Action Languages and Question Answering

Yuliya Lierler, University of Nebraska at Omaha
Daniela Inclezan, Miami University - Oxford
Michael Gelfond, Texas Tech University

Available at: https://works.bepress.com/yuliya_lierler/70/
Action Languages and Question Answering

Yuliya Lierler
University of Nebraska Omaha
ylierler@unomaha.edu

Daniela Inclezan
Miami University
inclezd@miamioh.edu

Michael Gelfond
Texas Tech University
michael.gelfond@ttu.edu

Abstract

This paper describes a methodology for designing Question Answering systems that utilize an action language ALM to allow inferences based on complex interactions of events described in texts. This methodology assumes the extension of the VERBNET lexicon with interpretable semantic annotations in ALM and specifies the use of several other NLP resources to produce ALM system descriptions for input discourses.

1 Introduction

In this paper, we propose a methodology for designing Question Answering (QA) systems that uses state-of-the-art techniques from the field of Natural Language Processing (NLP) complementing them with the latest advances from the field of Knowledge Representation and Reasoning (KRR).

The applicability of KRR for the design and implementation of QA systems was explored by Baral et al. (2004) who demonstrated the suitability of the KRR language Answer Set Prolog (ASP) (Gelfond and Lifschitz, 1991) for this purpose. Balduccini et al. (2008) continued this line of research and described a QA system with an intended wide coverage, based on KRR techniques and NLP tools. Todorova and Gelfond (2011; 2012) addressed the problem from a different angle. They focused on texts restricted to a controlled natural language tailored to motion verbs and concentrated on answering difficult questions requiring counting. Their knowledge base was written in a higher-level KRR language than ASP, a so-called action language called ALM (Inclezan and Gelfond, 2016).

The system by Todorova and Gelfond processed multiple-sentence texts exemplified by

\begin{align*}
\text{Ann went to the room.} & \quad (1) \\
\text{Michael left the room.} & \quad (2)
\end{align*}

and derived inferences based on information in these sentences to answer questions such as

\begin{align*}
\text{Is Michael inside the room (at the end of the story)?} & \quad (3) \\
\text{Is Ann inside the room (at the end of the story)?} & \quad (4) \\
\text{Is the room empty (at the end of the story)?} & \quad (5)
\end{align*}

In the sequel, we refer to the text composed of sentences (1) and (2) as the MA discourse.

Our goal is to build upon the methodology outlined by Todorova and Gelfond by putting more emphasis on the organization of KRR libraries and the NLP stages of QA. We remove some of the constraints assumed by their system: we do not limit ourselves to the motion verbs and we avoid a commitment to a controlled language. Our long term goal is to have a methodology that encompasses texts containing a large collection of action verbs (go, $give$, put exemplify the class of action verbs). In this paper, we test the feasibility of such a proposal by allowing change of possession verbs such as $grab$, $grasp$, $yank$ in addition to motion verbs. Consider a discourse that contains the sentence

\begin{align*}
\text{Michael grasped the suitcase.} & \quad (6)
\end{align*}
uttered between sentences (1) and (2). We name it the MAS discourse. We illustrate that a system developed according to our methodology is able to infer that at the time when Michael was grasping the suitcase, its location was the room — the location of Michael, and that the suitcase is no longer in the room at the end of the described scenario.

The main feature of our approach is the use of ALM as a language for encoding the meaning of action verbs (i.e., the effects and constraints for the execution of the actions they denote). In addition, we propose to extend an NLP resource about verbs, VERBNET (Kipper-Schuler, 2005; Palmer, 2006), with ALM based semantic annotations. Other logic formalisms have been used for other NLP tasks (e.g., Recognizing Textual Entailment (NIST, 2008)), but unlike ALM they cannot perform temporal reasoning (MacCartney and Manning, 2007; Harmeling, 2009) or reasoning by cases (Bos and Markert, 2005). This makes them less suitable for answering questions about discourses describing sequences of events.

