
A Modular Methodology for Proving Correctness in Answer Set Programming

Pedro Cabalar
University of Corunna, Spain

Jorge Fandinno
University of Potsdam, Germany

Yuliya Lierler
University of Nebraska at Omaha, USA

Abstract
We propose a methodology for proving correctness of first-
order logic programs under the answer set semantics. This
methodology builds on previous work on modular logic pro-
grams and allows us to study claims about a program by com-
bining smaller claims about its parts or subprograms. In this
way, the proof of correctness is guided by the intuitive struc-
ture of the program.

Introduction
In answer set programming (ASP), combinatorial search
problems are solved by writing logic programs whose an-
swer sets correspond to their solutions. Lifschitz (2002)
coined a term generate-define-test to describe a methodol-
ogy for writing an ASP program. It consists of arranging
program rules in three groups: one to generate the search
space, one to define auxiliary concepts, and one to test (im-
pose) constraints. Erdoğan and Lifschitz (2004) studied how
an ASP practitioner may formally prove that the answer sets
of a program following this methodology actually corre-
spond to the solutions of the problem one wants to solve.

In this work, we elaborate on these findings and develop a
methodology for proving correctness of first-order ASP pro-
grams. Our approach lifts the results by Erdoğan and Lif-
schitz in two ways. First, we consider first-order programs
bypassing grounding. Second, modular programs (Harrison
and Lierler 2016) are taken into account. This permits divid-
ing the program in submodules and state the meaning of each
of them in separation. This not only reflects the generate-
define-test parts of a program, but also permits introducing
more fine grained structure. Intuitive groupings of rules cap-
ture properties about the problem at hand. The formal mean-
ing of the whole program is thus obtained as the sum of its
parts. These two characteristics permit the study of formal
claims about logic programs, while staying closer to the in-
tuitions behind them: programs are written using first-order
variables and have an intuitive structure.

This builds a mature foundation for carrying out argu-
ments about correctness of logic programs that we illustrate
using the Hamiltonian Cycle problem as a running example.

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Preliminaries
Consider the Hamiltonian cycle problem on a directed
graph. This problem is often used to introduce ASP. A
Hamiltonian cycle is a subset of the set of edges in a graph
that forms a cycle going through each vertex exactly once.
A sample logic program to tackle this problem follows:

edge(a,a′). . . . edge(c,c′). (1)
vertex(X)← edge(X ,Y). (2)
vertex(X)← edge(Y,X). (3)
{in(X ,Y)}← edge(X ,Y). (4)
← in(X ,Y), in(X ,Z),Y 6= Z. (5)
← in(X ,Z), in(Y,Z),X 6= Y. (6)
r(X ,Y)← in(X ,Y). (7)
r(X ,Y)← r(X ,Z),r(Z,Y). (8)
← not r(X ,Y)∧ vertex(X)∧ vertex(Y). (9)

Each answer set of this program corresponds to a Hamilto-
nian cycle of the given graph, specified by facts (1), so that
the predicate in encodes these cycles: an atom in(a,b) ap-
pears in an answer set if and only if the edge between a and b
is part of the corresponding Hamiltonian cycle. Harrison and
Lierler (2016) study a closely related program. They illus-
trate how one can view such a monolithic program as a set
of modules, and then use the SM operator introduced by Fer-
raris et al. (2011), along with a judicious choice of “inten-
sional” and “extensional” predicates to achieve an accurate
correspondence between the intuitive reading of the groups
of rules and their model-theoretic semantics. We adopt this
modular decomposition here and elaborate on how this al-
lows us to argue the correctness of the encoding in a stream-
lined fashion. The following account of preliminaries to a
great extent follows the lines of (Harrison and Lierler 2017).
Operator SM The SM operator was introduced by Ferraris
et al. (2011). The semantics of logic programs as defined by
SM distinguishes between “extensional” and “intensional”
predicates. Intuitively, “extensional” predicates correspond
to the input of the program, or module, and “intensional”
predicates correspond to output or auxiliary concepts. The
SM operator defines stable models (Gelfond and Lifschitz
1988) as models of a second-order formula. The result of

