of frequency σ(ω) for a disordered solid. It 

turns out that the conductivity can be described by the equations, 
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𝜎(𝜔) =
𝑛𝑒2

𝑘𝑇
𝐷(𝜔)                                                                                  (10) 

                                                                       

𝐷(𝜔) = −
1

6
𝜔2∑(𝒔 − 𝒔𝟎)

2𝑃̃(𝒔, 𝜔; 𝒔𝟎)𝑓(𝒔𝟎)

𝑠,𝑠0

                                                     (11). 

                                           

Here, D is the diffusion constant, n is the density of effective carriers, e is the elementary charge, k is the Boltzmann 

constant, T is the temperature, s is the position vector of the walker, s0 is the position vector of the carrier at time zero, 

𝑃̃ is the Fourier transform of P, P is the probability of a walker that was at position s0 at t = 0 to be at position s at time 

t, and f(s0) is the distribution of walkers at time t = 0.  Eqns. (10) and (11) are the first principles physical basis of the 

model. 

 There are then two ways to find a solution to Eqns. (10) and (11). One is to approximate a self-consistent solution 

through the use of transport equations. The second, and the one used here, is to find an exact solution through the 

calculation of P(s, t; s0, 0). No transport equations are used. The approach is then to calculate P using a CTRW 

stochastic model. This turns out to be a mathematically involved problem and one can review the papers if they wish 

[16, 17]. It turns out that, 

 

𝑃̃(𝒔, 𝑢) = 𝑅̃(𝒔, 𝑢)
1 − 𝜓̃(𝑢)

𝑢
                                                                       (12). 

                                                            

Where 𝑅̃(s,u) is the Fourier transform of the random walk recursion relation and 

 

𝜓(𝒔, 𝑡) = 𝑝(𝒔)𝜓(𝑡)                                                                              (13), 
                                                                 

where 𝜓̃(𝑢) is the Fourier transform of the hopping time distribution function ψ(t), and ψ(s,t) is the probability per 

unit time that the displacement and time between hops is s and t. Eqn. (13) just states that the event time distribution 

is independent of position. With this in place, D(ω) and therefore σ(ω) can be determined by 

 

𝐷(𝜔) =

1
6
𝜎𝑅𝑀𝑆
2 (𝜔)𝑖𝜔𝜓̃(𝑖𝜔)

1 − 𝜓̃(𝑖𝜔)
                                                                     (14) 

                                                                 

𝜎𝑅𝑀𝑆
2 ≡∑𝑠2

𝒔

𝜓̃(𝒔, 𝑖𝜔)

𝜓̃(𝑖𝜔)
                                                                        (15). 

                                                                 

Now the conductivity is determined by the 0th and 2nd spatial moments of the Fourier transform of the distribution of 

event times. This can then be applied to impurity conduction in a semiconductor to calculate ψ(t) [16]. This will not 

reproduced here. It turns out that the form of ψ(t) for impurity conduction in a semiconductor with the time 

approximately that of the transit time can be shown to be equivalent to the ψ(t) used by Scher and Montroll. 

 

if     𝛼~
1

3
𝛾(ln 𝑡)2    and     𝑡~𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡     then     𝜓(𝑡)~

𝛾(ln 𝑡)2

𝜏1+(
𝛾
3
)(ln 𝑡)2

~𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∙ 𝑡−(1+𝛼) 

 

This form is equivalent to that proposed by Scher and Montroll. Therefore, the Scher and Montroll model is physically 

justified.  

 The approach of Scher and Montroll [2] is two pronged. First, it attacks the problem through CTRW formalism 

that leads to the broad distribution of event times, and second, an absorbing boundary layer is introduced to describe 

the anomalous transport seen in TOF experiments. The basic quantity of their theory is the propagator 𝐺̃(𝑙, 𝑡), the 

probablility that a walker is found at 𝑙 at time t if at time t = 0 it was at the origin. The propagation of the carrier is 

completely specified by this function (in the absence of the absorbing boundary). It is defined by, 

 

𝐺̃(𝑙, 𝑡) =
1

2𝜋𝑖
∫

𝑑𝑢

𝑢

𝑐+𝑖∞

𝑐−𝑖∞

𝑒𝑢𝑡[1 − 𝜓∗(𝑢)]𝐺(𝑙, 𝜓∗(𝑢))                                                 (16). 
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This function is determined by the Laplace transform of the hopping-time distribution function ψ(t), and 𝐺(𝑙, 𝑧), a 

random-walk generating function. The random-walk generating function is determined by p(𝑙), which is the 

probability of a hop from a given cell to one displaced by a vector 𝑙 away from it, and is normalized to 1. Therefore 

the hopping process is characterized by only two functions, p(𝑙) and ψ(t). All cells are treated as equivalent so that 

both are universal functions for all cells. The spatial hopping probability is simply handled with 

