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A B S T R A C T   

Machine learning (ML) often requires large datasets for reliable predictions, which may not be feasible for most 
commercial alloy systems. Also, the alloy development requires a full set of balanced properties, many of which 
have not been thoroughly investigated by ML. In this study, we focused on the practicality and reliability of ML in 
estimating alloy properties with a realistic small dataset of commercial wrought aluminum alloys as an example. 
We have compiled a small but comprehensive dataset that contains 236 entries with 6 mechanical properties and 
9 technological properties. We first performed statistical analysis to understand the encoded correlation among 
compositions, mechanical and technological properties. Then, we systematically evaluated the predictive per-
formance of several popular ML models with a focus on the bias-variance trade-off, a central problem in training 
supervised ML models. Moreover, we looked into the prospect of improving ML models by engineering the 
feature space. Finally, our feature importance analysis suggested the soundness of the developed models and 
revealed new insights on the underlying composition/processing-property relations. This study demonstrated 
that alloy design may be aided by using machine learning and data mining techniques on realistic small datasets.   

1. Introduction 

Material properties are dictated by the microstructures which are 
further defined by the material compositions and processing. The pre-
cise control of material microstructures at several length scales simul-
taneously is required for achieving desired material properties, which 
poses a grand challenge for alloy development. Recently, more and more 
integrated multi-scale multi-physics models (ICME) emerge to accel-
erate the alloy development process [1]. These physics-based models 
typically need the microstructure as the bridge to link composition and 
processing to properties, but much information in the microstructure 
cannot be described quantitively [2,3]. Therefore, those physics-based 
models often adopt certain assumptions, which may introduce un-
certainties and errors and cause error propagation when integrated into 
an ICME framework [4]. Furthermore, generic and reliable material 
models for many specific composition/processing-microstructure and 
microstructure-property relationships are still lacking, especially for 
those properties controlled by complex physical mechanisms, such as 
corrosion and hot tearing. Therefore, it is still challenging to develop 

alloys to meet a whole set of desired properties even assisted with the 
ICME framework. A method that directly connects composition and 
processing to properties may avoid the potentially propagated errors 
and reduce the complicated modeling efforts. 

Machine learning (ML) is a method of data analysis which trains 
computers to extract useful information from the data without being 
explicitly programmed. Supervised machine learning models learn the 
statistical patterns from available data and predict the pattern for new 
and unseen data samples. ML models excel in dealing with complex 
problems by quantifying the relationships among variables. Also, ML 
can directly model the relationship between composition/processing 
and material properties, rather than relying on the microstructure as a 
bridge like ICME does. Therefore, machine learning promises another 
viable computational route for material discovery problems. ML algo-
rithms have recently been used to solve materials science problems such 
as material design and alloy development [5,6]. To design new alloys 
with desirable properties, various studies used ML techniques to inves-
tigate the relationship between the physical properties of the alloys and 
the composition and processing parameters. As an instance, Wen et al 
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compared the performance of various ML techniques in designing the 
composition of high entropy alloys with desirable hardness [7]. 
Furthermore, ML techniques, mostly artificial neural networks, have 
been used to model the relationships between the processing parameters 
and tensile properties of maraging steel, titanium, copper, and 
aluminum alloys including ultimate tensile strength (UTS), yield 
strength (YTS), and elongation (El) [8–12]. 

Although there are existing ML applications to material design [5,6], 
two fundamental questions need to be fully addressed before it can be 
considered a reliable and practical method to assist alloy development 
for industry.  

1. For an engineering material, the complete property set includes not 
only mechanical properties including yield strength, ultimate tensile 
strength, elongation, and so forth, but also technological properties 
such as machinability, weldability, and cold workability. For many 
alloys applications, the corrosion resistance and resistance to stress 
corrosion are also critical. Is machine learning capable of predicting 
those properties as well?  

2. Even for a well-developed commercial alloy system, the available 
data including compositions, processing, and a full set of properties is 
limited, maybe only a few hundred. Is that enough for reliable ma-
chine learning? 

In this work, we use ML to assist alloy design using a small dataset 
(236), which is typical for commercial alloy systems. We use wrought Al 
alloy as an example to show that ML is capable of predicting the full set 
of alloy properties including both mechanical and technological prop-
erties. We chose wrought Al alloys for this study for the following rea-
sons. Al alloy is a well-developed commercial alloy family, which plays 
important role in automotive, aerospace, and defense applications 
thanks to their high specific strength and high specific stiffness. The 
wrought Al alloys, which generally have better mechanical properties 
than casting Al alloys, have higher requirements in technological 
properties for downstream manufacturing processes. We thus selected 
wrought Al alloys for this study considering it is representative and more 
challenging to model with the requirement of a full set of balanced 
properties. Several studies have applied ML to predict tensile properties 
of Al alloys in general [12–16], but none of those have thoroughly 
studied the technological properties for wrought Al alloys or the bias- 
variance trade-off of the developed ML models for a small dataset. 

In this work, we studied a complete set of properties required for 
wrought Al alloys using a small commercial alloy dataset: tensile 
strength, yield strength, elongation, hardness, fatigue, corrosion resis-
tance, stress corrosion cracking resistance, cold workability, machin-
ability, and weldability. We first examined the data and performed a 
correlation analysis. Then, several popular ML methods were evaluated 
for such a small dataset, and the random forest method with both good 
performance and easy implementation was selected for further 
modeling. Then, we built and developed random forest models for six 
mechanical properties and nine technological properties with good ac-
curacy. In addition, we were able to further improve the ML model 
performance by engineering the feature space with certain knowledge in 
material science. Importantly, our randomness study in understanding 
the bias-variance tradeoff suggested these ML models developed from 
such a small dataset were robust and reliable. Lastly, we carried out 
feature importance analysis and obtained useful insights on the 
composition/processing-microstructure-property relationship. Overall, 
we have demonstrated a practical example of how to utilize ML and data 
mining for alloy design from a realistic small dataset. 