applying the SM operator to a first-order (FO) sentence F
(rather than to a logic program) with intensional predicates
p is the second-order formula SMp[F]

df
= F ∧ ¬∃u

(
(u <

p)∧F∗(u)
)
. Abbreviation u < p is a FO formula assert-

ing that the extent of each predicate in u is a subset of the
one in p, being strict for some predicate. Transformation
F∗(u) is homogeneously applied on all subformulas except:
(p(t))∗ df

= u(t) for predicates p ∈ p and (F → G)∗
df
= (F∗→

G∗)∧ (F → G). A logic program can be identified with a
FO sentence F . For example, we understand the program
(1)-(9) as an abbreviation for the conjunction of the FO for-
mulas constructed in straightforward manner (see Harrison
and Lierler 2016 for more details). For instance, rules (3-5)
have the form

∀xy(edge(y,x)→ vertex(x))
∀xy((¬¬in(x,y)∧ edge(x,y))→ in(x,y))
∀xyz((in(x,y)∧ in(x,z)∧¬(y = z))→⊥)

where x,y,z are variables. The answer sets of any program P
that contains at least one object constant coincide with Her-
brand models of SMp[F], where p is the list of all predicates
occurring in P and F the FO formula corresponding to P. In
the following, we assume that programs always contain at
least one object constant. Thus, we call the Herbrand mod-
els of SMp[F], its p-answer sets.
Modular Logic Programs A FO modular logic program
is a collection of logic programs, where the SM operator is
used to define models of each individual logic program in
the collection. We call a formula of the form SMp[F], where
p is a tuple of predicate symbols and F is a FO formula,
a defining module (of p in F) or just a def-module. A FO
modular logic program (or, modular program) P is a finite
set of def-modules

{ SMp1 [F1], . . . ,SMpn [Fn] }.

By σ(P) we denote the set of all function and predicate sym-
bols occurring in a modular program P, also called the sig-
nature of P. An answer set of a modular program P is any
Herbrand interpretation over σ(P) that is a model of the con-
junction of all def-modules in P. In the sequel, we only con-
sider Herbrand interpretations and drop word Herbrand.

The modular program Phc captures the encoding (1-9) of
the Hamiltonian cycle and consists of six def-modules:

SMedge[edge(a,a′)∧ . . . ∧ edge(c,c′)] (10)
SMvertex[∀xy(edge(x,y)→ vertex(x))∧

∀xy(edge(y,x)→ vertex(x))]
(11)

SMin[∀xy((¬¬in(x,y)∧ edge(x,y))→ in(x,y))] (12)
SM[∀xyz((in(x,y)∧ in(x,z)∧¬(y = z))→⊥)∧
∀xyz((in(x,z)∧ in(y,z)∧¬(x = y))→⊥)] (13)

SMr[∀xy(in(x,y)→ r(x,y))∧
∀xyz((r(x,z)∧ r(z,y))→ r(x,y))]

(14)

SM[∀xy((¬r(x,y)∧ vertex(x)∧ vertex(y))→⊥)] (15)

Their informal meaning (we will formally verify later on) is
captured by the following respective Statements:

1. An edge-answer set of def-module (10) is any interpreta-
tion I over σ(Phc), where the extension of the edge pred-
icate in I corresponds to the facts in (1) (which encode a
given graph). The extension of a predicate in an interpre-
tation is the set of tuples that satisfy the predicate in that
interpretation.

2. A vertex-answer set of def-module (11) is any interpreta-
tion I over σ(Phc), where the extension of the vertex pred-
icate in I correspond to exactly the objects that occur in
edge relation.

3. An in-answer set of def-module (12) is any interpreta-
tion I over σ(Phc), where extension of the predicate in
is a subset of the extension of the predicate edge in I.

