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An Abstract View on Optimizations in SAT and ASP⋆

Yuliya Lierler

University of Nebraska Omaha

Abstract. Search-optimization problems are plentiful in scientific and engineer-
ing domains. MaxSAT and answer set programming with weak constraints (ASP-
WC) are popular frameworks for modeling and solving search problems with op-
timization criteria. There is a solid understanding on how SAT relates to ASP.
Yet, the question on how MaxSAT relates to ASP-WC is not trivial. The answer
to this question provides us with the means for cross fertilization between distinct
subareas of automated reasoning. In this paper, we propose a weighted abstract
modular framework that allows us to (i) capture MaxSAT and ASP-WC and (ii)
state the exact link between these distinct paradigms. These findings translate, for
instance, into the immediate possibility of utilizing MaxSAT solvers for finding
solutions to ASP-WC programs.

1 Introduction

We target the advancement of automated reasoning that concerns itself with finding so-
lutions to difficult search-optimization problems occurring in scientific and engineering
domains. Specifically, we utilize the realms of propositional satisfiability with optimiza-
tions (MaxSAT family) [22] and answer set programming with weak constraints (ASP-
WC) [1] to showcase our findings. We propose a “weighted abstract modular system”
framework that can capture these logics and their relatives. MaxSAT and ASP-WC are
instances exemplifying the utility of this framework. This work is a continuation of a
tradition advocated, for example, in [6, 24, 16, 17], where the authors abstract away the
syntactic details of studied logics and focus on their semantic properties.

In practice, when search problems are formulated there is often an interest not only
in identifying a solution, but also in pointing at the one that is optimal with respect to
some criteria. Another way to perceive this setting is by having interplay of “hard” and
“soft” modules (drawing a parallel to terminology used in formulating partial weighted
MaxSAT). Hard modules formulate immutable constraints of a problem, i.e., require-
ments that solutions to a problem must satisfy in order to deserve being called a solution.
Soft modules express conditions that are closer to preferences.

Supporting various kinds of optimizations on an encoding and solving level is a
holy grail of ASP-WC. Yet, some approaches to answer set solving that rely on transla-
tions to related automated reasoning (AR) paradigms – “translational” solvers such as
CMODELS [12] and LP2SAT [13], which translate logic programs into propositional sat-
isfiability (SAT) problem [20] – do not provide any support for weak constraints. One
reason is that SAT itself has no support for formulating soft requirements. MaxSAT
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and its variants are extensions to SAT supporting optimizations. The formulations of
these extensions significantly differ syntactically and semantically from those used in
ASP-WC so that the exact link, between ASP-WC and MaxSAT formalisms, required
in implementing translational approaches is not obvious. In general, optimizations in
different areas of AR (see, for instance, [21, 2, 9, 5, 1]) are studied in separation with no
clear articulation of the exact links between the languages expressing optimization crite-
ria and their implementations. This paper takes modularity and abstraction as key tools
for building a thorough understanding between related and yet disperse advances per-
taining to optimizations or soft modules within different AR communities. Lierler and
Truszczynski [16] proposed an abstract modular framework that allows us to bypass the
syntactic details of a particular logic and study advances in AR from a bird’s eye view.
That framework is appropriate for capturing varieties of logics within hard modules.
We extend the framework in a way that soft modules can be formulated and studied un-
der one roof. We illustrate how a family of SAT based optimization formalisms such as
MaxSAT, weighted MaxSAT, and partial weighted MaxSAT (pw-MaxSAT) can be em-
bedded into the proposed framework. We also illustrate how ASP-WC fits into the same
framework. We study the abstract framework illustrating a number of its formal prop-
erties that then immediately translate into its instances such as MaxSAT or ASP-WC.
The paper culminates in a result illustrating how ASP-WC programs can be processed
by means of MaxSAT solvers. The opposite link also becomes apparent, but it is left
out of the paper to remain succinct. To summarize, we propose to utilize abstract view
on logics and modularity as tools for constructing overarching view for distinct criteria
used for optimization within different AR communities.

2 Review: Abstract Logics and Modular Systems

We start with the review of an abstract logic by Brewka and Eiter [6]. We then illustrate
how it captures SAT and logic programs under answer set semantics. We then review
model-based abstract modular systems advocated by Lierler and Truszczynski [16]

A language is a set L of formulas. A theory is a subset of L. Thus the set of theories
is closed under union and has the least and the greatest elements: ∅ and L. We call
a theory a singleton if it is an element/a formula in L (or a singleton subset, in other
words). This definition ignores any syntactic details behind the concepts of a formula
and a theory. A vocabulary is possibly an infinite countable set of atoms. Subsets of a
vocabulary σ represent (classical propositional) interpretations of σ. We write Int(σ)
for the family of all interpretations of a vocabulary σ.