2. Methods 

2.1. Data preparation and Spearman correlation 

The final dataset has 236 samples which were collected and cross- 

validated from different references including literature and websites 
[17–21] (see supplemental materials). Collected elongations were from 
different measurement methods such as A5 and A50. A5 is the propor-
tion of original specimen gauge length to diameter ratio of 5, and A50 is 
the ratio of original gauge length to diameter ratio of 50 mm. All A50 
measurements are approximated to A5 by increasing the measurements 
by 10 % [22]. Duplicated samples with the same compositions and 
temper types had been removed from the original dataset. Thus, the 236 
samples within the final dataset represent unique combinations of 
elemental composition and temper for various aluminum alloys. The 
aluminum alloys are designated and categorized into different series 
according to their principal alloying element. There are 5 samples of 
series 1xxx, 44 of series 2xxx, 31 of series 3xxx, 2 of series 4xxx, 65 of 
series 5xxx, 49 of series 6xxx, 37 of series 7xxx, and 3 of series 8xxx 
within the dataset. 

Elemental compositions and temper types are provided for each 
sample within the data set. The dataset used in this study is mainly 
collected from Kaufman Aluminum Alloy Database [18]. In this data-
base, only 9 elements, which are the exact 9 elements investigated in this 
work, are included. According to the Introduction of this book, those 9 
elements are intentionally added, which means there exist other ele-
ments that are treated as insignificant. The Processing parameters are 
described as 66 temper types by linguistic terms (e.g., O, T4 and T6). We 
encoded the temper types to binary values using one-hot-encoding, a 
popular and easy-to-implement method for preprocessing non-ordinal 
categorical variables for ML models. One-hot-encoding creates one 
column for each temper type and assigns 1 to the corresponding sam-
ple’s temper type and 0 to the other temper types. Thus, 66 columns 
were added to the chemical elements columns to make up the entire 
training features. Thus, this one-hot-encoding scheme also allows us to 
explore the influence of each of the temper types on the properties. 

The dataset consists of a comprehensive list of mechanical and 
technological properties for aluminum alloys that were considered the 
target variables by the ML models. The mechanical properties are 
continuous variables while the technological properties are ordinary 
variables that were further coded as integers. Spearman correlation [23] 
was performed to understand the rank correlation among compositions, 
mechanical properties, and technological properties. 

2.2. ML model development and evaluation 

Machine learning models were developed to estimate the mechanical 
and technological properties of the alloys. Mechanical properties, 
expressed as numerical values were estimated by regression models, 
while technological properties, described as categorical values, were 
classified by classification models. In this study, popular supervised ML 
algorithms including ANN, SVM, RF, and XGBoost were investigated as 
ML model candidates. Models were trained and developed by 80 % of 
the data and tested by 20 % of the data samples which have never been 
seen by the model. Extensive hyperparameter tuning was done for each 
ML model developed for each property with grid search following 
random search. Our random search, via scikit-learn Random-
izedSearchCV, defined a larger search space of hyperparameter values 
and randomly sampled different hyperparameter sets in this search 
space. This random search provided insights into a good range or 
domain of the hyperparameters and helped us to define a narrower grid 
of hyperparameter values. We then used grid search via scikit-learn 
GridSearchCV to evaluate each set of hyperparameters within this grid 
to identify the best set of hyperparameters. 5-fold cross-validation 
within the training set was used to evaluate and select the best hyper-
parameter set. The hyperparameter tuning significantly improved the 
model performance on unseen test data for all the above models except 
RF. For RF, its default set of hyperparameters performed as well as the 
tuned hyperparameters, suggesting its performance is comparatively 
robust to hyperparameter changes compared to the other models eval-
uated here. Considering its good performance and easy implementation 
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by using the default hyperparameters, we selected random forest as the 
main approach for predicting the material’s properties. 

We developed RF models for both mechanical and technological 
properties since the RF algorithm can be used to model both regression 
and classification problems. Random procedures can be reproduced by 
choosing the same random seed, so the prediction performance was 
initially evaluated for one specific seed which had a similar distribution 
of test/train sets to the whole dataset. In order to take the randomness 
effect into account, the performance was further validated by testing for 
100 different seeds and comparing the mean and standard deviation of 
evaluation metrics on the 100 unseen test sets. In addition, RF models 
were validated using the leave-one-out cross-validation (LOOCV) 
method. LOOCV is an unbiased technique to investigate the influence of 
different data split on the model performance, by leaving one sample for 
test and training the model with the rest of the samples, and then 
repeating for all samples within the dataset. The 100 seeds and LOOCV 
validation methods led to robust results and conclusions. 

2.3. Evaluation metrics for ML models 

Mean absolute error (MAE), mean absolute percentage error 
(MAPE), root mean squared error (RMSE), and R2 are some of the 
common evaluation metrics for regression models. In the current study, 
MAPE and R2 are used to evaluate and compare the performance of 
regression models. MAPE is a measure of accuracy in regression models 
which presents the percent of deviation between paired observations 
expressing the same phenomenon. R2 is the coefficient of determination 
and is the proportion of the variation in the dependent variable that is 
predictable from the independent variable(s). 

