Skip to main content
Article
Influence of Annealing Temperature of WO3 in Photoelectrochemical Conversion and Energy Storage for Water Splitting
ACS Applied Materials & Interfaces (2013)
  • Charlene Ng
  • Yun Hau Ng*
  • Akihide Iwase
  • Rose Amal
Abstract

The current work demonstrates the importance of WO3 crystallinity in governing both photo-energy conversion efficiency and storage capacity of the flower structured WO3 electrode. The degree of crystallinity of the WO3 electrodes was varied by altering the calcination temperature from 200 °C to 600 °C. For the self-photochargeability phenomenon, the prevailing flexibility of the short-range order structure at low calcination temperature of 200 °C favours the intercalation of the positive cations, enabling more photo-excited electrons to be stored within WO3 framework. This leads to a larger amount of stored charges that can be discharged in an on-demand manner under the absence of irradiation for H2 generation. The stability of the electrodes calcined at 200 oC, however, is compromised due to the structural instability caused by the abundance insertion of cations. On the other hand, films that were calcined at 400 °C displayed the highest stability towards both intercalation of the cations and photoelectrochemical water splitting performance. Although crystallinty of WO3 was furthered improved at 600 °C heat treatment, the worsened contact between the WO3 platelets and the conducting substrate as induced by the significant sintering has been more detrimental towards the charge transport.

Keywords
  • WO3,
  • anodization,
  • photoelectrochemical water splitting
Publication Date
May, 2013
Citation Information
Charlene Ng, Yun Hau Ng*, Akihide Iwase and Rose Amal. "Influence of Annealing Temperature of WO3 in Photoelectrochemical Conversion and Energy Storage for Water Splitting" ACS Applied Materials & Interfaces Vol. DOI:10.1021/am401112q (2013)
Available at: http://works.bepress.com/yunhau_ng/43/