
University of Nebraska at Omaha

From the SelectedWorks of Yuliya Lierler

March, 2020

Algorithms in Backtracking Search behind SAT
and ASP
Yuliya Lierler

Available at: https://works.bepress.com/yuliya_lierler/73/

http://www.unomaha.edu/
https://works.bepress.com/yuliya_lierler/
https://works.bepress.com/yuliya_lierler/73/


Handout on Algorithms in Backtracking Search behind

SAT and ASP

Yuliya Lierler
University of Nebraska Omaha

Introduction

We now turn out attention to search algorithms underlying ASP technology. In particular, we
will focus on the techniques employed by answer set solver such as clasp. Recall that clasp is
only one building block of an answer set system clingo that also incorporates grounder called
gringo. In the scope of this course we ignore the details behind grounders, but note that these
are highly nontrivial systems solving a complex and computationally intense task of intelligent
instantiation.

The algorithms behind majority answer set solvers fall into group of so called backtracking
search algorithms.

Backtracking is a general algorithm for finding all (or some) solutions to some com-
putational problem, that incrementally builds candidates to the solutions, and aban-
dons each partial candidate c (”backtracks”) as soon as it determines that c cannot
possibly be completed to a valid solution. (Wikipedia)

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is a classic example of back-
tracking search algorithms. DPLL is a method for deciding the satisfiability of propositional
logic formula in conjunctive normal form, or, in other words, for solving the propositional sat-
isfiability problem. Algorithms used by answer set solvers share a lot in common with DPLL.
In this handout, we thus begin by presenting DPLL procedure. We then discuss its extensions
suitable for computing answer sets of a program in place.

1 Satisfiability Solving: Davis-Putnam-Logemann-Loveland Pro-
cedure

Recall that a literal is an atom or a negated atom. A signature is a set of atoms. Given
a propositional formula, the set of atoms occurring in it is considered to be its signature by
default. A clause is a disjunction of literals (possibly the empty disjunction ⊥). A formula
is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses (possibly the
empty conjunction >). The task of deciding whether a CNF formula is satisfiable is called a
satisfiability (SAT) problem. Recall that an interpretation/assignment over a signature is a
mapping from the elements of the signature to truth values f or t. For example, given formula

(p ∧ q) ∨ r (1)

1



there are 8 interpretations in its signature {p, q, r} including the following

interpretation p q r

I1 f t t
I2 f t f

A formula is called satisfiable if we can find an interpretation over its signature so that this
formula is evaluated to true under this interpretation. (We assume the familiarity with the
interpretation functions for the classical logic connectives >,⊥,¬,∧ and ∨.) We say that in such
case an interpretation satisfies a formula and also call it a model. For instance, interpretation
I1 satisfies formula (1) while I2 does not. In other words, I1 is a model of formula (1). Hence
this formula is also satisfiable. It is common to identify an interpretation over signature σ with
the set of literals and also with the set of atoms in an intuitive way. For instance, the table
below presents such a mapping for interpretations I1 and I2.

interpretation p q r set of literals set of atoms w.r.t. σ = {p, q, r}
I1 f t t {¬p, q, r} {q, r}
I2 f t f {¬p, q,¬r} {q}

Later in the discourse we frequently use the word interpretation to denote a set of literals.

1.1 DPLL by means of Pseudocode

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is an algorithm for deciding the
satisfiability of propositional logic formula in CNF. DPLL also allows to find a satisfying inter-
pretation of a formula if it exists. Enhancements of DPLL form modern SAT solving technology.

We now state some terminology useful in presenting DPLL. For a literal of the form A we
say that ¬A is its complement, whereas for a literal of the form ¬A, atom A is its complement. A
set M of literals is consistent when it does not contain complementary pairs A, ¬A. Otherwise,
we call a set inconsistent. Sets {a, b,¬c} and {a, b, c,¬c} exemplify consistent and inconsistent
sets of literals, respectively. In the sequel by wrt we abbreviate the phrase with respect to. We
say that a clause l1 ∨ · · · ∨ ln is unit-ary wrt the set M of literals, when

• there is i such that 0 ≤ i ≤ n and li 6∈M (we call literal li a unit literal), and

• for every j such that 0 ≤ j ≤ n and j 6= i, lj ∈M .