 

𝑝(0 , ±1, 0) = 𝑝(0, 0, ±1) = 𝑞                                                                       (17) 
                                                            

𝑝(1, 0, 0) = 2𝜂̃𝑝, 𝑝(−1, 0, 0) = 2(1 − 𝜂̃)𝑝                                                          (18), 
                                             

with all other probabilities vanishing. This corresponds to an electric field in the l1 direction (x-direction). This is for 

the situation of an electric field in the x-direction and 𝜂̃ is then a measure of field strength 𝜂̃ = 𝜂̃(𝐸) and must be 

greater than ½. 

Two starkly different hopping-time distribution functions are studied, that of a single event time τ and that of a 

broad distribution of event times given by  

 

𝜓(𝑡)~𝑒−𝜏                                                                                        (19)                                                                              
 

𝜓(𝑡)~𝑡−(1+𝛼)                                                                                   (20),                                                                        
respectively. 

 To understand the anomaly at hand, let us first consider the case of “normal” (Gaussian) transport with a single 

intersite transition rate τ in a TOF experiment as in Eqn. (19). This can be seen in Fig. 9 (a), (b), and (d). In this case, 

the transit time is clearly defined as the Gaussian charge packet is absorbed at the boundary. This is not the case with 

dispersive transport, refer to Fig. 9 (c) and (e). For the single intersite transition rate (Gaussian charge packet), 𝜎/〈𝑙〉 =
𝜏−1/2, but for a broad distribution of event times as in Eqn. (20) then 𝜎/〈𝑙〉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. 

To get from the description of a propagator in an infinite medium undergoing a CTRW, to TOF experiment, an 

absorbing boundary must be introduced. This is done by taking the original propagator, and subtracting from it an 

integral of the propagator multiplied by a first time of arrival function, so that any carriers that have reached the 

absorbing boundary are no longer taken into account. In then turns out that for the distribution of Eqn. (20) this leads 

to the equation, 

 

𝐼(𝑡) =

{
 
 

 
     

𝑙 ̅

𝑐𝛤(𝛼)𝜏1−𝛼
                                                   𝜏 ≪ 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

    
1

2
𝑙 ̅ (
𝑁 − 𝑙0

𝑙 ̅
)
2 𝑐

−𝛤(−𝛼)𝜏1+𝛼
                    𝜏 ≫ 𝜏𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

                                                 (21). 

 

Where 𝑙 ̅is the mean displacement for a single hop, 𝜏 is a unitless time scaled by the reciprocal of a transition rate, 𝑙0 

is the initial position of the walker, N is the number of cells in the model, and c is an undetermined constant. Notice 

that the α and t dependence are exactly the same as derived by Cole and Cole for DC conductivity [4, 15], as shown 

in Appendix A. 

 The importance of these dependencies comes from the universality of their applicability. There are universal 

double logarithmic I(t) plots if the time and current are scaled by the reciprocal of the time and current at the transit 

time, where here the transit time is defined as the transition point between t-(1-α) to t-(1+α). This is found in the double 

logarithmic I(t) plot by finding the intersection of the two straight lines with slopes -(1-α) and -(1+α) (refer to Fig. 10 

(a)). This universality applies to both transient TOF experiments and DC conductivity phenomena as outlined in the 

prior subsection. The time scales can be nanoseconds to decades and the universality still applies. Refer to Fig. 10. 

Note that there are other interesting dependencies such as ttransit ~ (E/L)1/α, refer to Fig 10 (b) [2, 9]. 

 Other transient phenomena that can be studied using the idea of broad distributions of event times and the 

dispersion parameter include surface voltage potential measurements [7] and photocurrent decay measurements. The 

latter of which can be modeled using stretched exponential functions [18-20, 62, 63], 

 

𝐼𝑝ℎ(𝑡) = 𝐼𝑝ℎ(0)𝑒
−(
𝑡
𝜏
)
𝛽
+𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                                    (22) 
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where β is the decay exponent (0 < β < 1) and related to α by α = 1 – β. Iph is the photocurrent, t is the measurement 

time, and τ is the characteristic time constant of the process (which is likely some sort of average). Using DataThief 

software [64], photocurrent data of LDPE was taken from Wintle 1977 [3] and fit with a stretched exponential to 

compare the α value to that obtained by MPG [5, 8, 14]. The results are presented in Appendix C. More information 

on surface voltage potential measurements modeling can be found here [7]. 