Definition 1. A logic is a triple L = (LL, σL, semL), where

1. LL is a language (language of L)
2. σL is a vocabulary (vocabulary of L)
3. semL : 2LL → 2Int(σL) is a function from theories in LL to collections of inter-

pretations (semantics of L)

If a logic L is clear from the context, we omit the subscript L from the notation of the
language, the vocabulary and the semantics of the logic.

2



Brewka and Eiter [6] showed that this abstract notion of a logic captures default
logic, propositional logic, and logic programs under the answer set semantics. For ex-
ample, the logic L = (L, σ, sem), where

1. L is the set of propositional formulas over σ,
2. sem(F ), for a theory F ⊆ L, is the set of propositional models of theory F (where

we understand an interpretation to be a model of theory F if it is a model of each
element/propositional formula in F ) over σ,

captures propositional logic. We call this logic a pl-logic. A clause is a propositional
formula of the form

¬a1 ∨ . . . ∨ ¬aℓ ∨ aℓ+1 ∨ . . . ∨ am (1)

where ai is an atom. If we restrict elements of L to be clauses, then we call L a sat-
logic. Intuitively, the finite theories in sat-logic can be identified with CNF formulas.
Say, sat-logic theory {(a ∨ b), (¬a ∨ ¬b)} stands for the formula

(a ∨ b) ∧ (¬a ∨ ¬b). (2)

We now review logic programs. A logic program over σ is a finite set of rules of the
form

a0 ← a1, . . . , aℓ, not aℓ+1, . . . , not am, (3)

where a0 is an atom in σ or ⊥ (empty), and each ai (1 ≤ i ≤ m) is an atom in σ.
It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i)

a complete and consistent set of literals over σ constructed as X∪{¬a | a ∈ σ\X}, and
respectively with (ii) an assignment function or interpretation that assigns the truth value
true to every atom in X and false to every atom in σ \X . In the sequel, we may refer
to sets of atoms as interpretations and the other way around following this convention.
We say that a set X of atoms satisfies rule (3), if X satisfies the propositional formula
a1 ∧ . . .∧aℓ ∧ ¬aℓ+1 ∧ . . .∧ ¬am → a0. The reduct ΠX of a program Π relative to a
set X of atoms is obtained by first removing all rules (3) such that X does not satisfy the
propositional formula corresponding to the negative part of the body ¬aℓ+1∧. . .∧¬am,
and replacing all remaining rules with a ← a1, . . . , aℓ. A set X of atoms is an answer
set, if it is the minimal set that satisfies all rules of ΠX [18]. For example, program

a← not b
b← not a.

(4)

has two answer sets {a} and {b}.
Abstract logics of Brewka and Eiter subsume the formalism of logic programs under

the answer set semantics. Indeed, let us consider a logic L = (L, σ, sem), where

1. L is the set of logic program rules over σ,
2. sem(Π), for a program Π ⊆ L, is the set of answer sets of Π over σ,

We call this logic the lp-logic.
Lierler and Truszczynski [16] propose (model-based) abstract modular systems that

allow us to construct heterogeneous systems based of “modules” stemming from a va-
riety of logics. We now review their framework.
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Definition 2. Let L = (LL, σL, semL) be a logic. A theory of L, that is, a subset of the
language LL is called a (model-based) L-module (or a module, if the explicit reference
to its logic is not necessary). An interpretation I ∈ Int(σL) is a model of an L-module
B if I ∈ semL(B).

We use words theory and modules interchangeably at times. Furthermore, for a the-
ory/module in pl- or sat-logics we often refer to these as propositional or SAT formulas
(sets of clauses). For a theory/module in lp-logic we refer to it as a logic program.

For an interpretation I , by I|σ we denote an interpretation over vocabulary σ con-
structed from I by dropping all its members not in σ. For example, let σ1 be a vocab-
ulary such that a ∈ σ1 and b ̸∈ σ1, then {a, b}|σ1

= {a}. We now extend the notion
of a model to vocabularies that go beyond the one of a considered module in a straight
forward manner. For an L-module B and an interpretation I whose vocabulary is a
superset of the vocabulary σL of B, we say that I is a model of B, denoted I |= B,
if I|σL ∈ semL(B). This extension is in spirit of a convention used in classical logic
(for example, given a propositional formula p ∧ q over vocabulary {p, q} we can speak
of interpretation assigning true to propositional variables {p, q, r} as a model to this
formula).

Definition 3. A set of modules, possibly in different logics and over different vocab-
ularies is a (model-based) abstract modular system (AMS). For an abstract modular
system H, the union of the vocabularies of the logics of the modules in H forms the
vocabulary ofH, denoted by σH. An interpretation I ∈ Int(σH) is a model ofH when
for every module B ∈ H, I is a model of B. (It is easy to see that we can extend the
notion of a model to interpretations whose vocabulary goes beyond σH in a straight
forward manner.)