The paper is structured as follows. Section 2 starts by introducing the KRR action language ALM by illustrating how a knowledge engineer can utilize this language to formalize the scenarios described by the MA and MAS discourses and query the respective formalization. In the process, generic modules that capture the knowledge about such actions/verbs as move, go, and grasp are developed. Section 3 focuses on the methods that will allow us to automatically produce ALM descriptions that capture information present in discourses of interest by utilizing the arsenal of modern NLP lexicons and tools including VERBNET, PROPANK (Palmer et al., 2005; Palmer, 2005), SEMLINK (Bonial et al., 2013b,a), Ontonotes Sense Groupings (CLEAR, 2008), LTH (Johansson and Nugues, 2007b,a), and CORENLP (Manning et al., 2014). We end with conclusions and future work.

2 The MA and MAS discourses formalized in ALM

Action language ALM is a recent representative of KRR languages for modeling knowledge about domains in which changes are caused by the occurrence of actions. An important feature of ALM is its ability to capture the commonality of actions go and leave by defining them as instances of the same action class that we refer to as MOVE, and thus encode the relation that exists between the corresponding verbs.

We start by using ALM to formalize the domain behind the MA discourse. First, we use this example to illustrate the syntax and semantics of the language. Second, we demonstrate how the ALM framework can be used to perform inferences required to answer questions (3-5). The section concludes with the ALM formalization of the MAS discourse.

MA discourse via ALM: There are several informative pieces in the MA discourse:
1. the discourse refers to actions of class MOVE through the use of verbs go and leave. This action class immediately brings about a set of axioms associated with it. For example, we are aware that it is impossible to move an object from a point if this object is not at this point.
2. three objects (entities, or instances) are introduced, to which we refer as ann, michael, and room; and two events (instances of actions): ann moves into room and michael moves out of room.
3. a sequence of event occurrences is given, i.e., first ann moves into room, and next, michael moves out of room.

Informative piece 1 or ALM module basic motion for modeling the MOVE action class: In Figure 1 (LHS), we show the ALM module called basic motion. This module is a general purpose description of knowledge/axioms about the MOVE action class. It describes how the location of objects is affected by occurrences of events of type MOVE.

Modules in ALM start with the declaration of sorts of objects relevant to the knowledge to be encoded. In basic motion, we distinguish between things and discrete points in space. We declare these two sorts as special cases of the pre-defined root sort of ALM called universe. We also declare a sort called agents, denoting entities capable to move by themselves, as a subsort of things. The knowledge engineer then proceeds to specify the relevant action classes for the domain in
module basic_motion
sort declarations
 things, points :: universe
agents :: things
move :: actions
attributes
 actor : agents
 origin, dest : points
function declarations
fluents
basic
 loc_in : things * points -> booleans
axioms
 occurs(X) causes loc_in(A, D)
 if instance(X, move),
 actor(X)=A,
 dest(X)=D.
 occurs(X) causes -loc_in(A, O)
 if instance(X, move),
 actor(X)=A,
 origin(X)=O.
 impossible occurs(X) if instance(X, move),
 actor(X)=A,
 origin(X)=O,
 -loc_in(A, O).
 impossible occurs(X) if instance(X, move),
 actor(X)=A,
 dest(X)=D,
 loc_in(A, D).

module basic_motion_verbnet
sort declarations
 concrete :: universe
escape :: actions
attributes
 theme : concrete
 initial_location, destination : concrete
function declarations
fluents
basic
 loc_in : concrete * concrete -> booleans
axioms
 occurs(X) causes loc_in(A, D)
 if instance(X, escape),
 theme(X)=A,
 destination(X)=D.
 occurs(X) causes -loc_in(A, O)
 if instance(X, escape),
 theme(X)=A,
 initial_location(X)=O.
 impossible occurs(X) if instance(X, escape),
 theme(X)=A,
 initial_location(X)=O,
 -loc_in(A, O).
 impossible occurs(X) if instance(X, escape),
 theme(X)=A,
 destination(X)=D,
 loc_in(A, D).