Classification models were usually evaluated using measures 
including precision, recall, and F1-score. Precision, recall, and F1-score 
were calculated based on the number of true and false predictions for 
each class. The overall performance of a classifier model for predicting a 
property was presented by the average of the metric for different classes. 
For most of the technological properties in this study, the number of 
samples in different classes was not balanced, so the weighted average of 
metrics was calculated according to the number of samples in each class. 

2.4. Feature importance analysis 

The input features of an ML model can be ranked according to their 
importance and effect on the model’s prediction. In this study, the mean 
decrease in impurity (MDI) is used for measuring feature importance 
[24,25]. MDI calculates the sum of the number of usages of each feature 
across all trees and the feature importance scores are computed as the 
mean and standard deviation of accumulation of the impurity decrease 
within each tree. 

2.5. Statistical analysis 

A student’s t-test is a hypothesis testing procedure that demonstrates 
the significant differences in group means [26]. A t-test’s p-value rep-
resents the likelihood that the findings occurred by coincidence. Low P- 
values suggest that the observation was not made by chance. In this 
study, a student’s t-test is used to carry out a statistical analysis of the 
significance of prediction improvements brought by feature engineer-
ing. We applied two-tailed distribution and two-sample unequal 

variance. 

3. Results and discussion 

3.1. A comprehensive dataset and its encoded statistical correlation 
among compositions, mechanical properties, and technological properties 

We collected and cross-validated from a variety of sources [17–21] 
236 wrought aluminum (Al) alloy experimental data points across five 
major alloy series with comprehensive mechanical and technological 
properties. The nine main alloying elements: Si, Fe, Cu, Mn, Mg, Cr, Ni, 
Zn, and Ti were used to create these Al alloys through a total of 66 
designated heat treatment methods. Table 1 shows the statistical infor-
mation of these nine main alloying elements across five major alloy 
series. 

A total of six mechanical properties were included and described as 
continuous variables in the dataset: ultimate tensile strength (UTS), 
tensile yield strength (TYS), elongation (El), Brinell hardness number 
(BHN), ultimate shear strength (Shear) and endurance limit (Endurance 
or Endu). Their statistical information is presented in Table 2. A total of 
nine technological properties were included and described as categorical 
variables in the dataset: resistance to general corrosion (RGC), resistance 
to stress corrosion cracking (RSCC), Extrudability (Extr), cold work-
ability (CW), machinability (Mach), resistance and spot weldability 
(RSW), brazeability (Braz), gas weldability (GW) and arc weldability 
(AW). These technological properties are categorized by comparative 
and linguistic phrases, including “Unacceptable”, “Borderline”, “Fair”, 
“Very Good”, and “Excellent”. Table 3 shows the number of samples in 
each class for each property. 

Using the Spearman correlation, we explored the statistical re-
lationships among the different compositions, mechanical properties, 
and technological (Fig. 1). Several interesting rank correlations are 
found among those variables.  

• El is not much correlated to composition or any properties except 
TYS. This is most likely due to the defect-related nature of the 
elongation. Even among the same batch of specimens, the elongation 
readings in tensile testing might vary significantly. The observed 
negative correlation with TYS is also consistent with strength- 
ductility trade-off. 

• The mechanical properties (except El) have a strong positive corre-
lation with each other as indicated by the blue square at the center of 
the heat map. 

• Technological properties (except Mach) have a strong positive cor-
relation with each other as indicated by the blue square at the bottom 
right corner of the heat map.  

• Cu and Zn, in general, show a positive correlation with mechanical 
properties (except El) but a negative correlation with technological 

Table 1 
Statistical information of the compositional elements in the dataset.   

Si Fe Cu Mn Mg Cr Ni Zn Ti 

Min (%) 0 0 0 0 0 0 0 0 0 
Max (%) 12.2 1.1 6.3 1.2 5.5 0.25 2 8.1 0.07 
Mean (%) 0.30 0.02 0.98 0.32 1.57 0.05 0.03 1.00 0.00 
Std. Dev (%) 1.16 0.10 1.55 0.39 1.45 0.08 0.21 2.32 0.01  

Table 2 
Statistical information of mechanical properties in the dataset.   

UTS TYS El BHN Shear Endurance 

Min 90 35 2 23 30 9 
Max 730 695 42 200 435 238 
Mean 325.0 259.9 13.5 87.5 191.6 108.7 
Std. Dev 143.1 143.0 6.8 38.9 83.1 39.7  
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properties (except Mach). This also sounds reasonable. These two 
elements are the top strengthening phase formers for Al alloys and 
are the major alloying elements for high strength wrought 2xxx and 
7xxx alloys. However, these alloys also have a strong tendency to hot 
tearing due to the development of a large solidification range and 
high hot tearing susceptibility [27]. Therefore, their castability and 
weldability, such as GW and AW, are usually poor.  

• Corrosion resistance including RGC and RSCC are both strongly and 
negatively related to Cu content. This is consistent with the fact that 
the introduction of Cu into Al alloys strongly increases the corrosion 
potential compared with pure Al.  

• RSW shows a strong negative correlation with Cu and Zn. RSW of Al 
alloys generally depends on the electrical conductivity. With the 
appearance of numerous fine secondary phase particles, the elec-
trical conductivity becomes much lower in age-hardened Al alloys. 
Therefore, it is making sense that those strong secondary phase for-
mers, Cu and Zn, show a negative correlation with RSW. 