4. An /0-answer set of def-module (13) is any interpretation I
over σ(Phc) that satisfies the conjunction in (13).

5. An r-answer set of def-module (14) is any interpretation I
over σ(Phc), where the extension of predicate r is transi-
tive closure of the relation constructed from the extension
of predicate in.

6. An /0-answer set of def-module (15) is any interpretation I
over σ(Phc) that satisfies the implication in (15).

Any interpretation over σ(Phc) that satisfies the conditions
imposed by every module above is an answer set of Phc. The
answer sets of traditional program (1-9) and modular pro-
gram Phc coincide. Based on results from Harrison and Lier-
ler (2016) this is not by accident. Indeed, the Hamiltonian
cycle program Phc is what they call “coherent” and, thus, the
answer set of Phc coincide with these of (1-9).

Formalising the meanings of def-modules
Arguably, when ASP practitioners develop their applica-
tions, they associate meaning with components of their pro-
grams. We believe that modular programs as introduced here
provide us with a suitable framework, not only for under-
standing the intuitive meaning of these components, but also
to prove the correctness of claims made about these intu-
itions. In this section, we review a series of results that are
useful in proving such correctness. We illustrate their use-
fulness on our running example.
Strong equivalence and denials Traditional programs P1
and P2 are strongly equivalent if for every traditional pro-
gram P, programs P1 ∪P and P2 ∪P have the same answer
sets (Lifschitz, Pearce, and Valverde 2001). More in gen-
eral, FO formulas F and G are strongly equivalent if for any
formula H, any occurrence of F in H, and any list p of dis-
tinct predicate constants, SMp[H] is equivalent to SMp[H ′],
where H ′ is obtained from H by replacing F by G. Lifschitz,
Pearce, and Valverde (2007) show that FO formulas F and G
are strongly equivalent if they are equivalent in SQHT=

logic – a FO intermediate logic (Pearce and Valverde 2008)
between classical and intuitionistic logics.

A formula of the form ∀̃(Body→⊥) is intuitionistically
equivalent to formula ¬∃̃Body. We call formulas of both of
these forms denials and identify the former with the latter.
Theorem 1 (Theorem 3; Ferraris, Lee, and Lifschitz 2011).
For any FO formulas F and G and arbitrary tuple p of pred-
icate constants, SMp[F∧¬G] is equivalent to SMp[F]∧¬G.

2

This theorem states that denials can be safely moved out-
side a def-module and checked afterwards. Now, the claims
in Statement 4 and 6 immediately follow from Theorem 1.
Tightness and completion Although SM is defined on ar-
bitrary formulas, we focus now on the traditional syntax of
logic program rules, that is, FO sentences of the form

∀̃(ak+1∧·· ·∧al ∧¬al+1∧·· ·∧¬am∧
¬¬am+1∧·· ·∧¬¬an→ a1∨·· ·∨ak),

(16)

where the symbol ∀̃ denotes universal closure. Note how all
the formulas in our running example are in this form. We call
the disjunction in the consequent of a rule (16) its head, and
the conjunction in the antecedent its body. The conjunction
ak+1 ∧ ·· · ∧ al constitutes the positive part of the body. A
modular program is called simple if for every def-module
SMp[F], every predicate symbol p occurring in the head of
a rule in F occurs also in the tuple p. For instance, Phc is a
simple modular program.

The dependency graph (Ferraris et al. 2009) of a simple
modular program P, denoted DG[P], is a directed graph that
• has all intensional predicates in P as vertices, and
• has an edge from p to q if there is SMp[F] ∈ P containing

a rule with p occurring in the head and q occurring in the
positive part of the body.

We say that def-module SMp[F] is tight if its dependency
graph is acyclic. For example, all def-modules in program
Phc but (14) are tight.

