University of Nebraska at Omaha

From the SelectedWorks of Yuliya Lierler

2022

Historical Review of Variants of Informal

Semantics for Logic Programs under Answer Set
Semantics: GL'88, GL'91, GK’14, D-V’12

Yuliya Lierler

Available at: https://works.bepress.com/yuliya_lierler/117/

B bepress®

www.princexml.com
Prince - Non-commercial License
This document was created with Prince, a great way of getting web content onto paper.

http://www.unomaha.edu/
https://works.bepress.com/yuliya_lierler/
https://works.bepress.com/yuliya_lierler/117/

TPLP: Page 1-13. © The Author(s), 2021. Published by Cambridge University Press 2021 1
doi:10.1017/xxxxx

Historical Review of Variants of Informal Semantics for
Logic Programs under Answer Set Semantics:

GL’88, GL’91, GK’14, D-V’12

YULIYA LIERLER
University of Nebraska Omaha

Abstract

This note presents a historical survey of informal semantics that are associated with logic programming
under answer set semantics. We review these in uniform terms and align them with two paradigms: Answer
Set Programming and ASP-Prolog— two prominent Knowledge Representation and Reasoning Paradigms
in Artificial Intelligence.

1 Introduction

The transcript of the talk by Donald E. Knuth titled Let’s Not Dumb Down the History of Com-
puter Science published by ACM (2021) includes the statement:

... it would really be desirable if there were hundreds of papers on history written by computer scientists
about computer science.

This quote was inspirational for this technical note devoted to a historical survey of informal
semantics that are associated with logic programming under answer set semantics (in the sequel
we drop under answer set semantics when referring to logic programming and logic programs).

We focus on four seminal publications and align informal semantics discussed there using the
same style of presentation and propositional programs. We trust that within such settings key
ideas and tangible differences between the distinct views come to the surface best. The earliest
publication of the four dates to 1988, the latest dates to 2014. It would seem that the subject of
informal semantics is only peripheral scoring at such a low count of major references. Rather,
the word informal makes this subject rare in the discussions of logic programming. Nevertheless,
2014 reference is an introductory chapter titled Informal Semantics of the textbook on Knowl-
edge Representation, Reasoning, and Design of Intelligent Agents by Gelfond and Kahl. The
prominent position of this chapter points at the importance of the subject, especially when we
consider to pass on the knowledge and practice of logic programming to broad audience.

As the presentation unfolds, a story of two views on logic programs will emerge: one via the
prism of answer set programming (ASP) and another via the prism of ASP-Prolog. We reserve
the term — ASP — to constraints programming paradigm, where one while coding specifica-
tions of a considered problem also realizes the form of the solutions to this problem as answer
sets of the program. The term — ASP-Prolog — is used to denote a knowledge representation
language geared to model and capture domain knowledge with the underlying intelligent agent
in mind. One may utilize ASP-Prolog as a programming language, but may also simply use it for
describing specifications without thinking about a computational task or solving this task.

This presentation of the four surveyed publications almost follows their timeline starting with
the earliest work. In many places we present the original quotes from the discussed sources to
avoid misrepresentation of the originals.

2 Formal and informal semantics of basic programs by GL’88

We start by recalling the formal and informal semantics of basic logic programs as they were
introduced by Gelfond and Lifschitz (1988).
A basic rule is an expression of the form

A<+ By,...,B,,not Cy,...,not Cy, @))

where A, B;, and C; are propositional atoms. The atom A is the head of the rule and expression
Bi,...,B,,not Cy,...,not Cy, is its body. A basic (logic) program is a finite set of such rules. In
the sequel we introduce rules of somewhat different syntactic structure, yet we agree to call the
left hand side of the rule operator, denoted by <, head and the right hand side body.

For a rule r of the form (1) and a set X of atoms, the reduct X is defined whenever there is no
atom C; for j € {1,...,m} such that C; € X. If the reduct ¥ is defined, then it is the rule

A+ By,...,B,. (2)

The reduct PX of the program P consists of the rules 7 for all r € P, for which the reduct is
defined. A set X of atoms satisfies rule (2) if A belongs to X or there exists i € {1,...,n} such
that B; ¢ X. We say that a set X of atoms is a model of a program consisting of rules of the
form (2), when X satisfies all rules of this program. A set X is a stable modellanswer set of P,
denoted X = P, if it is a C-least model of PX.