For instance, a∨¬b∨ c is a unit-ary clause wrt {¬a, b} and c is its unit literal. Clause a∨¬b is
a unit-ary clause wrt set {¬a, b}, where both a and ¬b are unit literals. We say that a clause
l1∨· · ·∨ ln is satisfied by the set M of literals, when for some i such that 0 ≤ i ≤ n the following
holds li ∈ M . We say that a literal l is unassigned by a set M of literals if neither l nor its
complement l is in M ; otherwise we say that literal l is assigned by M .

Consider the procedure called unit propagation presented in Figure 1. This procedure is
invoked on a consistent set M of literals. To apply unit propagation to a given CNF formula F ,
Unit-Propagate is invoked with F and M = ∅. For instance, to apply unit propagation to

p ∧ (¬p ∨ ¬q) ∧ (¬q ∨ r) (2)

we invoke Unit-Propagate with this formula as F and with ∅ as M . After the first execution
of the body of the loop,

M = {p};

2



Unit-Propagate(F,M)
while M is a consistent set of literals,

and F has a unit-ary clause wrt M so that l is a unit literal of that clause
M ←M ∪ {l}

end

Figure 1: Unit propagation

DPLL(F,M)
Unit-propagate(F,M);
if M is an inconsistent set of literals then return;
if every atom occurring in F is assigned by M then exit with a model of M ;
l← a literal containing an atom from F unassigned by M ;
DPLL(F,M ∪ {l});
DPLL(F,M ∪ {l})

Figure 2: Davis-Putnam-Logemann-Loveland procedure

after the second iteration
M = {p,¬q}.

This computation shows that any model of the given formula is such that p is assigned to t and
q is assigned to f.

There are two cases when the process of unit propagation alone is sufficient for solving
the satisfiability problem for given F . Consider the value of M upon the termination of Unit-
Propagate(F, ∅). First, if F is such that all of its clauses are satisfied by M , as in the example
above, then F is satisfiable, and any satisfying interpretation can be easily extracted from M .
In the example above

M = {p,¬q}

gives rise to two models of (2):

interpretation p q r

I1 t f f
I2 t f t

Second, if M is an inconsistent set of literals then F is not satisfiable.

Problem 1. Use unit propagation to decide whether the formula

p ∧ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

is satisfiable.

The Davis-Putnam-Logemann-Loveland procedure presented in Figure 2 is an extension of
the unit propagation method that can solve the satisfiability problem for any CNF formula.
Like Unit-propagate, it is initially invoked with F and M = ∅.

3



Example 1. Consider, for instance, the application of the DPLL procedure to

(¬p ∨ q) ∧ (¬p ∨ r) ∧ (q ∨ r) ∧ (¬q ∨ ¬r). (3)

First DPLL is called with this formula as F and with ∅ as M (Call 1). After the call to Unit-
propagate, the value of M remains the same. Assume that the literal selected as l is p. Now
DPLL is called recursively with F and {p} as M (Call 2). After the call to Unit-propagate,
M turns into an inconsistent set {p, q, r,¬r} (or an inconsistent set {p, q, r,¬q}). Thus DPLL
returns. Next DPLL is called with {¬p} as M (Call 3). After the call to Unit-propagate, M
remains the same. Assume that the literal selected as l is q. Then DPLL is called with {¬p, q}
as M (Call 4). After the call to Unit-propagate, M = {¬p, q,¬r}. Since M is consistent
and assigns every atom occurring in F , DPLL returns M as a model:

p q r

f t f

Problem 2. How would this computation be affected by selecting ¬p as l in Call 1? By selecting
¬q as l in Call 3?

1.2 DPLL by means of Transition Systems

In the previous section we described the DPLL procedure using pseudocode. Here we use a
different method to present this algorithm. In particular, we use a transition system that can
be viewed as an abstract representation of the underlying DPLL computation. This transition
system captures what “states of computation” are, and what transitions between states are
allowed. In this way, a transition system defines a directed graph such that every execution
of the DPLL procedure corresponds to a path in this graph. Some edges may correspond to
unit propagation steps, some to decision, some to backtracking. Later in the handout, we will
follow this approach for describing a search algorithm suitable for computing answer sets of a
program.