 Radiation induced conductivity (RIC) can also be explained with the use of the dispersion parameter [37]. It 

turns out that RIC can be explained by the simple relation, 

 

𝜎𝑅𝐼𝐶 = 𝑘𝑅𝐼𝐶(𝑇)𝐷
∆̇                                                                                    (23) 

 

Figure 9. (a) Depicts a TOF experiment with normal transport. Current versus time are plotted for TOF 

experiments with (b) normal and (c) dispersive transport. (d) Charge packet propagation for TOF experiments are 

shown for normal transport. (e) Charge packet propagation for TOF experiments shown for dispersive transport. 

 

(a) 

(b) (c) 

(d) (e) 
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where kRIC is a temperature dependent coefficient and 𝐷̇ is the dose rate [14, 39]. It can also be seen from [39, 41] and 

the definition α(T) = Tc /T that, 

 

∆=
𝑇𝑐

𝑇𝑐 + 𝑇
=

1

1 +
𝑇
𝑇𝑐

=
1

1 + 𝛼
 

 

where Tc is the characteristic energy at which localized states are thought to be “frozen in” [14, 38, 39]. Tyutnev states 

this relation to the dispersion parameter explicitly [37, 41, 42]. This shows that RIC is dependent on the dispersion 

parameter as well. To further prove the point of equivalence, Fowler and Rose state that the relation 0.5 < ∆ < 1 must 

hold [38, 39]. It is already known that 0 < α < 1 must be true, and in fact leads to the stated restrictions on ∆. The 

qualitative understanding also tracks for both parameters. In other words, as ∆ → 1 then α → 0, and as as ∆ → 0.5 then 

α → 1. Rose and Fowler describe this as infinitely broad (constant) or sharply exponential energetic density of states 

for ∆ = 1 and 0.5 respectively. The relation should not be surprising as RIC and TOF experiments are quite similar.  

3.3 Other Approaches  

 There are many different ways to approach the problem of dispersive transport in disordered solids and no lack 

of attempted solutions. Other methods that have been shown to be equivalent to that of Scher and Montroll [2] include 

MT, hopping, and percolation theories [28], which have a nice overview in Pfister’s paper [9]. An equivocation of 

MT, hopping and CTRW is given by Schmidlin [13]. Other approaches include fractional dynamic equations [65, 66] 

and effective medium approach (EMA) [57, 67-69]. Fractional dynamic equations are interesting as they apply to 

everything from geology and astronomy to dispersive transport in disordered materials. In this framework, dispersive 

transport in disordered materials is categorized as a subdiffusive process with α < 1. What is quite interesting is this 

same parameter α is sprinkled into numerous theories about subdiffusive/superdiffuse processes. 

4. Physical Significance of α 

 

4.1 Introduction - Word of Warning 

For dispersive transport to occur there must be transition rates/event times on the order of the experiment time. 

For example, there must be a transition rate that is on the order of the transit time in a TOF experiment. This means 

that even for relatively few trap states, dispersive transport can occur if the transition rate of one of the traps is on the 

Figure 10. Data is shown for As2Se3 from [2]. (a) double 

logarithmic I(t) data scaled by the transit time and current 

at transit time is plotted. The curves are universal for a 

given material. Transit times range from 17 ms to 6.6 s. 

(b) (E/L) versus transit time in double logarithmic plot. 

The slope is the reciprocal of the dispersion parameter, 

giving a value of α = 0.45. 

 

(a) (b) 
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order of the transit time and is shown for as few as 7 discrete 

trap energies in [13]. Clearly, a broad distribution of states can 

accomplish this as well. Any small deviation can cause this to 

occur, as Pfister [9] puts it: 

 

“However complicated the form of the transition rates 

and the details of the molecular charge transfer, it is assumed 

that these rates depend sensitively on a number of parameters 

that are statistically distributed. Thus, even rather mild 

variations of some system parameters ‘map’ onto a broad 

distribution of transition rates. This mapping is not unique. A 

number of different parameter dispersions can produce very 

similar transition rate distributions.” 

 

This means that even relatively small deviations from 

crystalline structure can cause large effects resulting in 

dispersive transport. Since the underlying mechanisms for 

transport are more or less unimportant for the modeling of dispersive transport, it is difficult to extract significant 

physical meaning from the dispersion parameter α that is used simply to model the data. Many papers guess at the 

underlying transport mechanisms and some back it up with theory, but while they may not necessarily be wrong, it is 

also quite hard to determine if they are right without a deep understanding and control of microscopic properties of 

the material. This is why many tests of the models are done on impurity conduction in semiconductors, as there is a 

high degree of control and understanding of the sample [9, 16]. The key takeaway is that macroscopic effects measured 

can come from a multitude of microscopic mechanisms. 