When an AMS consist of a single module {F} we identify it with module F itself.

3 Weighted Abstract Modular Systems

In practice, we are frequently interested not only in identifying models of a given log-
ical formulation of a problem (hard fragment) but identifying models that are deemed
optimal according to some criteria (soft fragment). Frequently, multi-level optimiza-
tions are of interest. An AMS framework is geared towards capturing heterogeneous
solutions for formulating hard constraints. Here we extend it to enable the formulation
of soft constraints. We start by introducing a “w-condition” – a module accommodating
notions of a level and a weight. We then introduce w-systems – a generalization of AMS
that accommodates new kinds of modules. In conclusion, we embed multiple popular
AR optimization formalisms into this framework.

Definition 4. Let L = (LL, σL, semL) be a logic. A pair (TL, w@l) – consisting of a
theory TL of logic L and an expression w@l, where w is an integer and l is a positive
integer – is called an L-w(eighted)-condition (or a w-condition, if the explicit reference
to its logic is not necessary). We refer to integers l and w as levels and weights, respec-
tively. An interpretation I ∈ Int(σL) is a model of a L-w-condition B = (TL, w@l),
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denoted I |= B if I ∈ semL(TL). A mapping [I |= B] is defined as follows

[I |= B] =

{
1 when I |= B,
0 otherwise.

(5)

By λ(B), Bw we denote level l and weight w associated with w-condition B, respec-
tively.

We identify w-conditions of the form (T,w@1) with expressions (T,w) (i.e., when the
level is missing it is considered to be one).

For a collection S of w-conditions, the union of the vocabularies of the logics of the
w-conditions in S forms the vocabulary of S, denoted by σS .

Definition 5. A pair (H,S) consisting of an AMSH and a set S of w-conditions (pos-
sibly in different logics and over different vocabularies) so that σS ⊆ σH is called a
w(eighted)-abstract modular system (or w-system).

Let W = (H,S) be a w-system (H and S intuitively stand for hard and soft). The
vocabulary ofH forms the vocabulary ofW , denoted by σW .

For a level l, byWl we denote the subset of S that includes all w-conditions whose
level is l. By λ(W) we denote the set of all levels associated with w-system W con-
structed as {λ(B) | B ∈ S}. LetW = (H,S) be w-system. For a level l ∈ λ(W) by l↑

we denote the least level out of all levels in λ(W) that are greater than l (it is obvious
that for the greatest level in λ(W), l↑ is undefined). For example, for levels {2, 6, 8, 9},
6↑ is level 8.

Definition 6. Let pairW = (H,S) be a w-system. An interpretation I ∈ Int(σW) is a
model ofW if it is a model of AMSH.

For level l ∈ λ(W), a model I∗ ofW is l-optimal if I∗ satisfies equation

I∗ = argmax
I

∑
B∈Wl

[I |= B], (6)

where

– I ranges over models ofW if l is the greatest level in λ(W),
– I ranges over l↑-optimal models ofW , otherwise.

We call a model l-min-optimal if max is replaced by min in (6)
A model I∗ of W is optimal if I∗ is l-optimal model for every level l ∈ λ(W). A

model I∗ ofW is min-optimal if I∗ is l-min-optimal model for every level l ∈ λ(W).

We note that this definition is different from the one presented in the original JELIA-21
paper. Proposition 4 holds for this definition, whereas it did not hold for the case of the
original JELIA-21 paper-definition.
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MaxSAT Family as W-systems We now restate the definitions of MaxSAT, weighted
MaxSAT and pw-MaxSAT [22]. We then show how these formalisms are captured in
terms of w-systems. In the sections that follow we use w-systems to model logic pro-
grams with weak constraints. The uniform language of w-systems allows us to prove
properties of theories in these different logics by eliminating the reference to their syn-
tactic form. In the conclusion of the paper we provide translation from logic programs
with weak constraints to pw-MaxSAT problems.

To begin we introduce a notion of so called σ-theory. For a vocabulary σ and a
logic L over this vocabulary (σL = σ), we call theory TL a σ-theory/σ-module when
it satisfies property sem(TL) = Int(σ). For example, in case of pl-logic or sat-logic a
conjunction of clauses of the form a∨¬a for every atom a ∈ σ forms a σ-theory. For a
σ-theory a logic of the theory becomes immaterial so we allow ourselves to denote an
arbitrary σ-theory by Tσ disregarding the reference to its logic.