• The technological properties (except Mach) are found to be nega-
tively correlated with mechanical properties (except El) from the 
heat map. This statistical correlation is consistent with our obser-
vation that those alloys with better mechanical properties, such as 
high strength and/or high hardness, are in general more difficult to 
fabricate indicating poor manufacturability. This is also the reason 
why we believe those technological properties need to be considered 
for alloy design. 

Overall, the results from the above correlation analysis are consistent 
with and supported by experimental observations or well-known ma-
terials theory/principles. This suggested that with a reliable and 
comprehensive dataset, one can readily extract rich and meaningful 
information with data mining techniques. 

3.2. Machine learning model selection and evaluation 

Considering those interesting rank correlations encoded in this 
dataset, we investigated whether we could build supervised machine 
learning models to predict this comprehensive list of properties from 
compositions and tempers with reasonable bias-variance trade-off. The 
bias-variance trade-off is a fundamental concept in supervised machine 
learning: increasing bias will decrease variance and vice versa. The bias 
error comes from erroneous assumptions of the learning algorithm; 
high-bias learning methods typically produce simpler models that miss 
the encoded relations between features and target variables (i.e., 
underfitting). The variance error results from the sensitivity of the model 
to small fluctuations in the training set; high variance learning algo-
rithms may represent training data well but not generalize well to the 
unseen test data when they are modeling the random noise in the 
training data or unrepresentative training data (i.e., overfitting). Despite 
the tension between bias and variance, one would want to build or 
choose a supervised machine learning model with balanced bias and 
variance for the problem space. 

Table 3 
Statistical information of technological properties in the dataset.   

RGC RSCC Extr CW Mach RSW Braz GW AW 

Unacceptable NA NA NA NA 16 NA NA NA NA 
Borderline 39 7 NA 65 75 3 127 85 35 
Fair 47 36 61 79 55 2 15 39 29 
Very Good 25 85 93 62 88 100 16 3 22 
Excellent 125 108 82 30 2 131 78 109 150  

Fig. 1. The heatmap of statistical correlation among compositions, mechanical and technological properties. The bar on the right shows the color scheme 
representing the different values of Spearman’s rank correlation coefficients. 
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In this study, supervised ML algorithms were trained by 80 % of the 
data to build the models that were further tested by 20 % of the data 
samples which have never been seen by the learning algorithm during 
the training stage. The training and test samples were split randomly so 
that each set would be properly representative of the original/entire 
dataset and similar data distribution would be observed between the 
training and test set. This is normally true for a very large dataset. With a 
comparatively small dataset in our case, one random split may lead to 
biased train/test sets where the data distribution in the training and test 
set may be very different. In this case, the model trained and built from 
the training set would not perform well in the distinct test set. 

To take the randomness effects into account and to vigorously 
evaluate the robustness of the developed ML models regarding both bias 
and variance, we trained and evaluated our models by three different 
methods: (i) using a single random train-test split returned by a single 
seed where the produced train/test sets look similar (1 seed), (ii) using 
100 different random train-test splits returned by 100 random seeds 
(100 seeds), (iii) using leave one out cross-validation (LOOCV). We 
further used different metrics of regression models to evaluate our 
model performance in predicting mechanical properties including R2 

and MAPE. With the changed training/test sets, the 100-seeds experi-
ment can tell both the bias and the variance of the developed ML models. 

Fig. 2. Evaluation metrics of the developed 
ML models in predicting mechanical proper-
ties from compositions and tempers. a. The R2 

metric of various ML models was developed for 
each of the six properties. The color bars show 
the average R2 from 100-seeds experiments and 
the small bars show the variance. b. The R2 

metric of RF models was developed for each of 
the six properties. c. The metric of Mean absolute 
percentage error (%) for RF models was devel-
oped for each of the six properties.   
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For LOOCV experiments, each ML model was trained using all the 
samples except one test sample; a total of 236 ML models were trained in 
this way to make predictions on each unseen test sample of all the 236 
data points; we then calculated the R2 and MAPE across all the 236 
samples using the true values and predicted values of target variables. As 
is commonly known, by using almost all the data available for training, 
LOOCV gives a reliable and unbiased estimate of model performance, 
especially when the sample size is relatively small. 

In this study, we first tested the performance of several popular su-
pervised ML algorithms on this small dataset that includes artificial 
neural networks (ANN), support vector machine for regression (SVR), 
random forest (RF), and extreme gradient boosting (XGBoost). ANN is a 
machine learning technique that is inspired by the human brain and 
neural system for data analysis [28,29]. ANNs are more computationally 
complex and usually need a larger number of training data compared to 
other ML models in order to deliver robust results. SVR fits an appro-
priate line to the data and works well for both linear and non-linear 
problems [30]. RF algorithm randomly chooses a subset of features to 
build an ensemble of decision trees [31]. RF needs minimum pre-
processing on data and can deal with features of various scales. More-
over, RF reduces the variances in prediction by combining many 
decision trees into one ensemble. XGBoost is the optimized imple-
mentation of the gradient boosting algorithm that increases the speed 
and performance of the ensemble of sequential decision tree models 
[32]. Although XGBoost is faster than RF, it is relatively harder to tune 
and is more prone to overfitting. 

