Skip to main content
Article
The Prebiotic Provenance of Semi-Aqueous Solvents
Origins of Life and Evolution of Biospheres
  • Jennifer L. Lago, University of South Florida
  • Bradley T. Burcar, Georgia Institute of Technology
  • Nicholas V. Hud, Georgia Institute of Technology
  • Rio Febrian, Saint Louis University
  • Christopher A. Mehta, University of South Florida
  • Paul J. Bracher, Saint Louis University
  • Zachary D. Atlas, University of South Florida
  • Matthew A. Pasek, University of South Florida
Document Type
Article
Publication Date
1-1-2020
Keywords
  • Origin of life,
  • Condensation,
  • Urea,
  • HCN,
  • Formamide,
  • Formate,
  • Phosphorus
Digital Object Identifier (DOI)
https://doi.org/10.1007/s11084-020-09595-9
Disciplines
Abstract

The numerous and varied roles of phosphorylated organic molecules in biochemistry suggest they may have been important to the origin of life. The prominence of phosphorylated molecules presents a conundrum given that phosphorylation is a thermodynamically unfavorable, endergonic process in water, and most natural sources of phosphate are poorly soluble. We recently demonstrated that a semi-aqueous solvent consisting of urea, ammonium formate, and water (UAFW) supports the dissolution of phosphate and the phosphorylation of nucleosides. However, the prebiotic feasibility and robustness of the UAFW system are unclear. Here, we study the UAFW system as a medium in which phosphate minerals are potentially solubilized. Specifically, we conduct a series of chemical experiments alongside thermodynamic models that simulate the formation of ammonium formate from the hydrolysis of hydrogen cyanide, and demonstrate the stability of formamide in such solvents (as an aqueous mixture). The dissolution of hydroxylapatite requires a liquid medium, and we investigate whether a UAFW system is solid or liquid over varied conditions, finding that this characteristic is controlled by the molar ratios of the three components. For liquid UAFW mixtures, we also find the solubility of phosphate is higher when the quantity of ammonium formate is greater than urea. We suggest the urea within the system can lower the activity of water, help create a stable and persistent solution, and may act as a condensing agent/catalyst to improve nucleoside phosphorylation yields.

Rights Information
Creative Commons Attribution 4.0
Citation / Publisher Attribution

Origins of Life and Evolution of Biospheres, v. 50, p. 1-14

Citation Information
Jennifer L. Lago, Bradley T. Burcar, Nicholas V. Hud, Rio Febrian, et al.. "The Prebiotic Provenance of Semi-Aqueous Solvents" Origins of Life and Evolution of Biospheres Vol. 50 (2020) p. 1 - 14
Available at: http://works.bepress.com/zachary-atlas/13/