As customary in propositional logic given an interpretation I and a propositional
formula F , we write I |= F when I satisfies F (i.e., I is a model of F ). A mapping
[I |= F ] is defined as in (5) with B replaced by F . An interpretation I∗ over vocabulary
σ is a solution to MaxSAT problem F , where F is a CNF formula over σ, when it
satisfies the equation I∗ = argmaxI

∑
C∈F [I |= C].

The following result illustrates how w-systems can be used to capture MaxSAT
problem.

Proposition 1. Let F be a MaxSAT problem over σ. The optimal models of w-system
(Tσ, {(C, 1) | C ∈ F}) – where pairs of the form (C, 1) are sat-logic w-conditions –
form the set of solutions for MaxSAT problem F .

Proposition 1 allows us to identify w-systems of particular form with MaxSAT problem.
For example, any w-system of the form

(
Tσ, {(C1, 1), . . . (Cn, 1)}

)
– where Ci (1 ≤

i ≤ n) is a singleton sat-logic theory – can be seen as a MaxSAT problem composed of
clauses {C1, . . . , Cn}.

A weighted MaxSAT problem [3] is defined as a set (C,w) of pairs, where C is a
clause and w is a positive integer. An interpretation I∗ over vocabulary σ is a solution
to weighted MaxSAT problem P over σ, when it satisfies the equation

I∗ = argmax
I

∑
(C,w)∈P

w · [I |= C]. (7)

Proposition 2. Let P be a weighted MaxSAT problem over σ. The optimal models of
w-system (Tσ, P ) – where each element in P is understood as a sat-logic w-condition
– form the set of solutions for weighted MaxSAT problem P .

A pw-MaxSAT problem [11] is defined as a pair (F, P ) over vocabulary σ, where F
is a CNF formula over σ and P is a weighted MaxSAT problem over σ. Formula F is
referred to as hard problem fragment, whereas clauses in P form soft problem fragment.

Let (F, P ) be a pw-MaxSAT problem over vocabulary σ. An interpretation I over σ
is a model of (F, P ), when I is a model of F . A model I∗ of (F, P ) is optimal when
it satisfies equation (7), where I ranges over models of F . The following proposition
allows us to identify w-systems of particular form with pw-MaxSAT problems.
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Proposition 3. Let (F, P ) be a pw-MaxSAT problem over vocabulary σ. The models
and optimal models of w-system (F, P ) – where F is a sat-logic module and each
element in P is understood as a sat-logic w-condition – coincide with the models and
optimal models of pw-MaxSAT problem (F, P ), respectively.

We now present sample pw-MaxSAT problem to illustrate some definitions at work.
Take F1 to denote sat-theory module (2). The pair

(F1, {(a, 1), (b, 1), (a ∨ ¬b, 2), (¬a ∨ b, 0)}) (8)

forms a pw-MaxSAT problem, whose models are {a} and {b} and {a} is an optimal
model. If we consider this pw-MaxSAT problem as a respective w-system then the
notion of min-optimal model is defined. Model {b} is a min-optimal model for this
w-system.

Embedding family of MaxSAT problems into w-systems realm provides us with
immediate means to generalize their definitions to allow (i) min-optimal models; (ii)
negative weights; (iii) distinct levels accompanying weight requirement on its clauses;
(iv) removing restriction from its basic syntactic object being a clause and allowing, for
example, arbitrary propositional formulas, as a logic for its module and w-conditions.
Consider the definition of MaxPL Problem (meant to be a counterpart of pw-MaxSAT
defined for arbitrary propositional formulas and incorporating enumerated items). We
call a w-system (F, S) a MaxPL problem, when F is a pl-logic module and each w-
condition in S is in pl-logic. It is easy to see that any pw-MaxSAT problem is a special
case instance of MaxPL problem. The pair

(F1, {(a, 1), (b, 1@3), (a ∨ ¬b, 2), (¬a ∨ b, 0)}) (9)

forms a sample MaxPL problem that differs from (8) in boosting the level of one of
its w-conditions. The optimal model of this system is {b}. In the sequel we illustrate
that presence of levels and negative weights in w-systems can often be considered as
syntactic sugar. Also, the concept of min-optimal model can be expressed in terms of
optimal models of a closely related w-system. Yet, from the perspective of knowledge
representation, convenience of modeling, algorithm design for search procedures such
features are certainly of interest and deserve an attention and thorough understanding.

Optimizations in Logic Programming We now review a definition of a logic program
with weak constraints following the lines of [7]. A weak constraint has the form

:∼ a1, . . . , aℓ, not aℓ+1, . . . , not am[w@l], (10)

where m > 0 and a1, . . . , am are atoms, w (weight) is an integer, and l (level) is a
positive integer. In the sequel, we abbreviate expression

:∼ a1, . . . , aℓ, not aℓ+1, . . . , not am (11)

occurring in (10) as D and identify it with the propositional formula

a1 ∧ . . . ∧ aℓ ∧ ¬aℓ+1 ∧ . . . ∧ ¬am. (12)
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An optimization program (or o-program) over vocabulary σ is a pair (Π,W ), where Π
is a logic program over σ and W is a finite set of weak constraints over σ.