During the training process, the hyperparameters of each model were 
tuned using 5-fold cross-validation within the training set for each 
property. Prediction performances in the unseen test set of the 
hyperparameter-tuned ANN, SVR, RF, and XGBoost models from 100- 
seeds experiments are compared (Fig. 2a). The performances of SVR, 
RF, and XGBoost, measured by the R2 metric, are similar for all the 
properties in general (Fig. 2a). ANN has a lower R2 and is also less 
reliable indicated by the larger variance (Fig. 2a). Other studies have 
reached similar conclusions about ANN, SVR, and RF [11,13]. However, 

RF was reported to be comparatively robust to hyperparameter tuning 
and the default hyperparameters typically perform well without the 
need for further hyperparameter tuning [33]. We verified this within 
this dataset. We decided to use RF with the default hyperparameters in 
this study considering the following factors: (1) the good performance of 
RF with default hyperparameters without the need for further hyper-
parameter tuning is convenient for building ML models for a variety of 
target variables, 6 mechanical and 9 technological properties in this 
study; (2) our study could be easily replicated or adopted by researchers 
who are not very experienced with ML models. 

Six RF models with the default hyperparameters were finally 
developed to predict each of the six mechanical properties according to 
the features of compositional elements and tempers. Across all the six 
mechanical properties, the model performance on the unseen test 
dataset measured by R2 and MAPE was very similar between 100-seeds 
and LOOCV experiments, and relatively small variance was observed for 
100-seeds experiments indicated by small error bars (Fig. 2b,c). For 
some properties such as EI and Endurance, 1-seed experiments showed 
better model performance in prediction than 100-seeds (Fig. 2b,c). This 
could be because this 1-seed split yielded a desired situation for training 
ML models: similar data distribution between the training set and test set 
in terms of features (compositions and tempers) and outputs (proper-
ties). The histograms of the features and outputs in training and test sets 
split with seed 26 look similar (data not shown). On the other hand, for 
some random splits among the 100 seeds, potentially distinct training/ 
test sets were generated and resulted in worse prediction performance in 
the test set, making the average performance from 100-seeds experi-
ments slightly worse. Nevertheless, the good average performance with 
small variance from 100-seeds experiments together with the good 
performance from LOOCV experiments suggested that all the RF models 
developed for predicting these six mechanical properties were robust 
and reliable. 

Fig. 3. Scatter plots of predicted and experimental true values for six mechanical properties from the LOOCV experiments. a. UTS b. TYS c. El d. BHN e. 
Shear f. Endurance. The black diagonal line shows where the predictions are exactly equal to the actual values. 
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Fig. 4. The importance scores of the top-10 most important features identified by the RF model for each mechanical property. a. UTS b. TYS c. El d. BHN e. 
Shear f. Endurance. Red bars refer to temper types while blue bars refer to the compositions. The thin black lines are the error bars. 

Fig. 5. Evaluation metrics of the developed RF 
models in predicting mechanical properties from 
both compositions/tempers and BHN. a. R-squared 
values. b. Mean absolute percentage error (%) values. 
For each property, the first bar shows the prediction 
accuracy without the BHN feature from 100-seeds 
experiments; the following three bars show the pre-
diction accuracy with the addition of the BHN feature 
from 100-seeds, 1-seed, and LOOCV experiments. The 
stars suggest a significant difference in the R-squared 
values or the mean absolute percentage error values 
between the models developed without the BHN input 
and with the BHN input. P-values lower than 1e-10 
are considered as a significant difference and 
marked with a star (*). UTS, TYS, and Shear have R2 

P-values of 2.36e-40, 1.65e-37, and 1.72e-40, 
respectively, whereas El and Endurance have P- 
values of 3.20e-1 and 1.72e-2. UTS, TYS, and Shear 
have MAPE P-values of 4.64e-65, 1.04e-44, 2.49e-45 
while El and Endurance have P-values of 3.98e-1, 
and 5.65e-1.   
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3.3. Prediction of six mechanical properties from compositions and 
tempers 

Among all the six mechanical properties, UTS, BHN, and Shear were 
predicted well from compositions and tempers with R2 equal to or close 
to 0.90 for unseen test samples from LOOCV experiments (Fig. 2b). The 
prediction for TYS was a little bit worse with an R2 of 0.85 (Fig. 2b). The 
predictions for EI and Endurance from compositions and tempers were 
slightly worse with R2 close to 0.80 (Fig. 2b). Still, our prediction for El 
appeared to be better than others who also claimed EI to be more 
challenging to predict than UTS or TYS [13]. This is probably because it 
is more sensitive to internal defects, which requires more information on 
impurities, fabrication processes, and other defect formation-related 
factors for a better prediction. Similar trends were observed for the 
metric of MAPE (Fig. 2c). 

Interestingly, although we simply used designated temper types as 
processing information, our predictions were comparable to others on Al 
alloys in literature which used more complicated parameters such as 
aging time and temperature [13]. Although they also had a larger 
dataset (~800 samples), we could achieve a better R2 of 77.7 % (Fig. 2b) 
for predicting elongation in our LOOCV experiments. This suggests that 
it may be sufficient to use the designated temper as the only processing 
feature for predicting properties. 

We further examined the scatter plots for predicted and actual 
experimental values of each property acquired from LOOCV experi-
ments since LOOCV tends to give a reliable and unbiased estimate of 
model performance, especially for a small dataset (Fig. 3). The pre-
dictions for UTS, BHN, and Shear are scattered close to the diagonal line 
suggesting more accurate predictions, which is consistent with a high 
value of R2 (Fig. 3a,d,e). The predictions of TYS and Endurance (Fig. 3b, 
f) for most samples are close to the diagonal line suggesting accurate 
predictions for most samples; the several samples that are away from the 
diagonal line (not predicted well) lead to lower R2. For El, it is inter-
esting to notice that the RF model predicted well (predictions close to 

the diagonal line) for samples with smaller El and generally worse 
(predictions away from the diagonal line) for samples with bigger El 
(Fig. 3c). 