4.2 Equations of α – Exponential Density of States 

 Not all hope is lost, some insight into the energetic density of states can be gained through the understanding of 

the dependencies of the dispersion parameter on the temperature and electric field. Therefore, some light can be shed 

on material properties and transport. Many papers have shown that for an exponential energetic density of states (refer 

to Fig. 11) the temperature [6, 9, 22-25, 27, 70] and electric field dependence [23-25] are of the form, 

 

𝛼(𝑇) =
𝑘𝑇

𝐸𝑐
=
𝑇

𝑇𝑐
                                                                                     (24) 

                                                                          

𝛼(𝐸) =
𝑞𝑎𝐸

2𝑘𝑇𝑐
                                                                                       (25) 

                                                                            

where Ec is a characteristic energy and Tc is the temperature corresponding to that energy (Note that there are 

theoretical descriptions of the characteristic energy such as the one presented by Arkhipov [22], but many simply state 

it to be the width of the exponential energetic density of states [25]), q is the elementary charge, a is the localization 

length, E is the electric field strength, and T is the temperature. When the temperature is low and the field is high, 

Eqn. (25) is applicable and when the temperature is high and the field is low Eqn. (24) is applicable. It gets more 

complicated in the transition region between the two regimes. Attempts have been made to introduce an effective 

temperature as the E-field has a temperature like effect [23-25]. An effective temperature equation can be made for 

materials but does not seem to have the universal dependence of the pure T or E dependent dispersion parameter 

equations.   

It is useful to introduce the demarcation energy (DE) and quasi-fermi level (QFL). This is explained in great 

detail in Ch. 3 of Sim’s dissertation [7], as well as in these references [38, 43, 71]. Essentially, the DE is the centroid 

of the trapped charge within the mobility gap. The QFL is an effective Fermi level, corresponding to the DE. In wide 

band gap materials such as highly disordered insulating materials, the Fermi level does not deviate significantly from 

the Fermi energy. Deviations are instead caused by external charge injection, RIC, or similar processes that modify 

the carrier distribution of the material. This is where the use of the QFL comes in handy.  

 In Fig. 12, the thermalization of a charge distribution can be seen. For example, imagine that a charge layer has 

been injected into shallow traps. The electrons will thermalize and fall into deeper trap states, moving from the red 

curve progressively to the blue curve. During thermalization transient dispersive transport occurs. Once thermalization 

Figure 11. Exponential energetic density 

of states in the mobility gap with 

indications for MT and characteristic 

width kT0. From [6]. 
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is complete, the QFL is at the equilibrium Fermi level and the transient dispersive phenomena is no longer observed. 

This baseline dark current conductivity is then described by equations based on VRH or MT [7, 72-74]. 

Consider Fig. 5 (b). The VRH mechanisms looks much like MT but entirely within localized states rather than 

excitation into the conduction band. The shaded area where TAH like conduction occurs is sometimes called the 

transport energy [7]. It should be noted the transport energy has a finite width and can be called the transport band. 

With added energy via increased temperature or electric field this transport band moves towards the conduction band. 

Once the two overlap, this defines the transition from VRH to MT [73, 74]. This also describes the transition from 

dispersive to normal transport [7]. This transition can be predicted as a function of T and E by setting α = 1 in Eqns. 

(24) and (25).  

This T and E dependence naturally leads one to the conclusion that the dispersion parameter is related to the 

occupancy of the density of states. If the density of states is an exponential function, then the dispersion parameter 

equations define the characteristic energy as the width (1/e drop) of the energetic density of states in the mobility gap, 

refer to Fig. 11. This also means that at the characteristic energy, where transition rates are increased enough due to 

the increased occupation of shallow trap states (VRH is negligible), a transition from dispersive to normal transport 

occurs [21, 23-25]. This makes sense as the temperature, or electric field equivalent, is equal to the characteristic 

energy, then α = 1 and dispersive transport no longer occurs.  

 During the transient dispersive transport before reaching steady state conductivity, as shown in Fig. 8 (b), 

thermalization is not complete. The ‘kink’ in these plots indicates the transition from MT (extended state transport in 

conduction band, punctuated by shallow trapping) to VRH as depicted by Fig. 5 (b). This transition occurs as the DE 

moves below the transport energy. Note that another explanation is that this is when the carriers first reach the other 

side of the material, for example the transit time in TOF experiments [2]. In general the transport energy is a complex 

function of many parameters such as temperature, electric field, and density of states [7].  