Figure 1: LHS: ACM module basic_motion capturing knowledge about action class MOVE; RHS: the same module restated using the VERBNET lexicon terminology.

question. In module basic_motion, action class move is declared as a special case of the pre-defined sort actions with three attributes (i.e., intrinsic properties): attribute actor ranging over the sort agents, and attributes origin and dest (destination) ranging over points.

Next, properties (fluents and statics) related to the domain are declared. Fluents are properties that may be changed by actions; they are divided in ACM into basic and defined. Basic fluents normally maintain their previous values, unless the occurrence of an event causes their value to change. Defined fluents allow one to specify properties in terms of other properties. Properties are modeled via functions in ACM using syntax similar to the mathematical notation for functions. In the basic_motion module, the property of interest is the location loc_in of things, which may be affected by the occurrence of actions of type move and is thus declared as a basic fluent. Per its specification, it is a function that maps pairs of things and points into the pre-defined sort booleans.

ACM modules conclude with axioms about described action classes and properties. The first two rules in the basic_motion module capture the direct effects of actions of sort move. In particular, the first axiom states that after an occurrence of an instance of move its actor will be located at the destination. The second axiom states that after an occurrence of a move event the actor will no longer be at the origin. We note that symbol "¬" is used to denote the classical negation symbol ¬. The last two statements describe when the action cannot be executed. In particular, the third and fourth axioms state that move cannot occur when the actor is not located at the specified origin, and when the actor is already at the destination, respectively.

Informative piece 2 or ACM system description for the MA discourse: In ACM, we describe a given domain via a system description that consists of a theory — modules organized into a hierarchy, and a structure — definitions of instances. A system description captures a transition diagram that characterizes the behavior of the given domain. Trajectories in a transition diagram correspond to possible evolutions or scenarios in the domain. We illustrate these concepts by means of the discourse_ma system description presented in Figure 2 (LHS), which corresponds to the MA discourse.

The discourse_ma theory consists of the line import module basic_motion that can be
interpreted as a macro to denote that the \textit{ALM} code describing “module basic_motion” has to be inserted in this place. The structure of \textit{discourse_ma} declares instances \texttt{ann}, \texttt{michael}, and \texttt{room} so that the former two are of sort \textit{agents}, whereas the latter is of sort \textit{points}. The two events described in the \textit{MA} discourse are represented as instances \texttt{e1} and \texttt{e2} of sort \textit{move}. The \texttt{actor} of \texttt{e1} is instance \texttt{ann} and its \texttt{dest} is \texttt{room}, while the \texttt{actor} of \texttt{e2} is \texttt{michael} and its \texttt{origin} is \texttt{room}.

The system description \textit{discourse_ma} defines the transition diagram \textit{T} presented in Figure 3. It consists of four states labeled \texttt{\sigma_2} \cdots \texttt{\sigma_4}, and five transitions labeled by actions \texttt{e1}, \texttt{e2} that may take the dynamic system from one state to another. For example, the arc \texttt{e1} between states \texttt{\sigma_2} and \texttt{\sigma_1} says that the occurrence of \texttt{e1} may take the system from the former state to the latter. Note how action \texttt{e1} cannot occur in state \texttt{\sigma_1} (due to the last axiom in \textit{basic_motion}) and thus there is no arc in \textit{T} going out of \texttt{\sigma_1} and labeled \texttt{e1}. The initial state of a system is associated with time step 0. Each arc in the transition diagram suggests an increment of a time step by one. A sequence \texttt{\tau_1} = \langle \texttt{\sigma_2}, \texttt{e1}, \texttt{\sigma_1}, \texttt{e2}, \texttt{\sigma_3} \rangle constitutes a sample trajectory. This trajectory captures the following scenario: initially (time step 0), \texttt{ann} is not in \texttt{room}, whereas \texttt{michael} is in \texttt{room}; at time step 0, \texttt{ann} moves to (enters) \texttt{room}; at time step 1, \texttt{michael} moves from (leaves) \texttt{room}. A sequence \texttt{\tau_2} = \langle \texttt{\sigma_2}, \texttt{e2}, \texttt{\sigma_4}, \texttt{e1}, \texttt{\sigma_3} \rangle exemplifies another trajectory of transition diagram \textit{T}, whereas a sequence \langle \texttt{\sigma_1}, \texttt{e1}, \texttt{\sigma_2}, \texttt{e2}, \texttt{\sigma_4} \rangle is not a trajectory.