For a set σ of atoms, a record relative to signature σ is a sequence l1 . . . ln−1 ln of distinct
literals over σ, with some literals possibly annotated by ∆, which marks them as decision
literals, so that

1. l1 . . . ln−1 contains no complementary pairs A,¬A, and

2. a decision literal may not be preceded by the complement of this literal in the sequence.

A state relative to σ is either a distinguished state FailState or a record relative to σ. For
instance, the states relative to a singleton set {p} are

FailState, ∅, p, ¬p, p∆, ¬p∆, p ¬p, p∆ ¬p, ¬p p, ¬p∆ p, .

Note how sequences of literals such as p p, p p∆, p ¬p∆, p∆ ¬p∆ do not form records (the
former two sequences are not formed by distinct literals; the later two sequences do not satisfy
Condition 2). Similarly, while sequence p q ¬q forms a record relative to signature {p, q},
sequence p q ¬q ¬p is not a record (it does not satisfy Condition 1).

Frequently, we identify a record M with a set of literals, ignoring both the annotations
and the order among its elements. This allows us to use notation stemming from set theory.
For example, let M be a record p q ¬q, we identify an expression p ∈ M with the condition
p ∈ {p, q,¬q} that ”checks” whether p is a member of set {p, q,¬q} Similarly we can speak

4



of literals being unassigned by a record, or a record being inconsistent. These terms were
defined earlier in the handout for the sets of literals. For instance, states p∆ ¬p and p q ¬p
are inconsistent. Also both q and ¬q are unassigned by state p∆ ¬p, whereas both of them are
assigned by p q ¬p.

Each CNF formula F determines its DPLL graph dpF . The set of nodes of dpF consists
of the states relative to the signature of F . The edges of the graph dpF are specified by four
transition rules:

Unit Propagate: M ⇒ M l if

{
there is a unit-ary clause in F w.r.t. M so that
literal l is its unit literal

Decide: M ⇒ M l∆ if l is unassigned by M

Fail : M ⇒ FailState if

{
M is inconsistent, and
M contains no decision literals

Backtrack : P l∆ Q⇒ P l if

{
P l∆ Q is inconsistent, and
Q contains no decision literals.

A node (state) in the graph is terminal if no edge originates in it. The transition rule Unit
Propagate is also often called a propagator/inference rule of DPLL.

The following proposition gathers key properties of the graph dpF .

Proposition 1. For any CNF formula F ,

(a) graph dpF is finite and acyclic,

(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

Thus, to decide the satisfiability of a CNF formula F it is enough to find a path leading from
node ∅ to a terminal node M . If M = FailState, F is unsatisfiable. Otherwise, F is satisfiable
and M is a model of F .

For instance, let F1 = {p ∨ q,¬p ∨ r}. Below we show a path in dpF1 with every edge
annotated by the name of the transition rule that gives rise to this edge in the graph:

∅ Decide⇒ p∆ Unit Propagate⇒ p∆ r
Decide⇒ p∆ r q∆. (4)

The state p∆ r q∆ is terminal. Thus, Proposition 1(b) asserts that F1 is satisfiable and {p, r, q}
is a model of F1. Another path in dpF1 that leads us to concluding that set {p, r, q} is a model
of F1 follows

∅ Decide⇒ p∆ Decide⇒ p∆ r∆ Decide⇒ p∆ r∆ q∆. (5)

We can view a path in the graph dpF as a description of a process of search for a model
of a formula F by applying transition rules of the graph. Therefore, we can characterize an
algorithm of a SAT solver that utilizes the inference rules of dpF by describing a strategy for
choosing a path in dpF . A strategy can be based, in particular, on assigning priorities to some
or all transition rules of dpF , so that a solver will never apply a transition rule in a state if a
rule with higher priority is applicable to the same state. The DPLL algorithm can be captured
by the following priorities:

Backtrack,Fail >> Unit Propagate >> Decide.

5



Note how path (6) in the graph dpF1 respects priorities above, while path (5) does not. Thus
DPLL will never explore the latter search trajectory given input F1.

