Skip to main content
Article
Redox Chemistry in the Phosphorus Biogeochemical Cycle
Redox Chemistry in the Phosphorus Biogeochemical Cycle
  • Matthew A. Pasek, University of South Florida
  • Jacqueline M. Sampson, University of South Florida
  • Zachary Atlas, University of South Florida
Document Type
Article
Publication Date
10-28-2014
Keywords
  • phosphorus,
  • redox chemistry,
  • phosphonates,
  • element cycling,
  • biogeochemistry
Digital Object Identifier (DOI)
https://doi.org/10.1073/pnas.1408134111
Disciplines
Abstract

The element phosphorus (P) controls growth in many ecosystems as the limiting nutrient, where it is broadly considered to reside as pentavalent P in phosphate minerals and organic esters. Exceptions to pentavalent P include phosphine—PH3—a trace atmospheric gas, and phosphite and hypophosphite, P anions that have been detected recently in lightning strikes, eutrophic lakes, geothermal springs, and termite hindguts. Reduced oxidation state P compounds include the phosphonates, characterized by C−P bonds, which bear up to 25% of total organic dissolved phosphorus. Reduced P compounds have been considered to be rare; however, the microbial ability to use reduced P compounds as sole P sources is ubiquitous. Here we show that between 10% and 20% of dissolved P bears a redox state of less than +5 in water samples from central Florida, on average, with some samples bearing almost as much reduced P as phosphate. If the quantity of reduced P observed in the water samples from Florida studied here is broadly characteristic of similar environments on the global scale, it accounts well for the concentration of atmospheric phosphine and provides a rationale for the ubiquity of phosphite utilization genes in nature. Phosphine is generated at a quantity consistent with thermodynamic equilibrium established by the disproportionation reaction of reduced P species. Comprising 10–20% of the total dissolved P inventory in Florida environments, reduced P compounds could hence be a critical part of the phosphorus biogeochemical cycle, and in turn may impact global carbon cycling and methanogenesis.

Rights Information
Default Rights Statement
Citation / Publisher Attribution

Redox Chemistry in the Phosphorus Biogeochemical Cycle, v. 111, issue 43, p. 15468-15473

Link to the publisher: https://doi.org/10.1073/pnas.1408134111

Citation Information
Matthew A. Pasek, Jacqueline M. Sampson and Zachary Atlas. "Redox Chemistry in the Phosphorus Biogeochemical Cycle" Redox Chemistry in the Phosphorus Biogeochemical Cycle Vol. 111 Iss. 43 (2014) p. 15468 - 15473
Available at: http://works.bepress.com/zachary-atlas/6/