\textbf{Informative Piece 3 or \textit{ALM} histories:} A particular domain scenario defines what we call a \textit{history} (Gelfond and Khal, 2014) — a set of observations about fluents that hold in some states and events that happen at some states. Certain trajectories in the transition diagram encoded by a system description are compatible with a particular history, while others are not. We call the compatible trajectories \textit{models} of a history. The \textit{MA} discourse provides the following history: action \texttt{e1} happens first (at time 0), then \texttt{e2} happens (at time 1), which we abbreviate below

\begin{equation}
\{ \text{hpd}(e1,0), \text{hpd}(e2,1) \}.
\end{equation}

Given system description \textit{discourse_ma}, trajectory \texttt{\tau_1} is the only model of this history. Thus the initial state of the story conveyed by the \textit{MA} discourse must be \texttt{\sigma_2} and the final one must be \texttt{\sigma_3}.

\textbf{Answering questions (3-5):} Model \texttt{\tau_1} of history (7) allows us to answer questions (3-5). The final
Figure 4: (a) ALM module defining action grasp; (b) System description for the MAS discourse.

state σ_3 of the trajectory τ_1 contains literal $-\text{loc}_\text{in}(\text{michael, room})$, which translates into the answer no to question (3). State σ_3 contains $\text{loc}_\text{in}(\text{ann, room})$ that translates into answer yes to question (4). Presence of $\text{loc}_\text{in}(\text{ann, room})$ in state σ_3 translates into answer no to question (5).

Similarly, we can answer other questions: Is Michael inside the room at the beginning of the story? Is Ann inside the room at the beginning of the story? Were Ann and Michael in the room together at some point? How many people were in the room when Ann walked in? The initial state σ_2 of model τ_1 supports the answers yes and no to the first and the second questions, respectively. The positive answer to the third question is endorsed by the intermediate state σ_1 of τ_1. Initial state σ_2 encodes the situation preceding Ann walking into the room. It supports the answer at least one to the last question.

Automatically computing models of a history: Given the ALM system description and the history that correspond to a discourse in question, the task of computing models of this history relative to the system description can be automated. First, the system description is translated into a logic program under answer set semantics using the transformation defined by Inclezan and Gelfond (2016). Second, the history and a predefined module for temporal projection (Gelfond and Khal, 2014) are added to the produced logic program. Answer sets of the resulting program can be computed using an off-the-shelf ASP solver CLINGO available at http://www.mbal.tk/clingo/. Each answer set corresponds to a model of the given history. A prototype translator from ALM system descriptions and histories to logic programs is available at http://tinyurl.com/z6n9fmx.