To understand better how each of the input features (compositions 
and tempers) relate to the outputs (mechanical properties), we further 
performed the feature importance study (Fig. 4). The feature importance 
score suggests how important a feature is in predicting the output. Since 
all the 236 models from the LOOCV experiments are similar with only 
one sample difference for training, we randomly choose one LOOCV 
model for each property to show the importance scores of the top-10 
features. For all the mechanical properties except El, compositions are 
the most important predictors, among which Cu, Mg, and Zn are the 
most influential alloying elements (Fig. 4). In terms of tempers, O, T4, 
and T6 are the most important in the prediction of mechanical properties 
(Fig. 4). As the age hardening is the most effective strengthening method 
for Al alloys (~30 times increase in strength), the secondary strength-
ening phase-forming elements (Cu, Mg, Zn) and tempers (O, T4, T6) 
have the strongest influence on general mechanical properties including 
UTS, TYS, and El. Therefore, the feature importance ranking by our 
developed RF models is consistent with and supported by the material 
knowledge. These findings are also consistent with the previous corre-
lation analyses (Fig. 1). It may also be deducted that heat treatment 
methods, especially temper O and T4 are the most defining and pre-
dictive features for elongation (Fig. 4c). This also makes sense because 
elongation is the highest in the annealed state (O temper) and the lowest 
in the peak aged state (T4/T6 temper). 

3.4. The inclusion of BHN as an input feature significantly improves the 
prediction of UTS, TYS, and Shear, but not for El and Endurance 

The performance of the model may be improved if provided with 
more useful information as inputs. BHN is known to be correlated with 
tensile properties and is relatively easy to be measured experimentally. 
Thus, including BHN as an additional input is a viable and practical idea 

Fig. 6. Scatter plots of predicted and experimental true values for six mechanical properties with the additional BHN feature from the LOOCV experi-
ments. a. UTS b. TYS c. El d. Shear e. Endurance. The black diagonal line shows where the predictions are exactly equal to the actual values. 
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for ML-assisted alloy development. Therefore, we performed all three 
experiments (1-seed, 100-seeds, and LOOCV experiments) to explore 
whether the inclusion of BHN as an additional feature would improve 
the predictions of other mechanical properties. 

All three experiments suggested that by including BHN the 

predictions of UTS, TYS, and Shear were greatly improved while pre-
dictions of elongation and endurance were not influenced much, based 
on the evaluation metrics of R2 and MAPE (Fig. 5a,b). For instance, not 
only the average R2 of 100-seeds experiments was increased by 10 % or 
more for UTS, TYS, and Shear, but also the standard deviation of R2 was 

Fig. 7. Evaluation metrics of the developed 
RF models in predicting the technological 
properties. a. Precision, recall, and F1-score of 
the RF models that take compositions only as 
features or inputs. b. The precision of the RF 
models that take both compositions and tempers 
as feature inputs. The precision P-values of CW, 
Mach, RSW, Braz, GW are as low as 3.77e-54, 
1.45e-21, 1.14e-14, 8.43e-20, 1.25e-30 while 
for RGC, RSCC, Extr and AW the P-values are 
3.03e-5, 1.37e-2, 6.1e-8 and 5.56e-6. c. Recall of 
the RF models that take both compositions and 
tempers as feature inputs. The recall P-values of 
CW, Mach, RSW, Braz, GW are as low as 3.30e- 
56, 2.90e-20, 3.46e-26, 1.18e-23, 3.04e-15 
while for RGC, RSCC, Extr and AW the P-values 
are 6.60e-6, 3.07e-1, 1.82e-7 and 4.36e-7. d. F1- 
score of the RF models that take both composi-
tions and tempers as feature inputs. The F1-score 
P-values of CW, Mach, RSW, Braz, GW are as low 
as 9.79e-57, 7.76e-20, 1.58e-23, 1.28e-23, 1.64e- 
21 while for RGC, RSCC, Extr and AW the P- 
values are 1.75e-5, 5.60e-2, 2.10e-7 and 1.78e-6. 
The stars suggest a significant difference in the 
evaluation metrics between the models devel-
oped without the temper input and with the 
temper input. P-values lower than 1e-10 are 
considered as a significant difference and marked 
with a star (*).   
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much smaller after including BHN (Fig. 5a). It suggested that including 
BHN as an input, both improves the accuracy and reduces the uncer-
tainty of prediction for UTS, TYS, and Shear. We performed the student’s 
t-test to statistically examine the significance of prediction improvement 
brought by the inclusion of BHN. When testing whether there is a sig-
nificant difference of the R2 metric, very low P-values of 2.36e-40, 
1.65e-37, and 1.72e-40 were respectively acquired for UTS, TYS, and 
Shear, whereas much larger P-values of 3.20e-1 and 1.72e-2 were ob-
tained for El and Endurance (Fig. 5a). A similar pattern was observed for 
the MAPE metric (Fig. 5b). This supported our finding that including 
BHN into the feature space significantly improved the prediction for 
UTS, TYS, and Shear, not for EI and Endurance (Fig. 5a,b). We further 
examined the predicted property values of all the samples from the 
LOOCV experiments against their experimental values (Fig. 6). For UTS, 
TYS, and Shear, the predicted values are closely aligned to the diagonal 
line the location of which represents a perfect match between the pre-
dicted and experimental values (Fig. a,b,d). For El and Endurance, the 
scatter plots look very similar to the ones not including BHN as an input 
(Fig. 6c,e). Therefore, including BHN in ML alloy design for predicting 
UTS, TYS, and Shear is a viable option. 