Quotes by Gelfond and Lifschitz (1988) on Intuitive Meaning of Basic Programs (verbatim mod-
ulo names for programs and sets of atoms):

Quote 1: The intuitive meaning of stable sets can be described in the same way as the intuition behind
“stable extensions” in autoepistemic logic: they are “possible sets of beliefs that a rational agent might
hold” (Moore 1985) given P as his premises. If X is the set of (ground) atoms that I consider true, then any
rule that has a subgoal not C with C € X is, from my point of view, useless; furthermore, any subgoal not C
with C ¢ X is, from my point of view, trivial. Then I can simplify the premises P and replace them by PX.
If X happens to be precisely the set of atoms that logically follow from the simplified set of premises PX,
then I am “rational”.

Later, Gelfond and Lifschitz (1991) say about a basic program the following

Quote 2: A "well-behaved” program has exactly one stable model, and the answer that such a program is
supposed to return for a ground query A is yes or no, depending on whether A belong to the stable model or
not. (The existence of several stable models indicates that the program has several possible interpretations).

The historical roots of stable model semantics for logic programs as a formal tool for model
theoretic declarative semantics of Prolog are apparent in these quotes. The expectation is to
consider a well-behaved program with a single stable model. Yet, the authors acknowledge the
possibility of programs with several stable models that indicates that the program has several
possible interpretations or several possible sets of beliefs. In 1988 the distinction between pos-
sible interpretations and possible sets of beliefs was not apparent and the terms where used
synonymously. Yet, the former lent itself to ASP. The later inspired ASP-Prolog. We now review
these frameworks.

Answer Set Programming Marek and Truszczynski (1999) and Niemeld (1999) open a new era
for stable model semantics by proposing the use of logic programs as constraint programming
paradigm for modeling combinatorial search problems. This marks the birth of ASP. Here is what
the abstract of the paper by Marek and Truszczynski says:

We demonstrate that inherent features of stable model semantics naturally lead to a logic programming
system that offers an interesting alternative to more traditional logic programming. .. The proposed ap-
proach is based on the interpretation of program clauses as constraints. In this setting programs do not
describe a single intended model, but a family of stable models. These stable models encode solutions to
the constraint satisfaction problem described by the program. ... We argue that the resulting logic program-
ming system is well-attuned to problems in the class NP, has a well-defined domain of applications, and an
emerging methodology of programming.

Lifschitz (2002) coins a term generate-define-test for this emerging methodology that splits pro-
gram rules into three groups:
o the generate group is responsible for defining a large class of “’potential solutions”;
o the fest group is responsible for stating conditions to weed out potential solutions that do
not satisfy problem’s specifications; and
o the define group is responsible for defining concepts that are essential in stating the condi-
tions of generate and test.
In this work, ’the idea of ASP is to represent a given computational problem by a program whose
answer sets correspond to solutions, and then use an answer set solver to find a solution”. The
paper illustrates the use of ASP to solve a sample planing problem. Yet, there are no references
to how one would intuitively read, for example, an occurrence of atom A or expression not A in
rules. To the best of our knowledge Denecker et al. (2012) in addition to earlier reviewed quotes
in this section are the major two accounts for reconciling the use of ASP (not ASP-Prolog) in
practice and intuitive readings of answer sets and rules of programs. The previous to the last
section reviews an account by Denecker et al.

ASP-Prolog Interpreting answer sets as possible sets of beliefs implies the presence of an in-
telligent agent behind a program. This champions the view of a logic program as a knowledge
representation and reasoning formalism for the design of intelligent agents. This is largely a view
advocated in the textbook by Gelfond and Kahl (2014). Brief discussions by Gelfond and Lifs-
chitz (1991) and Section 2.2.1 of the mentioned textbook are major two accounts that speak of
the use of ASP-Prolog in practice and intuitive readings of answer sets and rules of programs.
The following two sections of this note are devote to these accounts.