 If after thermalization occurs the DE is above the transport energy, then normal (packet-like) transport occurs 

and VRH is negligible. The steady-state conductivity is then described by a T-1 dependence indicative of MT. If the 

DE is less than the transport energy after thermalization then the conductivity has a T -1/4 dependence indicative of 

VRH [7, 72-74]. The time needed to reach steady-state conductivity is denoted the segregation time and this time 

uniquely defines the conductivity. That is, if the segregation time is known then the conductivity is known and vice 

versa [7].  

It turns out that the transitions from dispersive to normal transport at α = 1, corresponding to Ttrans and Etrans have 

physical significance for the material. The temperature Ttrans is potentially a glassy transition temperature in some 

materials. The electric field Etrans defines the onset of packet-like charge behavior, or in other words normal transport. 

Figure 12. Depiction of the thermalization of trapped charge carriers. (a) Exponential density of states as a function 

of energy. (b) Mean occupation of states as a function of time and energy. (c) Product of the density of states and the 

mean occupation, which results in a description of the distribution of occupied states near the demarcation energy 

during thermalization. Time flows from red (earliest time) to blue (latest time). From [7]. 
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This transition has been validated experimentally in low-density polyethylene in conductivity measurements [72, 73], 

and direct measurements of charge distributions via pulsed electroacoustic method under DC stress with electric field 

strength of ~108 V/m [75]. This electric field strength also indicates the onset of breakdown in materials, as validated 

by theory and experiment [45, 75]. The onset of breakdown presented by Andersen [45] bears a striking resemblance 

to Eqn. (25) with α = 1. The temperature found experimentally for the VRH to MT transition in low-density 

polyethylene [72, 73] corresponds well with a β-phase transition [76, 77] that can be considered a glassy transition 

temperature of sorts since such a temperature cannot actually exist in this material due to sections of amorphous and 

crystalline lamellae (no true amorphous form) [77].  

4.3 Gaussian Density of States 

 It turns out that the modeling of some materials is more complex. There are often materials where the dispersion 

parameter is different before and after the transit time, and the log dependence of the ratio of the thickness to the 

electric field is superlinear rather than linearly proportional to α (refer to Fig. 10 (b) for linear case) [9, 28]. This is 

indicative that the energetic density of states in the mobility gap is not that of an exponential but of a different form. 

Specifically in materials with an exponential trap distribution, the dispersion parameter is useful and gives us insight 

as outlined above. If this energetic density of states is instead a Gaussian, as is assumed in the case of hopping transport 

in organic glasses and molecularly doped polymers, then the dispersion parameter offers at best a zero-order 

approximation and does not offer much insight [57]. A different approach is needed in this case.  

 In the case of a Gaussian energetic density of states, through a combination of analytic functions and Monte 

Carlo simulations the effective medium approach (EMA) can be employed [57, 67, 69]. EMA has been shown to 

provide an excellent description of hopping processes in dense systems [68]. This theory will not be covered in detail 

here as it does not help us gain insight into the physical significance of α. It should be noted that the dispersion 

parameter does appear in other formalisms with Gaussian or other arbitrary density of states but in a less simple way 

[7]. 

5. Other Concerns 

 Concerns that should be noted but that are not directly addressed in this paper include effects from electrode 

injection and ohmic/non-ohmic contacts directly related to the electrode material and interface effects/surface defects 

[9, 78]. The Poole-Frenkel effect and space charge limited current should be noted as well [7, 12]. Another concept 

not discussed is activation energy [2, 9, 22, 78], likely closely related to the demarcation energy discussed previously. 

There is occasionally some confusion in the literature related to values of the dispersion parameter. Typically it is 

expected that 0 < α < 1, but in some cases there have been reports of values outside this range which are likely due to 

a naming convention confusion [63, 79, 80]. It also appears that the Cole and Cole theory, which seems to imply 

dispersive transport with a circular arc rather than a semi-circle with Argand diagram, applies to crystalline materials 

[4, 15]. In other words, crystalline materials can produce circular arcs in Argand diagrams as well. It is likely that 

these crystalline materials have defects that would cause this sort of behavior. 

 I would also like to note that there seems to be connections of the dispersion parameter to other electronic 

properties of materials including secondary electron yield and photoluminescence. This is not surprising as the 

dispersion parameter plays in important role in describing the occupied energetic density of states and the density of 

states is paramount to the mentioned processes.  