Problem 3. Let G be formula (3). Then a pass in dpG that can be seen as capturing the
computation of DPLL described in Example 1 follows:

∅ Decide⇒ p∆ Unit Propagate⇒ p∆ q
Unit Propagate⇒ p∆ q r

Unit Propagate⇒
p∆ q r ¬q Backtrack⇒ ¬p Decide⇒ ¬p q∆ Unit Propagate⇒ ¬p q∆ ¬r

(6)

(a) List an alternative path to (6) in dpG that also can be seen as capturing the computation
of DPLL. (Hint: think of nondeterminism in Unit-Propagate procedure.)

(b) Consider node q in graph dpG. List all the edges that leave this node in dpG. Annotate
these edges by transition rules that they are due. Specify nodes to which these edges lead. For
instance,

q
Decide⇒ q p∆

is one of these edges. (c) Consider node p∆ q r ¬q in graph dpG. List all the edges that leave
this node in dpG (as in the previous question).

2 From ASP to SAT

A number of transformations from logic programs under answer set semantics to SAT exist.
Given a propositional logic program Π, there are two kinds of transformations:

• transformations that preserve the vocabulary of Π and form a propositional theory FΠ

that is equivalent to Π. In other words, models of Π and FΠ coincide.

• transformations that may contain “new atoms” so that the answer sets for Π can be
obtained by removing these atoms from the models of constructed FΠ.

Remarkable transformation of the former kind is called completion. For a large syntactic
class of programs (“tight” programs), the models of program’s completion coincide with the
answer sets of a program. This fact is exploited in several state-of-the-art answer set solvers
including clasp (a solver of clingo). For example, for tight programs clasp practically runs
a (significantly enhanced) DPLL procedure on program’s completion to obtain answer sets of
a program.

Answer Set Solving. We are now ready to present an extension to the DPLL algorithm that
captures a family of backtrack search procedures for finding answer sets of a propositional logic
program.

Recall that a propositional logic program is a finite set of rules of the form

a0 ← a1, . . . , ak,not ak+1, . . . ,not am, (7)

where a0 is a propositional atom or symbol ⊥; a1, . . . , an are propositional atoms. For a rule r
of the form (7), by rcl we denote a clause

a0 ∨ ¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am (8)

when a0 is an atom; and a clause

¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am, (9)

6



when a0 is ⊥. For a program Π, by Πcl we denote a CNF formula composed of the respective
clauses rcl for rules r in Π. For example let Π stand for program

p
r ← p, q

(10)

then Πcl follows
p ∧
r ∨ ¬p ∨ ¬q. (11)

For a program Π, by σΠ we denote the set of atoms occurring in it. We call σΠ a program’s
signature. For a program Π, we call an interpretation M over σΠ a classical model of Π if it
is a model of Πcl. For example, program (10) has three classical models {p,¬q,¬r}, {p,¬q, r},
and {p, q, r}. In a sense, a concept of a classical model generalizes the definition of what does
it mean for a set of atoms to satisfy a definite program to arbitrary programs.

A set U of atoms occurring in a propositional program Π is unfounded on a consistent set M
of literals with respect to Π if for every atom a ∈ U the following condition holds: for every
rule in Π of the form

a← a1, . . . , ak,not ak+1, . . . ,not am

(note that a is the head atom in this rule) the property below holds:

• either M ∩ {¬a1, . . . ,¬ak, ak+1, . . . , am} 6= ∅

• or U ∩ {a1, . . . , ak} 6= ∅

For instance, set {r} is unfounded on set {p,¬q, r} with respect to program (10), while set {q}
is unfounded on any set of literals with respect to program (10). We may also note that any
set of atoms containing atom p will not be unfounded on any set of literals with respect to
program (10) (this fact is explained by the presence of fact p. in the program). It is easy to see
that the ∅ of atoms is unfounded on any set of literals with respect to any program.

For a set M of literals, by M+ we denote the set composed of all the literals that occur
without classical negation in M . E.g., {p, q,¬r}+ = {p, q}.

We now state a formal result that relates the notions of an unfounded set and answer sets.
This result is crucial for understanding key inference rules used in propagators of modern answer
set solvers.

Proposition 2. For a program Π and a set M of literals over σΠ, M+ is an answer set of Π
if and only if M is a classical model of Π and no non-empty subset of M+ is an unfounded set
on M with respect to Π.