“Formalizing” Quotes 1 and 2 We now attempt to make the claims of the first quote precise
with the allowance that programs with multiple answer sets that correspond to possible sets of
beliefs/possible interpretations are the first class citizens. In other words, each answer set rep-
resents a set of beliefs of a rational agent (or 7). In the sequel we drop the reference to “or I”
and use “an agent” in the discourse. This agent may have multiple sets of beliefs — each an-
swer set corresponds to a belief set. We denote this informal semantics as G », where .# stands
for intended interpretations of program’s propositional atoms. It is typical in the informal se-
mantics for classical logic expressions that each atom A has an intended interpretation, .# (A),
which is represented linguistically as a noun phrase about the application domain. The informal
semantics G » consists of three components
o the interpretation of structures — here, answer sets — denoted by 9%, and

Table 1. The Gelfond-Lifschitz (1988) informal semantics of answer sets — sets of atoms.

A set X of atoms A state 9% (X) of affairs
A € X for atom A J(A) is true in state G5, (X) of affairs
A ¢ X for atom A J(A) is false in state 9%()() of affairs

e the interpretation of syntactical expressions in a program, denoted by G,

o the interpretation of semantic relations such as satisfaction, denoted by 9;.
The first component determines a function from an answer set/a set of beliefs encoded by a set X
of atoms to belief states of an agent that have abstraction X (note, we cannot distinguish between
these belief states using abstraction X.) The second component determines the informal reading
of syntactical expressions in a program. The third component determines the informal reading of
satisfaction relation.

In the view of informal semantics G », an answer set serves a role of an abstraction of belief
states of some agent. Yet, we can also identify an answer set X with a possible state of affairs:
indeed, An agent in some belief state — represented by set X of atoms — considers the set of all
atoms in X to be the case (believes in them), whereas any atom A that does not belong to X is
believed to be false by the agent, i.e., is not the case. Thus, we may explain the meaning of a
program in terms of what atoms an agent with its knowledge of the application domain encoded
as the program believes as true and what atoms an agent believes as false. Generally, an agent in
some belief state considers certain states of affairs as possible and the others as impossible. For
basic programs, set X of atoms defines a unique state of affairs that agent regards as possible in a
belief state that X represents. Thus, we may identify any belief state captured by X with this state
of affairs. We denote this state of affairs under an intended interpretation .# as Si(X). Table 1
summarizes this abstraction function.

Example 1
Consider a set of beliefs encoded as a set

X = {student (mary),male(john)} 3)

of atoms under the obvious intended interpretation .# for the propositional atoms in X. This X
represents a state of affairs in which the agent considers that both statements Mary is a student
and John is a male are true. At the same time the agent considers any other statements, including
John is a student and Mary is a male, false. The 9Sj(X) component of informal semantics of
basic programs provides us with this understanding of our sample X .

Table 2 shows the Gelfond-Lifschitz (1988) informal semantics SHj] of syntactic elements of
programs. As it is clear from this table, under 9”{*], extended logic programs have both classical
and non-classical connectives. On the one hand, the comma operator is classical conjunction
and the rule operator <« is classical implication. On the other hand, the implicit composition
operator (constructing a program out of individual rules) is non-classical, because it performs a
closure operation (resulting in the implementation of closed-world assumption): the agent knows

Table 2. The Gelfond-Lifschitz (1988) informal semantics for basic logic program.

@ §5 (@)
1. propositional atom A J(A)
2. expression of the form not C it is not the case that .# (C)
3. expression of the form ®;,®, 9]];7(431) and 9]_1;, (P2)

if . (Body) then %, (Head)

4. rule Head < Bod
Y (in the sense of material implication)

5 P All the agent knows is:
. program —{rl,...,rn} 9]}‘%(}’1)&11(1 9%(”2) and...g%(m)

Table 3. The Gelfond-Lifschitz (1988) informal semantics for the satisfaction relation.

=, iy

XExP Given Sg(P), X could be a state of affairs inferred from this knowl-
edge so that any proposition in X is the case whereas any proposition
not in X is not the case

only what is explicitly stated. Table 3 presents the final component 9;” of the 9]}/;, informal
semantics.

3 Formal and informal semantics of extended programs by GL’91

Here, we recall the formal and informal semantics of extended logic programs by Gelfond and
Lifschitz (1991). An alternative view of the informal semantics for extended logic programs is
provided in (Gelfond and Kahl 2014, Section 2.2.1) reviewed next.