6. Conclusions 

 There has clearly been an expansive amount of work done to attempt to gain an understanding of anomalous 

properties of disordered materials. In this context, α has proven to be a useful parameter on many occasions. In the 

case of exponential density of states α tells us a characteristic energy of which a dispersive to normal transport 

transition occurs. It tells us qualitatively how dispersive a material is, with a more dispersive material having an α 

value closer to zero.  

The key importance of the dispersion parameter is the insight it gives to the energetic density of states in the 

mobility gap that help provide a description of the charge transport in disordered materials. From a textbook published 

just two years ago, “The absence of reliable information on the energy spectrum and on the structures of the 

wavefunctions in the vicinity and below the mobility edges can be considered to be the main problem for researchers 

attempting to quantitatively describe the charge transport properties of disordered material” [81]. In other words, the 

energetic density of states in the mobility gap is considered to be of utmost importance for electrical properties of 

disordered materials.  
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The dispersion parameter aids in the qualitative and quantitative description of electrical properties in non-

crystalline materials. Universal plots of dispersive transport in TOF and CVC data are explained via the dispersion 

parameter, as well as the temperatures and electric fields necessary to transition to normal transport. These correspond 

to other physically important characteristics such as a glassy transition temperature or the onset of electrostatic 

breakdown. The dispersion parameter can shed light on AC and DC conductivity, RIC, photoconductivity, charge 

decay, electrostatic breakdown, and pulsed electroacoustic experiments. It appears the dispersion parameter is a dream 

tool for an engineer when applied correctly as it explains the response of a disordered material macroscopically 

(practically), but leaves a physicist wanting more since it fails to shine direct light on the underlying microscopic 

processes. This is due to the fact there are a multitude of underlying factors that can lead to dispersive transport.  

7. Appendix 

 

A. DC and Transient Equivocation 

In TOF experiments it has been shown by CTRW theory and validated by experiment that the t and α 

dependencies are that of Eqn. (21). Shown again below for convenience with coefficients omitted, aside from those 

with α dependence. 

 

𝐼(𝑡) ∝

{
 

        
1

𝛤(𝛼)𝑡1−𝛼
                                         𝑡 ≪ 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

    
1

−𝛤(−𝛼)𝑡1+𝛼
                                      𝜏 ≫ 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

                                                (A1) 

                                            

It has also been presented that the dependencies of DC measurements are shown to have the dependencies as in Eqn 

(7), 

 

𝐼(𝑡) =

{
 
 

 
 ε0 − ε∞

𝜏0

1

𝛤(1 − 𝛼′)
(
𝑡

𝜏0
)
−𝛼′

                    𝑡 ≪ 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

   
ε0 − ε∞
𝜏0

(1 − 𝛼′)

𝛤(𝛼′)
(
𝑡

𝜏0
)
−(2−𝛼′)

             𝑡 ≫ 𝑡𝑡𝑟𝑎𝑛𝑠𝑖𝑡  

                                               (A2) 

                                              

Eqn. (A1) will be shown to be of an equivalent form to Eqn. (A2), but will be done so with all constants carried 

through. This is because there are no free parameters without physical meaning (aside from α) in Eqn. (A2), and 

therefore is a more complete description. For Eqn. (A1) there are undetermined constants (without physical meaning) 

and it is not useful to carry them through. 

 Two things must be addressed here to show the equivalency. First, it must be assumed that α = 1 – α’, which is 

not hard to do as Scher and Montroll [2] and Cole and Cole [4, 15] describe the same physical dependencies of their 

respective dispersion parameters. That is to say, for α = 1 and α’ = 0 the materials are no longer dispersive and are 

progressively more dispersive as the values approach α = 0 and α’ = 1. The second thing is to equate the gamma 

function coefficients. This is trivial in the pre-transit time dependencies as it is already met after the first substitution 

for α = 1 – α’. For the post-transit dependency, 

 
(1 − 𝛼′)

𝛤(𝛼′)
=

(𝛼′ − 1)(−1)

(𝛼′ − 1)(𝛼′ − 2)(𝛼′ − 3) ∙∙∙
=

(−1)

(𝛼′ − 2)(𝛼′ − 3) ∙∙∙
=

−1

𝛤(𝛼′ − 1)
=

−1

𝛤(𝛼)
 

 

showing that the coefficients are equivalent.  