A FO formula F is in Clark normal form (Ferraris, Lee,
and Lifschitz 2011) relative to the tuple/set p of predicate
symbols if it is a conjunction of formulas of the form

∀~x(G→ p(~x)) (17)

one for each predicate p ∈ p, where ~x is a tuple of distinct
object variables. We refer the reader to Section 6.1 in (Fer-
raris, Lee, and Lifschitz 2011) for the description of the in-
tuitionistically equivalent transformations that can convert a
FO formula that is a conjunction of formulas of the form (16)
into Clark normal form. Here, we illustrate results of these
conversion steps on formulas stemming from the program
Phc. For instance, converting formula

edge(a,a′)∧ . . . ∧ edge(c,c′) (18)

into Clark normal form results in the intuitionistically equiv-
alent formula

∀xy((x=a∧y=a′)∨···∨(x=c∧y=c′))→edge(x,y)) (19)

Similarly, the conjunction within def-module (11) is intu-
itionistically equivalent to the formula

∀z(Fedge(z)→ vertex(z)), (20)

where Fedge(z) follows

∃xy(edge(x,y)∧ z = x)∨∃xy(edge(y,x)∧ z = x).

The FO formula within def-module (12) is in Clark normal
form. The conjunction within def-module (14) results in the
intuitionistically equivalent formula in Clark normal form

∀uv(Fr(u,v)→ r(u,v),

where Fr(u,v) follows

∃xy(in(x,y)∧u = x∧ v = y) ∨
∃xyz(r(x,z)∧ r(z,y)∧u = x∧ v = y).

The completion of a formula F in Clark normal form rel-
ative to predicate symbols p, denoted by COMPp[F], is ob-
tained from F by replacing each conjunctive term of the
form (17) by

∀~x(G↔ p(~x)).

For instance, the completion of (19) is

∀xy((x=a∧y=a′)∨···∨(x=c∧y=c′))↔edge(x,y)), (21)

while the completion of formula (20) is

∀z(Fedge(z)↔ vertex(z)). (22)

The following theorem follows immediately from Theo-
rem 11 by Ferraris et al. (2009).

Theorem 2. Let SMp[F] a tight def-module. Then, SMp[F]
and COMP[F] are equivalent in second-order logic.

Since formulas (18) and (19) are strongly equivalent, it
follows that def-modules (10) and SMedge[(19)] are equiva-
lent. Similarly, def-module (11) is equivalent to def-module
SMvertex[(20)]. Thus, by Theorem 2, formulas (10) and (11)
are equivalent to formulas (21) and (22), respectively. These
facts suffice to support the claims of Statements 1 and 2.

By Theorem 2 formula (12) is equivalent to FO formula

∀xy((¬¬in(x,y)∧ edge(x,y))↔ in(x,y)),

which, in turn, is equivalent to formula

∀xy(in(x,y)→ edge(x,y)).

It is easy to see now that the claim of Statement 3 holds.
The following proposition follows immediately from The-

orem 2 and generalizes the last claim.

Proposition 1. Formulas

SMp[∀~x(¬¬p(~x)∧G→ p(~x))] and ∀~x(p(~x)→ G)

are equivalent when the left one is a tight def-module.

Circumscription and transitive closure The circumscrip-
tion operator with the minimized predicates p of a FO for-
mula F is denoted by CIRCp[F] (Ferraris, Lee, and Lif-
schitz 2011). The models of CIRCp[F] are the models of F
where the extension of the predicates in p is minimal given
the interpretation of remaining predicates is fixed. Interest-
ingly, if F is a conjunction of rules of (16) without negation,
then SMp[F] and CIRCp[F] are equivalent. The next result
directly follows from this observation and proves that the
claim of Statement 5 holds.

Theorem 3. Any q-answer set of the def-module of the form

SMq[∀̃(p(x,y)→ q(x,y))∧∀̃(q(x,z)∧q(z,y)→ q(x,y))]

(where p and q are predicate symbols) is such that the ex-
tension of predicate q is the transitive closure of the relation
constructed from the extension of predicate p.