MAS discourse via ALM: In order to model the MAS discourse, an ALM module that formalizes knowledge about actions of type GRASP is required. Figure 4 (a) presents a module called grasping that serves this purpose. It is adapted from (Inclezan and Gelfond, 2016), where it was used to illustrate the methodology of creating modular representations in ALM by encoding a classical Monkey and Bananas problem from the field of reasoning about actions and change. The first line of module grasping specifies the reuse of sorts and/or functions explicitly declared in module basic_motion. Specifically, this module reuses the fluent loc_in since the location of agents and things conditions what GRASP actions can be executed.
ALM system description for the MAS discourse: The system description for the MAS discourse, discourse.mas, is presented in Figure 4 (b). Its theory starts with an import statement for module grasping. Given that grasping depends on module basic_motion, the meaning of this ALM statement is that contents of both modules are copied into the theory of discourse.mas. Hence, within this system description we can instantiate events that are of type grasp or move. The fact that action classes grasp and move are interconnected in the definition of module grasping allows a knowledge engineer to model nontrivial interdependencies between actions. For example, an instance of action grasp causes its agent to hold a grasped object. Module grasping also encodes the knowledge that if an agent holds an object then the locations of the agent and object must be the same. These restrictions allow one to deduce that, when an instance of an action move occurs while the agent holds some object, then this object changes its location just as the agent does. The structure of the discourse.mas system description is defined similarly to that of discourse.ma.

History \{hpd(e1,0), hpd(ea,1), hpd(e2,2)\} records the events described in discourse MAS. In all models of this history relative to discourse.mas (i) the location of entity suitcase is the same as that of entity michael (namely, entity room) before action instance e2 occurs; (ii) after event ea occurs michael is holding suitcase in all subsequent states; and (iii) after event e2 occurs michael is holding suitcase, and both michael and suitcase are not in room. All of these observations correspond to our expectations given the MAS discourse. Indeed, we infer that the suitcase is no longer in the room at the end of the story. Similarly, when Michael grasped the suitcase, its location was the same as the location of Michael, i.e., the room.

3 Automatic construction of ALM system descriptions from discourses

In the previous section we illustrated how a knowledge engineer may encode the information carried within the MA and MAS discourses in ALM. We then discussed how these ALM formalizations can be used to automatically reason about these discourses. In this section, we present a proposal for automating the process of creating an ALM system description for an English discourse by relying on modern NLP tools such as LTH, CORENLP and existing lexical resources including Ontonotes Sense Groupings, VERBNET, PROPBANK, and SEMLINK. We stress the steps that have to be performed and how NLP tools and resources are to be used in those steps. The MA discourse is a running example in this section.

Stage 1 or Entity and relation extraction: The goal of this stage is to take an English discourse as an input and produce a so-called discourse representation structure (DRS) — a basic building block of Discourse Representation Theory (Kamp and Reyle, 1993). Figure 5 presents a DRS for the MA discourse. The top part of this DRS enumerates all of the entities, called discourse referents, that take part in the captured discourse (namely, r1, r2, and r3) as well as referents denoting events that the discourse describes (namely, e1 and e2). The bottom part of the DRS captures conditions on the entities and events that follow from the discourse. The events are encoded in Neo-Davidsonian style.

<table>
<thead>
<tr>
<th>r1 r2 r3 e1 e2</th>
</tr>
</thead>
<tbody>
<tr>
<td>entity(r1) entity(r2) entity(r3)</td>
</tr>
<tr>
<td>property(r1,ann) property(r2,room) property(r3,michael)</td>
</tr>
<tr>
<td>event(e1) event(e2)</td>
</tr>
<tr>
<td>eventType(e1,go.01) eventTime(e1,0) eventArgument(e1,a1,r1) eventArgument(e1,a4,r2)</td>
</tr>
<tr>
<td>eventType(e2,leave.01) eventTime(e2,1) eventArgument(e2,a0,r3) eventArgument(e2,a1,r2)</td>
</tr>
</tbody>
</table>

Figure 5: Discourse representation structure for the MA discourse

To produce a DRS as exemplified, the first proposed step is to process discourse sentences using the LTH semantic role labeler. For sentences (1) and (2) of the MA discourse, LTH produces the output:

[A1 Ann] [V (go.01) went] [A4 to the room]
[A0 Michael] [V (leave.01) left] [A1 the room]
The examples above are annotated using the rolesets/labels of the predicates go.01 and leave.01 as defined in frame schemas of PROPBANK (version 1.7), where the suffix 01 indicates that Ontonotes Sense Groupings associates these predicates with senses 1 of verbs go and leave:

\[
\begin{align*}
& \text{go.01: motion} \\
& \quad A1: \text{entity in motion/goer} \quad A2: \text{extend} \quad A3: \text{start point} \quad A4: \text{end point} \\
& \quad \text{AM-LOC: medium} \quad \text{AM-DIR: direction (usually up or down)} \\
& \text{leave.01: move away from} \\
& \quad A0: \text{entity leaving} \quad A1: \text{place left} \quad A3: \text{attribute/secondary predication}
\end{align*}
\]

In the second step, we propose to process a given discourse using the Stanford coreNLP system. Among other NLP tasks, the coreNLP system can perform mention detection and coreference resolution. Given the MA discourse it is able to detect that there are three entities in the discourse: Michael, Ann, and the room, and that expressions the room in sentences (1) and (2) refer to the same entity.

In the third step, the output of systems LTH and coreNLP is combined to produce a DRS for the given input. Based on the output of coreNLP, entities r1, r2, and r3 that have a property of being ann, room, and michael, respectively, are added to the DRS. Similarly, events e1 and e2 are known to be of type go.01 and leave.01, respectively, based on the output of LTH. Relation eventArgument is populated by using the role labels assigned by LTH. The time step for the events (encoded by eventTime) is provided based on chronological order of events mentioned in the discourse, which coincides with default readings of sentences (we disregard for now markers such as before, after).

Related NLP systems: System BOXER (Bos, 2008) is an open-domain NLP tool that, given a discourse constructs a respective DRS. However, the discourse representation structures constructed by BOXER omit ordering of events in the discourse (i.e., contain no counterpart to “eventTime” in Figure 5), as well as details on the roles played by event arguments. Also, named entity recognition and coreference resolution components of coreNLP perform better than BOXER.

Stage 2 or From discourse to an ALM system description or via PropBank to VerbNet to ALM: The next question that we tackle is how to map entities, properties, and history present in a given DRS into the vocabulary of ALM modules that capture axioms about the actions denoted by verbs occurring in this DRS? For the MA discourse, this question translates into how do we transition from the DRS in Figure 5 to an ALM scenario composed of a system description in Figure 2 and history (7)?

In order to produce a system description and a history from a DRS, first we have to link two distinct PropBank predicates go.01 and leave.01 to the same ALM action class MOVE. Second, we ought to map the semantic roles prescribed by PropBank for these predicates to the arguments of action class MOVE as prescribed by the basic_motion module. Third, we have to link the entities mentioned in the given DRS in Figure 5 with the instances that compose the structure of the system description capturing this discourse. We will illustrate how these steps result in an ALM system description discourse_ma_verbnet presented in Figure 2 (RHS). It is easy to see that to a large extent the new system description is a syntactic modification of the discourse_ma_system description in Figure 2 (LHS) that has been designed earlier to process the MA discourse. The discourse_ma_verbnet system description can be used in the same manner to answer questions about this discourse. Next, we present details on components required to automate the construction of this system description.