The exponential time dependence is trivial and for the DC case,  

 

𝐼(𝑡) = {

𝜀0−𝜀∞

𝜏0

1

𝛤(𝛼)
(
𝑡

𝜏0
)
−(1−𝛼)

            𝑡 ≪  𝜏0

𝜀0−𝜀∞

𝜏0

(−1)

𝛤(−𝛼)
(
𝑡

𝜏0
)
−(1+𝛼)

          𝑡 ≫ 𝜏0

                                                                (A3)           

                                                   

This can clearly be recognized as the same t and α dependence of the TOF experiment case, Eqn. (A1). This is one 

explanation for the same transit time/kink as seen in the double logarithmic I(t) plots for TOF and CVC experiments. 
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B. Cole-Cole Equation and the Fuoss-Kirkwood Approximation 

To show the validity of the form of the ratio of the imaginary permittivity over the max value ε’’/εm’’ put forward 

by Fuoss and Kirkwood [55], refer to Eqn. (9), starting from the equation for the complex permittivity ε* given by 

Cole and Cole [4, 15], refer to Eqn. (5). There are three steps, starting with Eqn. (5); first, find the equation for ε’’; 

second, find εm’’; third, show the form of ε’’/ εm’’ derived with limits of α → 0 and α → 1. 

For Debye theory it is easy to show,  

 
ε′′

ε𝑚′′
= sech(𝑥)                                                                                        (B1) 

 

where x = ln(ωm/ω). The frequency ωm is when εm’’ occurs. This is the motivation for the form of Eqn. (9). 

 Starting with Eqn. (5), the imaginary number i is replaced with its exponential form exp(iπ/2). Then with use of 

the Euler identity, 

 

ε∗ − ε∞ =
ε0 − ε∞

1 + 𝑒
𝑖𝛼𝜋
2 (𝜔𝜏0)

𝛼

=
(ε0 − ε∞) [1 + cos (

𝛼𝜋
2
) (𝜔𝜏0)

𝛼]

[1 + cos (
𝛼𝜋
2
) (𝜔𝜏0)

𝛼]
2

+ sin2 (
𝛼𝜋
2
) (𝜔𝜏0)

2𝛼

 

 

Now using ε* = ε’ - i ε’’ and solving for ε’’ (the imaginary part of the equation), 

 

ε′′ =
(ε0 − ε∞)sin (

𝛼𝜋
2
) (𝜔𝜏0)

𝛼

[1 + cos (
𝛼𝜋
2
) (𝜔𝜏0)

𝛼]
2

+ sin2 (
𝛼𝜋
2
) (𝜔𝜏0)

2𝛼

                                                     (B2) 

 
                                                       

 To find the max value εm’’, one can simply take the derivative of ε’’ with respect to frequency and set equal to 

zero. 

 

𝑑(ε′′)

𝑑(𝜔𝜏0)
=
𝛼(ε0 − ε∞) sin (

𝛼𝜋
2
) (𝜔𝜏0)

𝛼−1[1 − (𝜔𝜏0)
2𝛼]

[(𝜔𝜏0)
2𝛼 + 2 cos (

𝛼𝜋
2
) (𝜔𝜏0)

𝛼]
2 = 0 

 

Evaluating at ω = ωm and solving for ωm, 

 

(𝜔𝑚𝜏0)
𝛼−1[1 − (𝜔𝑚𝜏0)

2𝛼] = 0 

 

The zeroes of (𝜔𝜏0) are 0 and 1.The solution ωmτ = 0 is trivial. Therefore, the solution below is used. 

 

𝜔𝑚𝜏0 = 1         →          𝜔𝑚 =
1

𝜏0
 

 

This makes sense as this essentially says the characteristic frequency is the reciprocal of the characteristic relaxation 

time. To get the value εm’’, simply plug in ωm into the equation for ε’’. So that, 

 

ε′′

𝜀𝑚′′
= (

𝜔

𝜔𝑚
)
𝛼 [1 + cos (

𝛼𝜋
2
) (𝜔𝑚𝜏0)

𝛼]
2

+ sin2 (
𝛼𝜋
2
) (𝜔𝑚𝜏0)

2𝛼

[1 + cos (
𝛼𝜋
2
) (𝜔𝜏0)

𝛼]
2

+ sin2 (
𝛼𝜋
2
) (𝜔𝜏0)

2𝛼

 

 

Recall that ωmτ0 = 1. This means, 
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ε′′

𝜀𝑚′′
= (

𝜔

𝜔𝑚
)
𝛼 2 [1 + cos (

𝛼𝜋
2
)]

[1 + cos (
𝛼𝜋
2
) (𝜔𝜏0)