A potential problem in working with small datasets is that the results 
may not be generalized well since the small test set might be biased and 

unreliable [16]. However, our results are verified for 100 distinct 
random test splits with small but reasonable sample sizes (188 and 48 
samples for training and test specifically). Therefore, testing the ML 
models by considering the randomness effect delivers a robust and 
reliable understanding of the model’s performance, especially on a small 
dataset. Furthermore, large datasets are usually not available in real-life 
alloy discovery problems and may not necessarily result in significantly 
more accurate models. For example, in a study [14] a relatively large 
dataset of 713 samples was used to predict UTS using composition, 
temper, and the Brinell hardness and achieved a 10-fold cross-validation 
average error of 4.26 % which is very close to our LOOCV MAPE of 5.31 
% (Fig. 5a). 

3.5. Prediction of technological properties directly from compositions or 
from compositions and tempers 

Technological properties are desirable for the manufacturing pro-
cesses, such as casting, welding, forming, and machining. They define 
the suitability of the material for different fabrication processes and 
applications. Different from mechanical properties, some technological 
properties may not be affected by temper much. For instance, weld-
ability and castability are only related to the composition, since they are 

Fig. 8. The importance scores of the top-10 most important features identified by the RF model for each technological property. a. RGC. b. RSCC. c. Extr. d. 
CW. e. Mach. f. RSW. g. Braz. h. GW. i. AW. Red bars represent tempers while blue bars represent compositions. The thin black lines are the error bars. 
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liquid-state processes. Therefore, we first examined how accurate 
compositions themselves could predict these nine technological prop-
erties using the RF classifier. Like the mechanical properties, the default 
hyperparameters of the RF classifier showed similar performance to the 
optimized hyperparameters for each of the technological properties 
(data not shown). Thus, we only showed the evaluation metrics of pre-
cision, recall, and F1-score from the developed RF models with the 
default hyperparameters. We did LOOCV and 100-seeds experiments to 
examine the model robustness to randomness caused by data splits. RF 
models yielded very similar values of precision, recall, and F1-score 
(Fig. 7a); thus, in the following sections, we only describe the F1- 
scores of the models for simplicity. Using only compositions, RGC, 
Extr, Braz, and GW were predicted with excellent F1-score of 0.96, 0.94, 
0.97, and 0.97 specifically (Fig. 7a). RSCC, RSW, and AW were predicted 
well with F1-scores of 0.79, 0.85, and 0.86 specifically (Fig. 7a). Mach 
was predicted slightly worse with an F1-score of 0.75 (Fig. 7a). CW was 
predicted the worst with an F1-score of 0.57 (Fig. 7a). 

We further investigated the influence of including both compositions 
and tempers as inputs on the prediction performance measured by 
precision, recall, and F1-score (Fig. 7b,c,d). Both LOOCV and 100-seeds 
experiments were repeated as above except in this case RF models were 
trained and developed with the additional inputs of tempers. We 
compared the 100-seed results of the RF models trained by composition 
only as well as by composition and temper. Including tempers as inputs 
greatly improved the F1-scores of the RF models in predicting CW, 
Mach, and RSW; a slight F1-score increase was observed for AW 
(Fig. 7d). By contrast, the prediction of RGC, RSCC, Extr, Braz, and GW 
got worse by including tempers as additional inputs (Fig. 7d). The stu-
dent’s t-test was performed to examine whether there is a significant 
difference of the model performance between including and excluding 
tempers. The F1-score P-values of CW, Mach, RSW, Braz, and GW were 
as low as 9.79e-57, 7.76e-20, 1.58e-23, 1.28e-23, 1.64e-21 respectively. 
While for RGC, RSCC, Extr, and AW, much larger F1-score P-values were 
acquired as 1.75e-5, 5.60e-2, 2.10e-07, and 1.78e-06, specifically 
(Fig. 7d). This similar trend was observed for both precision and recall P- 
values (Fig. 7b,c). With a stringent significance threshold of 1e-10, we 
may conclude that by including tempers, the model’s predictive per-
formance has significantly increased for CW, Mach and RSW, decreased 
for Braz and GW (Fig. 7b,c,d), and has no significant difference for RGC, 
RSCC, Extr, and AW. We hypothesized the properties would be predicted 
better by including tempers as inputs if these properties were affected 
much by tempers; on the contrary, for properties not affected much by 
tempers, the inclusion of tempers as inputs could worsen their pre-
dictions since it produced a much higher input dimension without 
providing much useful information. 

The feature importance study supported our hypothesis (Fig. 8). As 
introduced in the mechanical property section, the feature importance 
score suggests how important a feature is in predicting the output. For 
RGC, RSCC, Extr, Braz, GW, and AW, tempers were ranked low with 
importance scores smaller than 0.05 (Fig. 8a, b, c, g, h, i); for CW, Mach, 
and RSW, among the top 10 features ranked by the importance score, the 
O temper was ranked very high, 3rd, 5th, and 2nd specifically (Fig. 8d,e, 
f). This explained why the inclusion of tempers predicted CW, Mach, and 
RSW significantly better but didn’t help much in the prediction of all the 
others, compared to using compositions only. In particular, the pre-
dictions of Braz and GW were significantly worse; this is likely due to the 
dramatically increased dimension of input features that do not contain 
much useful information. 