VerbNet Lexicon: We start by focusing on the first two of the described tasks: mapping PropBank predicates go.01 and leave.01 and their arguments into instances of the ALM action class MOVE and its attributes. We argue that it is possible to carry out such mappings in a systematic manner using theories developed by linguists pertaining to verb semantics. Levin (1993) proposed the grouping of verbs into classes based on their syntactico-semantic behavior in sentences. Verb lexicon VerbNet is organized into verb classes that extend and refine these by Levin. For instance, VerbNet class escape-51.1 contains among others verbs go and return. A direct subclass of escape-51.1 named escape-51.1-1 contains verb leave. Any subclass of a class in VerbNet inherits all of the features of its parent class, but also contains its specific entries. In addition to capturing the grouping information of the verbs, VerbNet provides the ontology of core thematic roles associated with each group.
Four (thematic) roles are identified with the classes escape-51.1 and 51.1-1: theme, initial location, destination, and trajectory. Condition concrete represents (selectional) restriction that the arguments of the verbs of this class should satisfy to form semantically coherent sentences. Intuitively, in sentence (1) an entity corresponding to Ann serves the role theme, while an entity corresponding to the room serves the role destination. Both of these entities are of concrete kind/sort. Kipper-Schuler, Section 3.1.4 (2005) describes semantic annotations provided within VerbNet for each class. However, unlike ALM descriptions, these do not have formal semantics and are not computer interpretable in prescribed manner.

The ALM declaration of action class move in Figure 1 (LHS) echoes the information present in VerbNet. We see how attribute actor of move is declared of sort agents, whereas origin and dest are declared of sort points. Intuitively, attribute names such as actor, origin, and dest serve the role of thematic roles theme, initial location, and destination, respectively. Sorts agents and points echo selectional restrictions and are designated to be of concrete kind by VerbNet. Figure 1 (RHS) presents the restatement of the basic motion module in (LHS) of the same figure using VerbNet terminology and named basic motion verbnet. It differs from (LHS) by different name choices. The only non-syntactic change appears in sort declarations, where the (RHS) module defines a less specific sort hierarchy. We envision an extended VerbNet that is augmented with ALM modules (such as basic motion verbnet), which provide ALM-based semantic annotations for its verb classes.

Then, the VerbNet lexicon can serve as a lookup table for finding relevant action classes and ALM modules while processing discourses. We believe that the creation of an extended VerbNet will be an important contribution to both the NLP and KRR communities.

The SEMILINK Project: The last step to address is how to translate information about entities and events in a DRS into the ALM system description capturing a given discourse. Here, the missing piece of the puzzle is the SEMILINK project (Bonial et al., 2013b) that links together PROPBANK and VerbNet.

For instance, SEMILINK contains an entry suggesting that (i) the predicate leave.01 is part of verb class 51.1-1 (a child of the class escape-15.1) (ii) the argument A0 of predicate leave.01 is mapped to role theme of verb class 51.1-1, and (iii) the argument A1 of predicate leave.01 is mapped to role initial location of class 51.1-1. These mappings are sufficient for devising a translation from information in the DRS in Figure 5 about event e2 into the respective part of the structure of the ALM system description present in Figure 2 (RHS). Thus an event of type leave.01 can be seen as an event of type escape-51.1 and in turn as an instance of action move, which is captured by escape in the basic motion verbnet module presented in Figure 1 (RHS). Note that this also implies that module basic motion verbnet should be imported into the theory of this constructed system description. Similarly, SEMILINK contains a mapping for predicate go.01 of PROPBANK to a respective class in VerbNet. Yet, argument A4 of go.01 and role destination in VerbNet is missing in this mapping. Thus, SEMILINK has to be augmented to accommodate the mapping from A4 to destination. Nevertheless, SEMILINK provides a solid foundation for the PROPBANK—VerbNet connection.

4 Conclusions and Future Work

We proposed a methodology for building a QA system that uses KRR techniques related to the representation of actions. We focused on answering questions that require the specification of knowledge about actions. We argued that annotating the verb lexicon VerbNet with such knowledge specifications in the KRR language of ALM will allow us to utilize a variety of NLP tools. We showed that the use of multiple NLP resources provides us with the means to extract information from an input discourse sufficient to “populate” a respective ALM system description and history that in turn can be used to draw nontrivial inferences about the discourse in question. In the immediate future, we will evaluate our method on a collection of texts from project bAbI (Weston et al., 2016; Facebook Research, 2016) containing motion and change of possession verbs. In a long term, we plan to expand the VerbNet annotations to include other types of English verbs.
References