A literal is either an atom A or an expression —A, where A is an atom. An extended rule is an
expression of the form (1), where A, B;, and C; are propositional literals. An extended program
is a finite set of extended rules. Gelfond and Lifschitz (1991) also considered disjunctive rules of
the form Dy or ... or D; < By,...,B,,not Cy,...,not C,,, where D;, B;, and C; are propositional
literals. Yet, the discussion of such rules is outside of this note.

A consistent set of propositional literals is a set that does not contain both A and its complement
—A for any atom A. A believed literal set X is a consistent set of propositional literals. A believed
literal set X satisfies an extended rule r of the form (1) if A belongs to X or there exists an
i€ {l,...,n} such that B; X ora j € {1,...,m} such that C; € X. A believed literal set is a
model of a program P if it satisfies all rules in P. For a rule r of the form (1) and a believed
literal set X, the reduct ¥ is defined whenever there is no literal C; for j € {1,...,m} such that
C; € X. If the reduct X is defined, then it is the extended rule of the form (2). The reduct PX of

5

the program P consists of the rules X for all » € P, for which the reduct is defined. A believed
literal set X is an answer set of P, denoted X |=g P, if it is a C-least model of PX.

Quotes by Gelfond and Lifschitz (1991) on Intuitive Meaning of Extended Programs

Quote 3: For an extended program, we will define when a set X of ground /iterals qualifies as its answer
set. ...A “well-behaved” extended program has exactly one answer set, and this set is consistent. The
answer that the program is supposed to return to a ground query A is yes, no, or unknown, depending on
whether the answer set contains A, —A, or neither. The answer no corresponds to the presence of explicit
negative information in the program.

Consider, for instance, the extended program I1; consisting of just one rule:

—q < not p.

Intuitively, this rule means: “q is false, if there is no evidence that p is true.” We will see that the only
answer set of this program is {—¢}. The answers that the program should give to the queries p and g are,
respectively unknown and false.

As another example, compare two programs that don’t contain not:

opé, pg and p—, g p

... Thus our semantics is not “contrapositive” with respect to <— and —; it assigns different meanings to the
rules p <~ —¢q and g <— —p. The reason is that it interprets expressions like these as inference rules, rather
than conditionals.

This quote parallels Quote 2 about basic programs: the notion of well-behaved program resur-
faces. In comparison to basic programs, extended programs provide us with a new possibility to
answer queries against a program — namely, unknown. The following quote parallels Quote 1
about basic programs:

The answer sets of IT are, intuitively, possible sets of beliefs that a rational agent may hold on the basis of
information expressed by the rules of IT. If X is the set of (ground) literals that the agent believes to be true,
then any rule that has a subgoal not L with L € X will be of no use to him, and he will view any subgoal not
L with L ¢ X as trivial. Thus he will be able to replace the set of rules II by the simplified set of rules ITX.
If the answer set of [TX coincides with X, then the choice of X as the set of beliefs is “rational”.

The following quote states precise relationship between basic and extended programs:

Quote 4: the semantics of extended programs, applied to basic programs, turns into the stable model
semantics. But there is one essential difference: The absence of an atom A in a stable model of a general
program represents the fact that A is false; the absence of A and —A in an answer set of an extended program
is taken to mean that nothing is known about A.

In the section on Representing Knowledge Using Classical Negation, Gelfond and Lifs-
chitz (1991) say

The difference between not p and —p in a logic program is essential whenever we cannot assume that the
available positive information about p is complete, i.e., when the “closed world assumption” [Reiter, 1978]

is not applicable to p. The closed world assumption for a predicate p can be expressed in the language of
extended programs by the rule

—p <—not p

When this rule is included in the program, not p and —p can be used interchangeably in the bodies of other
rules. Otherwise, we use not p to express that p is not known to be true, and —p to express that p is false.

To summarize, Gelfond and Lifschitz describe an informal semantics for extended programs
based on epistemic notions of default and autoepistemic reasoning. We now present the infor-

Table 4. The Gelfond-Lifschitz (1991) informal semantics of answer sets — sets of literals.