3

We can construct a similar proof also for the following
statement:

Theorem 4. Any q-answer set of the def-module of the form

SMq[∀̃(p(x,y)→ q(x,y))∧∀̃(q(x,z)∧ p(z,y)→ q(x,y))]

(where p and q are predicate symbols) is such that the ex-
tension of predicate q is the transitive closure of the relation
constructed from the extension of predicate p.

Thus, def-module (14) is equivalent to def-module:

SMr[∀̃(in(x,y)→ r(x,y))∧∀̃((r(x,z)∧ in(z,y))→ r(x,y))]

Brewka, Niemelä, and Truszczynski (2011) utilize this last
encoding of transitive closure in their formulation of the
Hamiltonian cycle problem.

Proving Correctness for the Hamiltonian
Cycle Problem Encoding

So far, we illustrated that each one of the Statements 1–6
hold about the Hamiltonian cycle modular program Phc. Let
us now put those claims together to prove that the whole
encoding is, indeed, correct. In other words, that the answer
sets of Phc correspond to the Hamiltonian Cycles of a given
graph encoded by the def-module (10).

In the sequel, we identify the expressions in(a,b) and
edge(a,b) with an edge (a,b) of a given graph. Also, given
an edge (a,b), by (a,b)i, (a,b)e, and (a,b)r we refer to
atoms in(a,b), edge(a,b), and r(a,b), respectively. We also
use this notation on the sets of edges so that, for instance,

{(a,b),(c,d)}e = {edge(a,b),edge(c,d)}.

Similarly, for a set {a,b,c, . . .} of vertices by {a,b,c, . . .}v

we denote the set {vertex(a),vertex(b),vertex(c), . . .} of
atoms. As customary, we identify Herbrand interpretations
with sets of ground atoms. For interpretation I and a set σ

of predicate symbols, by I|σ we denote the interpretation
over σ such that for every predicate symbol p in σ , the ex-
tension of p in I coincides with that in I|σ .

Recall that we consider graphs without isolated vertices
so that a graph can be identified with the set of its edges.
Let the set E of edges be a graph. A cycle in graph E is any
subset H of E such that we can arrange the elements of this
subset in a sequence of the form

(v1,v2),(v2,v3),(v3,v4), . . . ,(vn,v1). (23)

A Hamiltonian cycle of graph E is any subset H of E so that

(a) the vertices of H form the set of vertices of graph E and

(b) set H forms a cycle (23) in E so that v1 . . .vn are pairwise
distinct if n > 1.

Theorem of correctness. For a graph E encoded by
def-module (10) of modular program Phc and a set H ⊆ E of
edges, H is a Hamiltonian cycle in G if and only if H = I|in,
where I is an answer set of Phc. Furthermore, if H = I|in and
H = I′|in, where I and I′ are answer sets of Phc then I = I′.

Proof. Left-to-right: Take H to be a Hamiltonian cycle in E.
Let V be the set of vertices in E and R the transitive closure
of edges on H. By I we denote an Herbrand interpretation
constructed from H as follows

H i∪Ee∪V v∪Rr.

We now show that I is an answer set of Phc. It is sufficient
to show that conditions of Statements 1- 6 are satisfied by I.
Conditions of Statements 1, 2, 3, and 5 are trivially satisfied
by the construction of I.

Statement 4 is satisfied by the fact that H i is constructed
from H on which condition (b) of the definition of a Hamil-
tonian cycle. It is easy to see that the transitive closure of a
Hamiltonian cycle of some graph is a complete digraph with
the vertices of the given graph. Consequently, Statement 6
holds.