Let P = (Π,W ) be an optimization program over vocabulary σ (intuitively, Π
and W forms hard and soft fragments, respectively). By λ(P) we denote the set of all
levels associated with optimization program P constructed as {l | D[w@l] ∈ W}.
Set X of atoms over σ is an answer set of P when it is an answer set of Π . Let X and
X ′ be answer sets of P . Answer set X ′ dominates X if there exists a level l ∈ λ(P)
such that following conditions are satisfied:

1. for any level l′ that is greater than l the following equality holds∑
D[w@l′]∈W

w · [X |= D] =
∑

D[w@l′]∈W

w · [X ′ |= D]

2. the following inequality holds for level l∑
D[w@l]∈W

w · [X ′ |= D] <
∑

D[w@l]∈W

w · [X |= D]

An answer set X∗ of P is optimal if there is no answer set X ′ of P that dominates X∗.
Consider a logic whose language is a strict subset of that of propositional logic: a

language that allows only for formulas of the form (12), whereas its semantics is that of
propositional logic. We call this logic a wc-logic.

Proposition 4. Let (Π,W ) be an optimization logic program over vocabulary σ. The
models and min-optimal models of w-system

(
Π, {(D,w@l) | D[w@l] ∈ W}

)
–

where Π is an lp-logic module and pairs of the form (D,w@l) are wc-logic w-conditions
– coincide with the answer sets and optimal answer sets of (Π,W ), respectively.

Propositions 1, 2, 3, and 4 allow us to identify MaxSAT, weighted MaxSAT, pw-MaxSAT,
and o-programs with respective w-systems. In the following, we often use the terminol-
ogy stemming from w-systems, when we talk of these distinct frameworks. For instance,
we allow ourselves to identify a weak constraint (10) with a wc-logic w-condition

(a1 ∧ . . . ∧ aℓ ∧ ¬aℓ+1 ∧ . . . ∧ ¬am, w@l). (13)

We now exemplify the definition of an optimization program. Let Π1 be logic pro-
gram (4). An optimal answer set of optimization program

(Π1, {:∼ a, not b.− 2@1}) (14)

is {a}. We note that the answer sets and the optimal answer set of (14) coincide with
the models and the optimal model of pw-MaxSAT problem (8). The formal results of
this paper will show that this is not by chance and that these two w-systems in different
logics have more in common than meets the eye upon immediate inspection.
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4 Formal Properties of w-systems

We now state some interesting properties and results about w-systems. Word Property
denotes the results that follow immediately from the model/optimal model definitions.

Property 1. Any two w-systems with the same hard theory have the same models.

Due to this proposition when stating the results for w-systems that share the same hard
theory, we only focus on optimal and min-optimal models.

Property 2. Any model of w-system of the form (H, ∅) is optimal/min-optimal.

Property 3. Optimal/min-optimal models of the following w-systems coincide

– w-systemW and
– w-system resulting fromW by dropping all of its w-conditions whose weight is 0.

Thus, the w-conditions, whose weight is 0 are immaterial and can be removed. For
instance, we can safely simplify sample pw-MaxSAT problem (8) and MaxPL prob-
lem (9) by dropping their w-conditions (¬a ∨ b, 0).

We call a w-systemW level-normal, when we can construct the sequence of num-
bers 1, 2, . . . , |λ(W)| from the elements in λ(W). It is easy to see that we can always
adjust levels of w-conditions inW to respect such a sequence preserving optimal mod-
els of original w-systemW .

Proposition 5. Optimal/min-optimal models of the following w-systems coincide

– w-systemW and
– the level-normal w-system constructed fromW by replacing each level li occurring

in its w-conditions with its ascending sequence order number i, where we arrange
elements in λ(W) in a sequence in ascending order l1, l2, . . . l|λ(W)|.

Sample MaxPL problem (9) is not level normal. Yet, this proposition suggests that it
is safe to consider the level-normal w-system (F1, {(a, 1), (b, 1@2), (a ∨ ¬b, 2), (¬a ∨
b, 0)}) in its place. In the sequel we often assume level-normal w-systems without loss
of generality.

Proposition 6. For a w-systemW = (H,S), if every level l ∈ λ(W) is such that for
any distinct models I and I ′ ofW∑

B∈Wl

Bw · [I |= B] =
∑

B∈Wl

Bw · [I ′ |= B]

then optimal/min-optimal models of w-systems W and (H, ∅) coincide. Or, in other
words, any model ofW is also optimal and min-optimal model.