A believed literal set X A belief state B € 95% (X) that has abstraction X

B has the belief that .#(A) is true; i.e.,

A € X for atom A #(A) is true in all states of affairs possible in B

B has the belief that .#(A) is false; i.e.,

—AeXf A . . . S
€4 foratom J(A) is false in all states of affairs possible in B

B does not have the belief that .# (A) is true; i.e.,

AEX f A . . - L
% X for atom # (A) is false in some state of affairs possible in B

B does not have the belief that .#(A) is false; i.e.,

~A ¢ X foratom A #(A) is true in some state of affairs possible in B

mal semantics §L » for extended programs just as we presented G » for basic programs. This
presentation at times (in particular, Example 2) follows the lines by Denecker et al. (2019).

We begin by discussing a crucial difference between G » and G£ . Informal semantics G£ »
views a believed literal set X as an abstraction of a belief state of some agent; G, views a
set X of atoms as an abstraction of a state of affairs. The change from “sets of atoms” to “sets of
literals” is crucial. Recall how an agent in some belief state considers certain states of affairs as
possible and the others as impossible. Within G », set X of atoms ends up to represent a unique
possible state of affairs associated with a belief state so that we may identify these two concepts.
Yet, believed literal set X is the set of all literals L that the agent believes in, that is, those that
are true in all states of affairs that agent regards as possible. Importantly, it is not the case that a
literal L that does not belong to X is believed to be false by the agent. Rather, it is not believed
by the agent or as stated in Quote 4 nothing is known about L to the agent. Denecker et al. (2019)
takes the following interpretation of a statement literal L is not believed by an agent/nothing is
known about L: literal L is false in some states of affairs the agent holds possible, and L must be
true in at least one of the agent’s possible states of affairs (unless the agent believes the comple-
ment of L). This note adopts such an interpretation. We denote the class of informal belief states
that are abstracted to a given formal believed literal set X under an intended interpretation .# as
GL5,(X). Table 4 summarizes this abstraction function.

Example 2
We may view this example as a continuation of Example 1. Here we consider what would seem
the same belief set but change the perspective on it from the point of view of informal seman-
tics of basic programs to that of extended programs. Consider believed literal set (3) under the
obvious intended interpretation .# for the elements in X. This X is the abstraction of any belief
state in which the agent believes that Mary is a student and John is a male, and nothing is known
about such statements as John is a student or Mary is a male. One such belief state is the state
By in which the agent considers the following states of affairs as possible:

1. John is the only male in the domain of discourse; Mary is the only student.

2. John and Mary are both male students.

3. John and Mary are both male; Mary is the only student.

Table 5. The Gelfond-Lifschitz (1991) informal semantics for some expressions in extended

programs.
L
@ L5 (®)
propositional literal =A it is not the case that .#(A)
expression of the form not C the agent does not know that SL]};(C)

Table 6. The Gelfond-Lifschitz (1991) informal semantics for the satisfaction relation.

= sch

Xy P Given SLH“j(P), X could be the set of literals the agent believes

4. John is the only male; John and Mary are both students

Another belief state corresponding to X is the state B; in which the agent considers the states
of affairs 2-4 of By as possible. Indeed, for each of these belief states, it holds that Mary is a
student and John is a male in all possible states of affairs of that belief state. Thus, each of the
literals in X is believed in each of the belief states By and B;. On the other hand, John is a student
precisely in the state of affairs 2 and 4; Mary is a male in the states of affairs 2 and 3. Hence,
literals —student(john) and —male(mary) are not believed in either of the two belief states By
and B;.

The component SLF} captures the informal readings of the connectives of the Gelfond-
Lifschitz (1991) informal semantics of extended programs. We summarize it by (i) the entries
in rows 1, 3-5 of Table 2, where we replace 9% by SLF‘, , and (ii) the entries in Table 5. The
definition of 961}; suggests that of the two negation operators, symbol — is classical negation,
whereas not is a non-classical negation. It is commonly called default negation. The component
SLL’;" explains what it means for a believed literal set X to be an answer set/stable model of an
extended program. Table 6 presents its definition.

Provided account of informal semantics of extended logic programs echos the interpretation
of an extended program as a possible “set of beliefs” and can be seen as an informal semantics
for the syntactic constructs that are fundamental in ASP-Prolog.

