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A NOTE ON MUSTAŢĂ’S COMPUTATION
OF MULTIPLIER IDEALS

OF HYPERPLANE ARRANGEMENTS

ZACH TEITLER

(Communicated by Bernd Ulrich)

Abstract. In 2006, M. Mustaţă used jet schemes to compute the multiplier
ideals of reduced hyperplane arrangements. We give a simpler proof using a
log resolution and generalize to non-reduced arrangements. By applying the
idea of wonderful models introduced by De Concini–Procesi in 1995, we also
simplify the result. Indeed, Mustaţă’s result expresses the multiplier ideal as
an intersection, and our result uses (generally) fewer terms in the intersection.

1. Introduction

For an ideal I ⊂ C[x1, . . . , xn], regarded as an ideal on Cn, a log resolution of
I is a proper birational map f : X → Cn, with X smooth, such that the total
transform I · OX = OX(−F ) is locally principal and F + Exc(f) is a divisor with
normal crossings support. Then for λ ∈ R, λ ≥ 0, the λth multiplier ideal J (Iλ) is
given by

J (Iλ) = f∗OX(KX/Cn − �λF �).
More details on multiplier ideals may be found in [5].

Let A be a hyperplane arrangement in V ∼= Cn. For simplicity we assume A is
central, that is, all hyperplanes pass through the origin. Suppose {H1, . . . , Hr} is
the set of hyperplanes appearing in A and each Hi is defined by the vanishing of a
linear form Li. We allow the Hi to have positive integer multiplicities: for each Hi,
let mi = multHi

(A) be the multiplicity of Hi in A. The arrangement is reduced if
every mi = 1. Then the ideal I = I(A) = (Lm1

1 · · ·Lmr
r ) defines A. The goal is to

compute J (Iλ).
Let L(A) be the intersection lattice of A, the set of all intersections of hyper-

planes in A. For W ∈ L(A), define the rank of W to be r(W ) = codim(W ) and
let

s(W ) = multW (A) =
∑

W⊂H∈A
multH(A).

For a reduced arrangement, s(W ) is the number of hyperplanes of A containing
W . Let L′(A) = L(A) \ {V }. Then M. Mustaţă computes the multiplier ideals of
a reduced hyperplane arrangement in [7], obtaining the following result.
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Theorem 1.1. Let A be a reduced hyperplane arrangement with defining ideal I.
Then for λ ≥ 0,

J (Iλ) =
⋂

W∈L′(A)

I
�λs(W )�−r(W )+1
W ,

where IW is the ideal of W .

This is proved using jet schemes. Though it is not stated explicitly in [7], the
method of jet schemes can treat the case of non-reduced arrangements. (See also [8]
for a generalization to a locally conical divisor along a stratification, proved by
different methods.) It is possible, however, to give a proof using simply a log
resolution of the hyperplane arrangement, as suggested by Remark 1.2 of [7]. Using
the notion of building sets then allows us to simplify the result, in the sense of
replacing the intersection over L′(A) by an intersection with possibly fewer terms.

We briefly recall the notion of building sets introduced by De Concini and Pro-
cesi [1, §2.3]. We restrict it to the special case of hyperplane arrangements. (In [1],
arbitrary subspace arrangements are treated. See also [2] for an expository account
and [4, 6] for generalizations.)

Definition 1.2. Let A be a hyperplane arrangement in V . A decomposition of C ∈
L′(A) is a subset {U1, . . . , Uk} ⊂ L′(A) such that C = U1 ∩ · · · ∩ Uk, transversally
(that is, codim C = codim U1 + · · · + codim Uk); and for any C ⊂ B ∈ L′(A), we
have each linear sum B + Ui ∈ L(A) and B = (B + U1) ∩ · · · ∩ (B + Uk), again
transversally.

A subset G ⊂ L′(A) is a building set if for every C ∈ L′(A), the minimal elements
{G1, . . . , Gr} of G containing C give a decomposition of C.

Example 1.3. (a) Each C ∈ L′(A) admits the trivial decomposition {C}. Corre-
spondingly, L′(A) is itself a building set.

(b) An element in L′(A) is called irreducible if it admits no non-trivial decompo-
sition. In particular, every hyperplane in A is irreducible. De Concini and
Procesi show that the set of irreducible elements forms a building set, which
we denote Gmin. It is containment-minimal in the sense that Gmin is contained
in every other building set [1, §2.3].

(c) The braid arrangement Bn on Cn has hyperplanes Hij defined by xi = xj , for
1 ≤ i < j ≤ n. (Sometimes Bn is considered as an arrangement on Cn−1 via
quotienting out by the line x1 = · · · = xn.) The intersection lattice L(Bn)
is isomorphic to the lattice of partitions of {1, . . . , n}, ordered by reversed
refinement. For example, the subspace W123|45 ∈ L(Bn) is defined by the
equations x1 = x2 = x3 and x4 = x5, so it is the intersection (H12 ∩ H13 ∩
H23) ∩ (H45).

Now, W123 = H12 ∩ H13 is a transversal intersection, but {H12, H13} is not
a decomposition of W123. Indeed, W123 ⊂ H23, yet

(H23 + H12) ∩ (H23 + H13) = C
3 ∩ C

3 
= H23.

Let p be a partition of {1, . . . , n} with blocks b1, . . . , bk of size greater than
1. Then Wp admits the decomposition {Wb1 , . . . , Wbk

}.
Conversely, if p = b1 has only one block of size greater than 1, then Wp is

irreducible. Such partitions are called modular. It follows that in the braid
arrangement Bn, the minimal building set Gmin consists of Wp with p modular.
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For n � 0,
#Gmin = 2n − n − 1 � #L(Bn).