By this proposition, for instance, it follows that optimal models of pw-MaxSAT prob-
lem (F1, {(a, 1), (b, 1)}) coincide with its models {a} and {b} or, in other words, the
problem can be simplified to (F1, ∅).

LetW = (H,S) be a w-system. For a set S of w-conditions, byW[\S] we denote
the w-system (H,S \ S).
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Proposition 7. For a w-systemW = (H,S), if there is a set S ⊆ S of w-conditions all
sharing the same level such that for any distinct models I and I ′ ofW∑

B∈S

Bw · [I |= B] =
∑
B∈S

Bw · [I ′ |= B]

thenW has the same optimal/min-optimal models asW[\S].

This result provides us with the semantic condition on when it is “safe” to drop some w-
conditions from the w-system. By this proposition, for instance, it follows that the opti-
mal models of pw-MaxSAT problem (8) coincide with the optimal models of w-system
constructed from (8) by dropping its w-conditions (a, 1) and (b, 1). To summarize, all
listed results account to the fact that the optimal models of pw-MaxSAT problem (8)
and the following pw-MaxSAT problem coincide

(F1, {(a ∨ ¬b, 2)}). (15)

Let (H, {(T1, w1@l1), . . . , (Tn, wn@ln)})−1· map a w-system into the following
w-system (H, {(T1, (−1 · w1)@l1), . . . , (Tn, (−1 · wn)@ln)}). The next proposition
tells us that min-optimal models and optimal models are close relatives:

Proposition 8. For a w-systemW , the optimal models (min-optimal models) ofW co-
incide with the min-optimal models (optimal models) ofW−1·.

Eliminating Negative (or Positive) Weights We call logics L and L′ compatible when
their vocabularies coincide, i.e., σL = σ′

L. Let L and L′ be compatible logics, and T
and T ′ be theories in these logics, respectively. We call a theory T (and a w-condition
(T,w@l)) equivalent to a theory T ′ (and a w-condition (T ′, w@l), respectively), when
sem(T ) = sem(T ′). For example, sat-logic theory (2) over vocabulary {a, b} is equiv-
alent to lp-logic theory (4) over {a, b}

The following proposition captures an apparent property of w-systems that equiva-
lent modules and w-conditions may be substituted by each other without changing the
overall semantics of the system.

Proposition 9. Models and optimal/min-optimal models of w-systems

({T1, . . . , Tn}, {B1, . . . , Bm}) and ({T ′
1, . . . , T

′
n}, {B′

1, . . . , B
′
m})

coincide when (i) Ti and T ′
i (1 ≤ i ≤ n) are equivalent theories, and (ii) Bi and B′

i

(1 ≤ i ≤ m) are equivalent w-conditions.

For a theory T of logic L, we call a theory T in logic L′, compatible to L, comple-
mentary when (i) sem(T ) ∩ sem(T ) = ∅, and (ii) sem(T ) ∪ sem(T ) = Int(σL). For
example, in case of pl-logic, theories F and ¬F are complementary. Similarly, a theory
(¬a ∧ ¬b) ∨ (a ∧ b) in pl-logic over vocabulary {a, b} is complementary to theory (4)
in lp-logic over {a, b}. It is easy to see that given a theory in any logic we can always
find, for instance, a pl-logic or sat-logic theory complementary to it. Yet, given a theory
in some arbitrary logic we may not always find a theory complementary to it in the
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same logic. For example, consider vocabulary {a, b} and a wc-theory a∧ b. There is no
complementary wc-theory to it over vocabulary {a, b}.

Let (T,w@l) be an L-w-condition. By (T,w@l)
+ we denote (T,w@l) itself when

w ≥ 0 and any w-condition in a compatible logic that has the form (T ,−1 · w@l)
(i.e., T is some theory complementary to T ) when w < 0. By (T,w@l)

− we denote
(T,w@l) itself when w ≤ 0 and any w-condition in a compatible logic that has the
form (T ,−1 ·w@l) (i.e., T is some theory complementary to T ) when w > 0. It is easy
to see that + and − forms a family of mappings satisfying stated conditions. Applying a
member in this family to a w-condition always results in a w-condition with nonnegative
and nonpositive weights respectively.

For a w-system W = (H, {B1, . . . , Bm}), by W+ we denote the w-system of
the form (H, {B1

+, . . . , Bm
+}), whereas byW− we denote the w-system of the form

(H, {B1
−, . . . , Bm

−}). The following proposition tells us that negative/positive weights
within w-systems may be eliminated in favour of the opposite sign when theories com-
plementary to theories of w-conditions are found.

Proposition 10. Optimal/min-optimal models of w-systemsW ,W+,W− coincide.