4 Informal semantics of extended logic programs by GK’14

Gelfond and Kahl (2014) consider a language of extended logic programs with addition of (i)
disjunctive rules and (ii) rules called constraints that have the form

< Bi,...,B,,not Ci,...,not Gy,)

where B;, and C; are propositional literals (empty head can be identified with L). It is due to
note that constraints are the first class citizens in the use of ASP since a while. In particular, they
are the kinds of rules that populate the fest group of generate-define-test programs mentioned
earlier. We come back to this point in the next section. To generalize the concept of an answer set
to extended programs with constraints it is sufficient to provide a definition of rule satisfaction
when the head of the rule is empty: A believed literal set X satisfies a rule of the form (1), where
A is empty if there exists an i € {1,...,n} such that B; X ora j € {1,...,m} such that C; € X.
As before, we omit presenting definitions for programs with disjunctive rules.

Quote by Gelfond and Kahl (2014) on Intuitive Meaning of Extended Programs with Constraints

Informally, program IT can be viewed as a specification for answer sets —- sets of beliefs that could be
held by a rational reasoner associated with I1. Answer sets are represented by collections of ground literals.
In forming such sets the reasoner must be guided by the following informal principles:

1. Satisfy the rules of I1. In other words, believe in the head of a rule if you believe in its body.
2. Do not believe in contradictions.
3. Adhere to the “Rationality Principle” that says, “Believe nothing you are not forced to believe.”
Let’s look at some examples. ...
Example 2.2.1.
p(b) < g(a). “Believe p(b) if you believe g(a)”
q(a). “Believe g(a)”
Note that the second rule is a fact. Its body is empty. Clearly any set of literals satisfies an empty collection,
and hence, according to our first principle, we must believe g(a). The same principle applied to the first
rule forces us to believe p(b). The resulting set S1 = {g(a), p(b)} is consistent and satisfies the rules of the
program. Moreover, we had to believe in each of its elements. Therefore, it is an answer set of our program.
Now consider set S2 = {g(a), p(b),q(b)}. It is consistent, satisfies the rules of the program, but contains
the literal ¢(b), which we were not forced to believe in by our rules. Therefore, S2 is not an answer set of
the program. ...

Example 2.2.2. (Classical Negation)

—p(b) <~ —g(a). “Believe that p(b) is false if you believe g(a) is false”
—q(a). “Believe that g(a) is false”

There is no difference in reasoning about negative literals. In this case, the only answer set of the program
is {~p(b), ~q(@)}. ...

Example 2.2.4. (Constraints)

p(a) or p(b). “Believe p(a) or believe p(b)”
+ p(a). “It is impossible to believe p(a)”

The first rule forces us to believe p(a) or to believe p(b). The second rule is a constraint that prohibits
the reasoner’s belief in p(a). Therefore, the first possibility is eliminated, which leaves {p(b)} as the only
answer set of the program. In this example you can see that the constraint limits the sets of beliefs an agent
can have, but does not serve to derive any new information. Later we show that this is always the case. ...

Example 2.2.5. (Default Negation) Sometimes agents can make conclusions based on the absence of infor-
mation. For example, an agent might assume that with the absence of evidence to the contrary, a class has
not been canceled. ... Such reasoning is captured by default negation. Here are two examples.

p(a) < not g(a). “If g(a) does not belong to your set of beliefs
then p(a) must”

No rule of the program has g(a) in its head, and hence, nothing forces the reasoner, which uses the program
as its knowledge base, to believe g(a). So, by the rationality principle, he does not. To satisfy the only rule
of the program, the reasoner must believe p(a); thus, {p(a)} is the only answer set of the program. ...

Table 7. The Gelfond-Kahl (2014) informal semantics for extended programs with constraints

o 5 (@)
propositional atom A believe .7 (A)
propositional literal —A believe that .7 (A) is false
expression of the form not C the agent is not made to §X' (C)
expression of the form @y, P, 93{{} (®y) and 95{]}} (P7)
constraint < Body it is impossible to 9?(1(1‘% (Body)
rule Head + Body if SX (Body) then SXY, (Head)

(in the sense of material implication)

All the agent believes is:

P={r,...
program P = {ry,..., 7} 5K (r1) and GK% (r2) and ... GKY (1)

We now state the informal semantics hinted by the quoted examples in unifying terms of this
paper. We denote it by §K » and detail its three components 99(%, 996],]1, and 99(;. To begin
with GX%, coincide with G£5;.