This proposition gives an alternative characterization of an answer set. I.e., we may bypass
the reference to a reduct in our argument that a set of atoms is an answer set. It is sufficient
to verify that (i) this set of atoms corresponds to a classical model of a program and (ii) no
non-empty subset of this set is unfounded. For example, this proposition asserts that

• classical models of program (10) are the only interpretations that may correspond to
answer sets of (10)

• sets {p,¬q,¬r}, {p,¬q, r}, {p, q, r} of literals are the classical models of program (10).
Thus, sets {p,¬q,¬r}+ = {p}, {p,¬q, r}+ = {p, r}, {p, q, r}+ = {p, q, r} of atoms form
the candidates for being answer sets,

7



• sets {p, r} and {p, q, r} are not answer sets of the program due to unfounded sets {r} and
{q} respectively. Set {p} is an answer set (since the only nonempty subset of it, namely,
{p}, is not an unfounded set on {p,¬q,¬r} with respect to program (10)).

We define the transition graph asetΠ for a program Π as follows. The set of nodes of the
graph asetΠ consists of the states relative to atoms occurring in Π. There are five transition
rules that characterize the edges of asetΠ. The transition rules Unit Propagate, Decide, Fail ,
Backtrack of the graph dpΠcl , and the transition rule

Unfounded : M ⇒ M ¬a if

{
a ∈ U for a set U unfounded on M
with respect to Π.

The graph asetΠ can be used for deciding whether a logic program has answer sets:

Proposition 3. For any program Π,

(a) graph asetΠ is finite and acyclic,

(b) for any terminal state M of asetΠ other than FailState, M+ is an answer set of Π,

(c) FailState is reachable from ∅ in asetΠ if and only if Π has no answer sets.

A Peek at Important Enhancements of ASP (and SAT) solvers The key difference
of system clingo from the smodels algorithm that we presented lays in implementation of
such advanced solving techniques as learning and forgetting, backjumping and restarts. Below
we provide some intuitions behind these.

The learning technique allows a solver to extend its knowledge base (that originally is
composed of a given program) by additional constraints so that certain inferences become
readily available in the later states of search via propagation rules (eliminating the need for
intermediate applications of decide rules). The forgetting allows the solver to make the learning
process dynamic so that sometimes learned constraints are forgotten/removed to eliminate the
chance of solver’s knowledge base becoming of a prohibitive size.

Backjumping enhances backtracking mechanism by allowing to identify the decision level
different from the last one that is safe to jump to so that (i) no solution is lost and (ii) part of
the search space is escaped.

Restarting allows a solver to drop currently searched path and start over again with a hope
to make better choices on a new path that lead to a solution quicker.

Problem 4. Let Π1 be a program
r.
p← not q, r
q ← not p, r

(a) List all classical models of Π1.
(b) List all unfounded sets on set {r, p, q} with respect to program Π1.
(c) List all unfounded sets on set {r,¬p,¬q} with respect to program Π1.
(d) List all unfounded sets on set {r, p,¬q} with respect to program Π1.
(e) List all answer sets of Π1.
(f) List some five states in graph asetΠ1.
(g) List some path in asetΠ1 from ∅ to state r¬q∆p. Think of another possible path in

this graph from ∅ to the same state r¬q∆p. List that path. In both cases annotate all the
transitions/edges in your path by the names of the respective rules.

8



(h) Is state r¬q∆p terminal in the graph asetΠ1? If so what can you conclude about pro-
gram Π1 and state r¬q∆p given Proposition 3.

Acknowledgments

Parts of this handout follow

• the lecture notes on Logic-based AI course, UT, Spring 20111 by Vladimir Lifschitz.

• What is answer set programming to propositional satisfiability, Yuliya Lierler, Constraints,
July 2017, Volume 22, Issue 3, pp 307337 available at https://link.springer.com/

article/10.1007/s10601-016-9257-7.

In class discussions of Fall 2020 course on Introduction to AI at UNO contributed to several
examples listed in these notes.

1http://www.cs.utexas.edu/~vl/teaching/lbai

9


	University of Nebraska at Omaha
	From the SelectedWorks of Yuliya Lierler
	March, 2020

	Algorithms in Backtracking Search behind SAT and ASP
	tmpN22szV.pdf