In fact, the numbers #L(Bn), called Bell numbers [9], are super-exponential.
For example, with n = 10, #Gmin = 1,013, #L(B10) = 115,975; with n = 20,
#Gmin/#L(B20) ≈ 2.03 · 10−8.

Theorem 1.4. Let A be a hyperplane arrangement (not necessarily reduced) with
ideal I. Let G ⊂ L′(A) be a building set. Then for λ ≥ 0,

(1) J (Iλ) =
⋂

W∈G
I
�λs(W )�−r(W )+1
W .

Theorem 1.1 is the case G = L′(A), and A reduced. The minimal building set
Gmin gives the version of (1) with the fewest terms in the intersection. The example
of the braid arrangement shows this can have dramatically fewer terms.

2. Log resolution

Let A be a hyperplane arrangement in V , not necessarily reduced, and let G ⊂
L′(A) be a building set. Let G = G0 ∪ G1 ∪ · · · ∪ Gn, where Gi = {W ∈ G |
dim(W ) = i }. We blow up the space V iteratively: First blow up G0, then blow up
the proper transforms of all subspaces in G1, and so on. At each stage, the spaces
to be blown up are disjoint because their intersections have been blown up already
at an earlier stage.

We denote this space by VG , with blowdown f : VG → V . It is shown in [1]
that the set-theoretic preimage f−1(A) is a divisor with simple normal crossings
support. The following lemma will show f is a log resolution of I = I(A).

Each W ∈ G is dominated by a unique prime divisor EW in VG . For W not
a hyperplane in V , EW is f -exceptional. It is the proper transform in VG of the
exceptional divisor produced by blowing up (the proper transform of) W in an
earlier stage. For W = Hi a hyperplane in A, blowing up (the proper transform
of) W is the identity map. In this case EW is just the proper transform of W , so
it is not f -exceptional.

Lemma 2.1. Let A ⊂ V be a possibly non-reduced hyperplane arrangement with
ideal I. Let G ⊂ L(A) be a building set. The map f : VG → V is a log resolution
of I. For W ∈ G, let EW ⊂ VG be the prime divisor dominating W . The relative
canonical divisor is

KVG/V =
∑

W∈G
(r(W ) − 1)EW ,

where r(W ) = codimV (W ). The pullback f∗(A) is

f∗(A) =
∑

W∈G
s(W )EW ,

where as above s(W ) = multW (A) =
∑

W⊂H∈A multH(A).

Proof. The pullback f∗I is (the ideal of) a divisor supported along the set-theoretic
preimage f−1(A), which is a divisor with normal crossings support. The exceptional
locus of f also has support contained in f−1(A). This shows f is a log resolution
of I.

For the description of the relative canonical divisor, see [3, Exer. II.8.5(b)].
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For Hi ∈ A, let Hi be defined by the linear form Li. Then f∗(Li) vanishes
along EW to order 0 or 1, according as W 
⊂ Hi or W ⊂ Hi. It follows that
f∗I = f∗(Lm1

1 · · ·Lmr
r ) vanishes along EW to order s(W ), as claimed. �

Remark 2.2. More generally, [1] considers (linear) subspace arrangements. In this
more general setting, the same idea of iteratively blowing up along a building set
will give what the authors call a “wonderful model” of the subspace arrangement,
meaning a proper, birational map which is an isomorphism over the complement
of the support of the arrangement and such that the set-theoretic preimage of the
arrangement is a divisor with normal crossings support. This is not always a log
resolution, however, since outside the case of hyperplane arrangements there may
arise embedded components in the pullback of the ideal of the arrangement [10].

3. Multiplier ideals

We prove Theorem 1.4. The key is the following lemma.

Lemma 3.1. With notation as in Lemma 2.1, for p ≥ 0,

f∗OVG (−pEW ) = Ip
W .

Proof. Let f : VG → V be decomposed into stages of blowing up:

VG = Vn → Vn−1 → · · · → V0 = V,

where Vi+1 → Vi is the blowing up of the (proper transforms of the) subspaces in
G of dimension i. Let d = dim(W ) and consider

VG
c→ Vd+1

b→ Vd
a→ V.

We denote the proper transform of W in Vd by W ′. We denote the irreducible
exceptional divisor in Vd+1 over W ′ simply by E. Then EW is the total transform
of E. It follows c∗OVG (−pEW ) = OVd+1(−pE). Since W ′ is smooth, it follows
immediately that b∗OVd

(−pE) = Ip
W ′ , where IW ′ is the ideal sheaf of W ′. And

since W ′ is the proper transform of W , a∗I
p
W ′ = Ip

W . �

Proof of Theorem 1.4. Taking the log resolution of Lemma 2.1, we have

J (Iλ) = f∗OVG (KVG/V − �λF �)

= f∗OVG

( ∑
W∈G

(r(W ) − 1 − �λs(W )�)EW

)

=
⋂

W∈G
f∗OVG

(
(r(W ) − 1 − �λs(W )�)EW

)

=
⋂

W∈G
I
�λs(W )�−r(W )+1
W

with the last equality following from Lemma 3.1. �

Remark 3.2. We can slightly refine two corollaries of [7]. We have from Corollary 0.2
that (using notation from above) the support of J (Iλ) is the union of those W ∈
Gmin with λ ≥ r(W )/s(W ). From Corollary 0.3 we see that the log canonical
threshold of I is

lct(I) = min
W∈Gmin

s(W )
r(W )

.
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In each case we have replaced the condition W ∈ L′(A) with W ∈ Gmin, and
removed the condition that A be reduced.

Example 2.3 of [7] (concerning set-theoretic jumping numbers) admits a similar
refinement.
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