Tables 7 presents 99@,1}. In this presentation we take the liberty to identify an expression
(proposition) p does not belong to your set of beliefs used in the examples of the quote listed
last with expression the agent is not made to believe (proposition) p. We summarize 99(; by

the entries in Table 6, where we replace SL; by Sf}{;.

5 Informal semantics of GDT theories by D-V’12

As discussed earlier Lifschitz (2002) coined a term generate-define-test for the commonly used
methodology when applying ASP towards solving difficult combinatorial search problems. Un-
der this methodology a program typically consists of three parts: the generate, define, and test
groups of rules.

The role of generate is to generate the search space. In modern dialects of ASP choice rules
of the form

{A} < By,...,By,not Cy,...,not Cp, 5)

are typically used within this part of the program. Symbols A, B;, and C; in (5) are propositional
atoms. The define part consists of basic rules (1). This part defines concepts required to state nec-
essary conditions in the generate and test parts of the program. The fest part is usually modeled
by constraints of the form (4), where B;, and C; are propositional atoms.

Denecker et al. (2012) defined the logic ASP-FO, where they took the generate, define, and
test parts to be the first class citizens of the formalism. In particular, the ASP-FO language
consists of three kinds of expressions G-modules, D-modules, and T-modules. The authors then
present formal and informal semantics of the formalism that can be used in practicing ASP.

10

Here we simplify the language ASP-FO by focusing on its propositional counterpart. We call
this language GDT. Focusing on propositional case of ASP-FO helps us in highlighting the key
contribution by Denecker et al. (2012) — the development of objective informal semantics for
logic programs used within ASP or generate-define-test approach.

A G-module is a set of choice rules with the same atom in the head; this atom is called open.
A D-module is a basic logic program whose atoms appearing in the heads of the rules are called
defined or output. A T-module is a constraint. A GDT theory is a set of G-modules, D-modules,
and T-modules so that no G-modules or D-modules coincide on open or defined atoms. To define
the semantics for GDT theory we introduce several auxiliary concepts including that of an input
answer set Lierler and Truszczynski (2011) and G-completion. For a basic program P, we call a
set X of atoms an inpur answer set of P if X is an answer set of a program PU (X \ Heads(P)),
where Heads(P) denote the set of atoms that occur in the heads of the rules in P.

Rules occurring in modules of GDT theory are such that their bodies have the form

By,...,B,,not Cy,...,not Cy,. (6)
Given Body of the form (6) by Body! we denoted a classical formula of the form
BiA---ABy,A—Cy A\ A=Cy,.

For a G-module G of the form {{A} - Body,...,{A} + Body,} by G-completion, Gcomp(G)
we denote the classical formula A — Body‘l'l V- -Bodyﬁ;l .
For a GDT theory P composed of G-modules Gy, ...,G;, D-modules Dy,...,D;, T-modules
< Bodyy,...,+ Body, we say that set X of atoms is an answer set of P, denoted X =g P, if
e X satisfies formulas Gecomp(G), ..., Geomp(G;) (we associate a set X of atoms with an
interpretation of classical logic that maps propositional atoms in X to truth value true and
propositional atoms outside of X to truth value false; we then understand the concept of
satisfaction in usual terms of classical logic.);
e X is an input answer set of D-modules D; ... D;; and
e X satisfies formulas BodyS' — L, ..., Body{' — L.
We refer the reader to Denecker et al. (2019) to the discussion of Splitting Theorem results that
often allows us to identify ASP logic programs with GDT theories.
We now provide the informal semantics for GDT theory P by Denecker et al. (2012; 2019).
We denote it by DV , and detail its three components DV, DV%, and DV;. To begin with
®V§ coincide with 9%. We summarize DVH;, by (i) the entries in rows 1-3 of Table 2, where we

replace 9]1} by DV, and (ii) the entries in Table 8. Table 9 presents @\7;. Note how an entry
in the right column of Table 9 gives us clues on how to simplify the parallel entry in the right
column of Table 3. We can rewrite it as follows: For basic program P, property S]_]}(P) holds in
the state 55, (X) of affairs.

Provided account of informal semantics of GDT theories echos the interpretation of answer
set of a basic program as a possible “interpretation” and can be seen as an informal semantics for
the syntactic constructs that are fundamental in ASP practice nowadays.