The result above can be seen as a consequence of the following proposition:

Proposition 11. Optimal/min-optimal models of w-systems (H, {(T,w@l)} ∪ S) and
(H, {(T ,−1 · w@l)} ∪ S) coincide.

This proposition suggests that in case of significantly expressive logic the presence
of both negative and positive weights in w-conditions is nearly a syntactic sugar. Let us
illustrate the applicability of this result in the realm of optimization programs. First, we
say that a weak constraint (10) is singular if either its weight w ≥ 0 or m = 1. Given
a singular weak constraint/wc-logic w-condition B = (T,w@l), it is easy to see that a
mapping

B↑ =


B when w ≥ 0, otherwise
(¬a,−1 · w@l) when T has the form a

(a,−1 · w@l) when T has the form ¬a

is in the B+ family. We call optimization program singular when all of its w-conditions
are singular. Similarly, given a singular weak constraint/w-condition B of the form (13),
it is easy to see that a mapping

Bsat =

{(
(1),−1 · w@l

)
when w ≥ 0, otherwise

B when w < 0

is in the B− family. Note that the resulting w-condition of this mapping is in sat-logic.
For a singular optimization program (Π, {B1, . . . , Bn}),

(Π, {B1, . . . , Bn})↑ = (Π, {B↑
1 , . . . , B

↑
n}),

(Π, {B1, . . . , Bn})sat = (Π, {Bsat
1 , . . . , Bsat

n }).

Proposition 10 tells us that optimal answer sets of singular o-program P and positive o-
program P↑ coincide. Also, it tells us that optimal answer sets of singular o-program P
coincide with min-optimal models of w-system Psat.
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We note that the restriction on an optimization program to be singular is not es-
sential. In particular, given a non-singular program for every weak constraint C of the
form (10), whose weight is negative (i) adding to its hard fragment a rule of the form
aC ← a1, . . . , aℓ, not aℓ+1, . . . , not am, where aC is a freshly introduced atom and
(ii) replacing weak constraint C with :∼ aC [w@l] produces a singular optimization
program. The answer sets of these two programs are in one to one correspondence.
Dropping freshly introduced atoms aC from a newly constructed program results in
the answer sets of the original program. This fact is easy to see given the theorem on
explicit definitions [10]. Alviano [1] describes a normalization procedure in this spirit.

Eliminating Levels We call a w-systemW (strictly) positive when all of its w-conditions
have (positive) nonnegative weights. Similarly, we call a w-system W (strictly) nega-
tive when all of its w-conditions have (negative) nonpositive weights. As we showed
earlier the w-conditions with 0 weights may safely be dropped so as such the difference
between, for example, strictly positive and positive programs is inessential.

We now show that the notion of level in the definition of w-conditions is immaterial
from the expressivity point of view, i.e., they can be considered as syntactic sugar. Yet,
they are convenient mechanism for representing what is called hierarchical optimization
constraints. It was also shown in practice that it is often of value to maintain hierarchy
of optimization requirements in devising algorithmic solutions to search problems with
optimization criteria [4]. Here we illustrate that given an arbitrary w-system we can
rewrite it using w-conditions of the form (T,w). This change simplifies the definition
of an optimal model by reducing it to a single condition. We can adjust weights w
across the w-conditions in a way that mimics their distinct levels. A procedure in style
was reported by Alviano [1] for the case of o-programs. In this work, we generalize that
result to arbitrary w-systems.

Let pair W = (H,S) be strictly positive level-normal w-system (as illustrated
earlier restricting w-systems to being positive is inessential restriction; recall Propo-
sition 10). Let n denote the number of distinct levels occurring in S, i.e., |λ(W)|. Let
Ml be the number associated with each level integer l in λ(W) that is computed as
Ml = 1 +

∑
(T,w@l)∈S w. Intuitively, this number gives us the upper bound (incre-

mented by 1) for the sum of the weights of the w-conditions of level l. We identify M0

with 1. We now define the number that serves the role of the factor for adjusting each
weight associated with some level. For level i (1 ≤ i ≤ n), let fi be the number com-
puted as fi =

∏
0≤j<i

Mj . By S1 we denote the set of w-conditions constructed from S

as follows
{(T, fi · w) | (T,w@i) ∈ S} (16)

ByW1 we denote the w-system resulting from replacing S with S1.

Proposition 12. Optimal/min-optimal models of strictly positive level-normal w-systems
W = (H,S) andW1 = (H,S1) coincide.