Right-to-left: Take I to be an Herbrand stable model
of Phc. We now show that H = I|in forms a Hamiltonian cycle
of graph E. By the conditions of Statements 5 and 6 we con-
clude that condition (a) for being a Hamiltonian cycle holds
for H. It is easy to see that, if the transitive closure of a set
S of edges in some graph G forms a complete digraph with
the vertices of G, then set S forms a cycle. Statement 6 as-
sures us that the extension of predicate r forms a complete
digraph with the vertices of E. Statements 3 and 5 combined
with the observations above tell us that H forms a cycle. In
other words, we can arrange elements of H in the sequence
of the form (23). The fact that v1 . . .vn in (23) are pairwise
distinct if n > 1 follows from the fact that H satisfies condi-
tions in Statement 4.

We now prove the last claim of the theorem statement:
if H = Iin and H = I′in, where I and I′ are answer sets
of Phc then I = I′. Proof by contraposition. Take two an-
swer sets I and I′ of Phc such that I 6= I′. We now show
that I|in 6= I′|in. Statements 1 and 2 ensure that I|edge = I|edge

and I|vertex = I|vertex, respectively. Statement 6 ensures that
I|r = I|r. Since in is the only other predicate in the signature
of Phc we conclude that I|in 6= I′|in.

Conclusions
The methodology for proving correctness of ASP programs
presented in this paper allows us to apply a divide-and-
conquer strategy to this task. We divide the program into
submodules following the intuitive structure of the program,
and leverage the claims about these individual submod-
ules to make the complete proof. Denecker et al. (2012)
paved a way at observing the different roles that sets of
rules/modules play within a program. Interestingly, even if
a program is neither positive nor tight, each of its submod-
ules may belong to one of these categories (as in our run-
ning example). This enables us to replace the SM operator
by the circumscription or completion operators, for which
well-known results are available, easeing the task of pro-
gram analysis. Also, the result of completion is a FO for-
mula and, thus, available theorem provers can be used to au-
tomatically check our claims (Lifschitz, Lühne, and Schaub
2018).

4

References
Brewka, G.; Niemelä, I.; and Truszczynski, M. 2011. An-
swer set programming at a glance. Communications of the
ACM 54(12):92–103.
Denecker, M.; Lierler, Y.; Truszczynski, M.; and Vennekens,
J. 2012. A tarskian informal semantics for answer set pro-
gramming.
Erdoğan, S. T., and Lifschitz, V. 2004. Definitions in an-
swer set programming. In Lifschitz, V., and Niemelä, I., eds.,
Proceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), 114–126.
Ferraris, P.; Lee, J.; Lifschitz, V.; and Palla, R. 2009. Sym-
metric splitting in the general theory of stable models. In
Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), 797–803.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.
Harrison, A., and Lierler, Y. 2016. First-order modular
logic programs and their conservative extensions. Theory
and Practice of Logic programming, 32nd Int’l. Conference
on Logic Programming (ICLP) Special Issue.
Harrison, A., and Lierler, Y. 2017. First-order modular logic
programs and their conservative extensions (extended ab-
stract). In Proceedings of the 27th 27th International Joint
Conference on Artificial Intelligence (IJCAI).
Lifschitz, V.; Lühne, P.; and Schaub, T. 2018. anthem:
Transforming gringo programs into first-order theories (pre-
liminary report). In Working Notes of the Workshop on An-
swer Set Programming and Other Computing Paradigms.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2001. Strongly
equivalent logic programs. ACM Transactions on Computa-
tional Logic 2:526–541.
Lifschitz, V.; Pearce, D.; and Valverde, A. 2007. A
characterization of strong equivalence for logic programs
with variables. In Procedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), 188–200.
Lifschitz, V. 2002. Answer set programming and plan gen-
eration. Artificial Intelligence 138:39–54.
Pearce, D., and Valverde, A. 2008. Quantified equilibrium
logic and foundations for answer set programs. In de la
Banda, M. G., and Pontelli, E., eds., Logic Programming,
24th International Conference, ICLP 2008, Udine, Italy, De-
cember 9-13 2008, Proceedings, volume 5366 of Lecture
Notes in Computer Science, 546–560. Springer.

5