𝛼]
2

+ sin2 (
𝛼𝜋
2
) (𝜔𝜏0)

2𝛼

 

 

If the substitution ex = ωm/ω is made (or since ωm = 1/τ0, ωτ0 = exp(-x)), 

 

ε′′

𝜀𝑚′′
= 𝑒−𝛼𝑥

2 [1 + cos (
𝛼𝜋
2
)]

[1 + cos (
𝛼𝜋
2
) 𝑒−𝛼]

2

+ sin2 (
𝛼𝜋
2
) 𝑒−2𝛼

=
2 [1 + cos (

𝛼𝜋
2
)]

𝑒𝛼𝑥 + 2 cos (
𝛼𝜋
2
) + 𝑒−2𝛼𝑥

 

 

To get to a more appealing form of this equation, it is useful to manipulate the reciprocal, 

 

ε𝑚′′

𝜀′′
=
𝑒𝛼𝑥 + 2 cos (

𝛼𝜋
2
) + 𝑒−2𝛼𝑥

2 [1 + cos (
𝛼𝜋
2
)]

=
cos (

𝛼𝜋
2
)

1 + cos (
𝛼𝜋
2
)
+

cosh (𝛼𝑥)

1 + cos (
𝛼𝜋
2
)
=
cos (

𝛼𝜋
2
) + cosh (𝛼𝑥)

1 + cos (
𝛼𝜋
2
)

 

 

Then taking the reciprocal again, 

 

ε′′

𝜀𝑚′′
=

1 + cos (
𝛼𝜋
2
)

cos (
𝛼𝜋
2
) + cosh (𝛼𝑥)

                                                                              (B3) 

 

The limits of α ≈ 1 and α ≈ 0 are respectively, 

 
ε′′

𝜀𝑚′′
≈ sech(𝛼𝑥)            and            

ε′′

𝜀𝑚
′′
≈

2

1 + cosh(𝛼𝑥)
                                                     (B4) 

 

This shows that the approximation put forward by Fuoss and Kirkwood, Eqn. (9), is valid around α≈1. In other words, 

this model is only good for materials only slightly dispersive/disordered. Note that for the extreme when α = 1, the 

familiar Debye form is recovered. Another check, when ω = ωm (x = 0) each equation should reduce to ε’’ = εm’’. 

Which is easily seen to be the case since sech(0) = cosh(0) = 1.  

 Interestingly, if you stare at Eqn. (B4) long enough, the two limits resemble the Boltzmann and Fermi-Dirac 

distribution functions respectively. In a bad argument, when α ≈ 0, cosh(αx) ≈ 1 ≈ eαx. Giving the form of the Fermi-

Dirac distribution function. Then by a similar argument, near x = 0, for α ≈ 1, then sech(αx) = 1/cosh(αx) = e-αx. This 

is the form of the Boltzmann distribution. It is likely just an interesting coincidence, but these limits approximate 

regimes where quantum effects are unimportant (α ≈ 1, normal transport) and when they are very important (α ≈ 0, 

highly dispersive transport such as VRH). These correspond to the Fermi-Dirac and Boltzmann distributions 

respectively. Sim notes that there is a Boltzmann-like and Fermi-Dirac like distribution of mean occupation for 

electrons in a highly disordered material for MT and VRH regimes respectively [7]. 

C. Photocurrent Decay Modeling with Stretched Exponential 

Data of an infrared charge/decay experiment on low density polyethylene (LDPE) [3] was extracted using 

DataThief [64] and fit with a stretched exponential function, refer to Eqn. (22). The results are shown in Fig. C1. The 

best fit gives a dispersion parameter of about 0.15. This does not correspond well to the data found by Wood and King 

for a value of 0.5 [5, 8]. However, it is clear that this parameter depends on field and temperature and it is unclear 

what temperature and field the sample was exposed to in Wintle’s data [3]. It seems the data from Wintle was likely 

taken at a temperature lower than room temperature. This may agree better with data from Gillespie [14], but there 

are large experimental uncertainties and in some cases unphysical values of α. Note that Tyutnev [41] is in agreement 

with King and Wood data [5, 8]. 
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ksjfasldkjfa 

Figure C1. Stretched exponential fit to LDPE data from [3]. Two fits are shown, (a) is with no constraints on the 

parameters, (b) is with 0 < β < 1 and I0 = 95, (c) is with β held at 0.5 and I0 held at 95, and (d) is with I0 held at 95 

respectively. Note that the same results for (d) are obtained if β is constrained between 0 and 1. 

 

(a) 

(b) 

(c) 

(d) 
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