More interestingly, when looking at the top predictive features 
ranked by our RF models, some ranks are supported by the established 
processing (composition/temper)-property relationships while a few 
others provide indications on how one property could be affected by 
compositions or tempers that is not known. For example, Cu content is 
the most predictive feature for RGC (Fig. 8a) and RSCC (Fig. 8b) with the 
highest feature importance score. This is consistent with the strong in-
fluence of Cu content to Al corrosion potential. It is interesting to notice 

that Mg content is also a strong predictor, followed by Mn and Zn, for 
RSCC. Since the fundamental mechanism of stress corrosion cracking is 
still unclear, exploring how Mg, Mn and Zn affect RSCC may signifi-
cantly improve our understanding of this phenomenon. Extr of an alloy 
is the maximum relative extrusion speed, which allows to obtain 
extruded profile without tearing or cracking. It is dependent on alloy 
compositions. In general, the existence of Mg (5xxx), Cu (2xxx) and Zn 
(7xxx) is responsible for poor Extr [34]. Consistent with these obser-
vations, compositions such as Mg, Cu, Mn, and Zn were ranked as the 
most-predictive features while tempers were showed to have little in-
fluence in predicting Extr (Fig. 8c). CW is defined as the relative ease 
with which a metal can be shaped through plastic deformation. It is 
related to TYS that is strongly affected by Cu and O temper. It is thus 
making sense for RF to rank Cu and O temper among the top 3 predictors 
for CW (Fig. 8d). In addition, work hardening, which is responsible for 
CW, is the major strengthening mechanism for Mn-containing and Mg- 
containing solid-solution Al alloys. Consistent with this, Mn and Mg 
stand out in the feature importance chart as well (Fig. 8d). For Mach, the 
compositions of Cu, Mg, Mn and Si, and O temper are among the top 
predictors (Fig. 8e). As the property of Mach is complicated, how Mach 
is quantitatively related to the above predictors needs further investi-
gation. RSW is a property related to solid state welding process and is 
determined by the alloy’s electrical conductivity that are mostly related 
to Cu content and O temper (highest conductivity state). Remarkably, 
our RF model for RSW also ranked Cu content and O temper as the top-2 
predictive features (Fig. 8f). For predicting Braz, GW and AW (Fig. 8g, h, 
i), tempers in general have very low scores. GW and AW are mostly 
dependent on compositions since they are the properties related to the 
solidification. Therefore, the low predictive ability of tempers for GW 
(Fig. 8h) and AW (Fig. 8i) is in good agreement with this. Overall, this 
feature importance study suggested that our RF model was able to 
capture many of the true underlying processing-property relationships 
and further use these for reliable and accurate prediction. At the same 
time, it revealed a few novel relationships that warrant further 
investigation. 

So far, there are limited research efforts in understanding the per-
formance of ML algorithms in predicting technological properties 
[15,36–40]. One of the reasons could be the lack of data on techno-
logical properties[35]. Here, we have collected a small but decent set of 
data points (236) containing a comprehensive set of nine important 
technological properties for commercial wrought Al alloys. We have 
thoroughly studied the performance of ML algorithms in predicting the 
nine technological properties by examining the bias-variance trade-off, 
filling this knowledge gap on ML and technological properties of 
wrought Al alloy. We have also shown that the inclusion of tempers into 
the feature space can be beneficial for predicting some properties (CW, 
Mach and RSW), but not all of them. The subsequent RF feature 
importance studies are consistent with the established processing (and 
composition)-microstructure-property relationship, which further 
confirmed the effectiveness of our ML models. 

4. Conclusions 

In this work, we collected a small but comprehensive dataset of 
commercial wrought Al alloys and investigated the applicability of su-
pervised ML models in alloy design using such a realistic small dataset. 
We systematically assessed the ML models with a focus on their 
robustness and effectiveness on predicting a full set of alloy properties. 
We performed 1-seed, 100-seeds, and LOOCV experiments to better 
understand the bias-variance trade-off of the developed ML models in 
predicting unseen test data points. We demonstrated that the developed 
RF models were accurate and reliable in predicting the full set of alloy 
properties, with generally low bias and variance. Our predictions are 
comparable with if not better than previous studies that used similar 
input features/outputs but larger datasets. We have effectively modeled 
a comprehensive collection of technological properties that are critical 
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for the manufacturing processes but have not been thoroughly studied 
before. In addition, we studied the impact of engineering the input 
(feature) space on the effectiveness of the ML models, by adding BHN to 
mechanical property predictions and adding temper to technological 
property predictions. We found the inclusion of BHN significantly 
improved the prediction of UTS, TYS and Shear but didn’t affect the 
prediction of El and Endurance. The addition of temper greatly 
improved the prediction of CW, Mach, and RSW, but substantially 
worsened the prediction of Braz and GW. These findings may benefit 
other researchers in selecting or measuring the proper collection of 
features for developing ML models for different properties. The feature 
importance study not only confirmed the soundness of our ML models 
but also revealed the underlying processing-(micro)structure–property 
relationship. In summary, using a realistic small commercial dataset, 
supervised ML models such as RF can be applied to predict the whole set 
of properties including both continuous mechanical properties and 
discrete technological properties for wrought Al alloy. The methodology 
used in this study can be readily applied to study the processing- 
property relationship in other alloys. 
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