6 Conclusions and Acknowledgments

In this note we reviewed four papers and their accounts on informal semantics of logic programs
under answer set semantics. We put these accounts into a uniform perspective by focusing on
three components of each of the considered informal semantics, namely, (i) the interpretation of

11

Table 8. The Denecker et al. (2012) informal semantics for some expressions in GDT theories.

@ DV (@)

T-theory/constraint <— Body it is impossible that fDVH;,(Body)

. L
G-module G of the form if DV 5 (A) then

L L
{{A} < Body,...,{A} « Body,} DV, (Bodyy) or ... DV (Bodyy)
(in the sense of material implication)

if DV (Body) then DV, (Head)

rule Head < Body in a D-module] - A
(in the sense of definitional implication)

D-module {ry,...,r,} with All that is known about A is:
defined atom A DV]_I}(’I) and DV]Ij("z) and ... DVH}(M)
GDT theory P = {Mj, ..., My} DV (M) and ... DVY (M,)

Table 9. The Denecker et al. (2012)informal semantics for the satisfaction relation.

':“ D v;sz

X |=y GDT theory P Property DV, (P) holds in the state DVS] (X) of affairs.

answer sets; (ii) the interpretation of syntactic expressions; and (iii) the interpretation of semantic
relation satisfaction. We also discussed the relations of the presented informal semantics to two
programming paradigms that emerged in the field of logic programming after the inception of
the concept of a stable model: ASP and ASP-Prolog.

We would like to thank Michael Gelfond, Marc Denecker, Jorge Fandinno, Vladimir Lifschitz,
Miroslaw Truszczynski, Joost Vennekens for fruitful discussions on the topic of this note. Marc
Denecker brought my attention to the subject of informal semantics and his enthusiasm on the
questions pertaining this subject was contagious.

The author was partially supported by NSF 1707371.

References

DENECKER, M., LIERLER, Y., TRUSZCZYNSKI, M., AND VENNEKENS, J. A Tarskian informal semantics
for answer set programming. In Technical Communications of the 28th International Conference on Logic
Programming (ICLP) 2012, pp. 277-289.

DENECKER, M., LIERLER, Y., TRUSZCZYNSKI, M., AND VENNEKENS, J. 2019. The informal semantics
of answer set programming: A tarskian perspective. CoRR, abs/1901.09125.

GELFOND, M. AND KAHL, Y. 2014. Knowledge representation, reasoning, and the design of intelligent
agents. Cambridge University Press.

GELFOND, M. AND LIFSCHITZ, V. The stable model semantics for logic programming. In KOWALSKI, R.

12

AND BOWEN, K., editors, Proceedings of International Logic Programming Conference and Symposium
1988, pp. 1070-1080, Cambridge, MA. MIT Press.

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases.
New Generation Computing, 9, 365-385.

KNUTH, D. E. AND SHUSTEK, L. 2021. Let’s not dumb down the history of computer science. Commun.
ACM, 64,2, 33-35.

LIERLER, Y. AND TRUSZCZYNSKI, M. 2011. Transition systems for model generators — a unifying ap-
proach. Theory and Practice of Logic Programming, 27th Int’l. Conference on logic Programming (ICLP)
Special Issue, 11, 4-5, 629-646.

LIFSCHITZ, V. 2002. Answer set programming and plan generation. Artificial Intelligence, 138, 39-54.

MAREK, V. AND TRUSZCZYNSKI, M. Stable models and an alternative logic programming paradigm.
In APT, K., MAREK, V., TRUSZCZYNSKI, M., AND WARREN, D., editors, The Logic Programming
Paradigm: a 25-Year Perspective 1999, pp. 375-398. Springer, Berlin.

MOORE, R. C. 1985. Semantical considerations on nonmonotonic logic. Artificial Intelligence, 25, 1, 75—
94.

NIEMELA, 1. 1999. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence, 25, 241-273.

13

	University of Nebraska at Omaha
	From the SelectedWorks of Yuliya Lierler
	2022

	Historical Review of Variants of Informal Semantics for Logic Programs under Answer Set Semantics: GL’88, GL’91, GK’14, D-V’12
	tmpmun8oH.pdf