Optimization Programs as pw-MaxSAT Problems It is well known that logic pro-
grams under answer set semantic and propositional formulas are closely related (see,
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for instance, [15] for an overview of translations). For example, for so called “tight”
programs a well known completion procedure [8] transforms a logic program into a
propositional formula so that the answer sets of the former coincide with the mod-
els of the later. Once this formula is clausified the problem becomes a SAT problem.
For nontight programs extensions of completion procedure are available [19, 13]. Some
of those extensions introduce auxiliary atoms. Yet, the appearance of these atoms are
inessential as models of resulting formulas are in one to one correspondence with orig-
inal answer sets. The later can be computed from the former by dropping the auxiliary
atoms. The bottom line is that a number of known translations from logic programs to
SAT exist. Numerous answer set solvers, including but not limited to CMODELS [12]
and LP2SAT [13], rely on this fact by translating logic program in a SAT formula. For
a logic program Π over vocabulary σ (that we identify with a module in lp-logic), by
FΠ we denote a SAT formula, whose models coincide with these of Π . For example,
recall that F1 and Π1 denote sat-formula (2) and logic program (4). Formula F1 forms
one of the possible formulas FΠ1 . In fact, F1 corresponds to the clausified completion
of program Π1 (which has the form (a↔ ¬b) ∧ (b↔ ¬a)).

In previous sections we illustrated how multiple levels and negative weights in w-
systems/singular optimization programs can be eliminated in favor of a single level
and positive weights. Thus, without loss of generality we consider here singular opti-
mization programs with a single level. The following result is a consequence of several
propositions stated earlier.

Proposition 13. Optimal answer sets of singular o-program (Π, {B1, . . . , Bm}) coin-
cide with optimal models of pw-MaxSAT problem ((FΠ , {Bsat

1 , . . . , Bsat
n })

−1·
).

This result tells us, for example, that optimal answer sets of optimization program (14)
coincide with optimal models of pw-MaxSAT problem (15). Earlier, we illustrated that
optimal models of pw-MaxSAT problem (15) coincide with these of pw-MaxSAT prob-
lem (8). Proposition 13 provides us with a formal result that tells us how to utilize
MaxSAT solvers for finding optimal answer sets of a program in similar ways as SAT
solvers are currently utilized for finding answer sets of logic programs as exemplified
by such answer set solvers as CMODELS or LP2SAT.

Conclusions We proposed the extension of abstract modular systems to weighted sys-
tems in a way that modern approaches to optimizations stemming from a variety of
different logic based formalisms can be studied in unified terminological ways so that
their differences and similarities become clear not only on intuitive but also formal
level. We trust that establishing clear link between optimization statements, criteria,
and solving in distinct AR subfields is a truly fruitful endeavor allowing a streamlined
cross-fertilization between the fields. In particular, an immediate and an intuitive future
work direction is extending a translational based answer set solver CMODELS with ca-
pabilities to process optimization statements by enabling it to interface with a MaxSAT
solver in place of a SAT solver. In addition, a generalization of results presented here is
of interest in the scope of what is called constraint answer set programming [14]. The
EZSMT [23] system is a translational constraint answer set solver that translates its pro-
grams into satisfiability modulo theories (SMT) formulas. We trust that results obtained
here lay the groundwork for obtaining a link between constraint answer set programs

13



with weak constraints and what is called O(ptimization)MT formulas – a formalism
extending SMT with optimizations.
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17. Lierler, Y., Truszczyński, M.: Abstract modular inference systems and solvers. Artificial In-
telligence 236, 65–89 (2016)

18. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of Math-
ematics and Artificial Intelligence 25, 369–389 (1999)

19. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a logic program by SAT solvers. In:
Proceedings of National Conference on Artificial Intelligence (AAAI). pp. 112–117. MIT
Press (2002)

20. Mitchell, D.G.: A SAT solver primer. In: EATCS Bulletin (The Logic in Computer Science
Column). vol. 85, pp. 112–133 (2005)

21. Nieuwenhuis, R., Oliveras, A.: On sat modulo theories and optimization problems. In: Biere,
A., Gomes, C.P. (eds.) Theory and Applications of Satisfiability Testing - SAT 2006. pp.
156–169. Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

22. Robinson, N., Gretton, C., Pham, D.N., Sattar, A.: Cost-optimal planning using weighted
maxsat. In: ICAPS 2010 Workshop on Constraint Satisfaction Techniques for Planning and
Scheduling (COPLAS10) (2010)

23. Shen, D., Lierler, Y.: Smt-based constraint answer set solver ezsmt+ for non-tight programs.
In: Proceedings of the 16th International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR) (2018)

24. Tasharrofi, S., Ternovska, E.: A semantic account for modularity in multi-language mod-
elling of search problems. In: Proceedings of the 8th international Symposium on Frontiers
of Combining Systems, FroCoS 2011. pp. 259–274. LNCS 6989, Springer (2011)

15


	University of Nebraska at Omaha
	From the SelectedWorks of Yuliya Lierler
	2021

	An Abstract View on Optimizations in SAT and ASP
	tmpOJ9xgQ.pdf

