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A B S T R A C T

The flexoelectricity describes the contribution of the linear couplings between the electric po-
larization and strain gradient and between polarization gradient and strain to the thermo-
dynamics of a solid and represents the amount of polarization change of a solid arising from a
strain gradient. Although the magnitude of the flexoelectric effect is generally small, its con-
tribution to the overall thermodynamics of a solid may become significant or even dominant at
the nanometer scale. Recent experimental and computational efforts have led to significant ad-
vances in our understanding of the flexoelectric effect and its exploration of potential applica-
tions in devices such as sensors, actuators, energy harvesters, and nanoelectronics. Here we re-
view the theoretical development and experimental progress in flexoelectricity including the
types of materials systems that have been explored and their potential applications. We discuss
the challenges in the experimental measurements and density functional theory computations of
the flexoelectric coefficients including understanding the order of magnitude discrepancies be-
tween existing experimentally measured and computed values. Finally, we offer a perspective on
the future directions for research on flexoelectricity.

1. Introduction

An important family of functional materials, the ferroelectrics, have been widely utilized in actuators, sensors, memory storage,
electro-optics, microelectromechanical systems (MEMS), and others. The multifunctionality of a ferroelectric derives from the cou-
plings among internal order parameters, such as ferroelectric polarization and spontaneous strain, and external thermodynamic
variables, such as temperature, stress, and electric fields. Although the thermodynamics of such couplings has been well established
at the macro-scale for homogeneous systems, the electromechanical coupling at the nano-scale for inhomogeneous systems, e.g., the
flexoelectric effect, is much less well-understood.

The flexoelectric effect, or flexoelectricity, describes the coupling between the gradient of a mechanical strain and the electric
polarization. Together with the well-established piezoelectricity, the dependence of the induced electric polarization upon me-
chanical deformation of a solid can be phenomenologically written as

= +P e µ
xi ijk jk ijkl
kl

j (1.1)

where Pi is the electric polarization component, jk is the strain component, eijk the third-rank piezoelectric tensor, and µijkl the fourth-
rank flexoelectric tensor (flexoelectric coefficient), all defined under a zero-macroscopic electric field condition. The first term on the
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right-hand side of Eq. (1.1) describes the piezoelectric effect, i.e., the linear response of polarization to a homogeneous applied strain.
The second term is the flexoelectric contribution to polarization from an inhomogeneous strain, i.e., the strain gradient. In this
review, the Einstein summation convention is assumed with repeating indices i, j, k, and l in a term indicating summation from 1 to 3.

Although flexoelectricity is also a type of electromechanical coupling, it is not simply a higher-order extension of piezoelectricity.
For example, the flexoelectric coefficient is a fourth-rank tensor, and hence in principle, it exists in all insulating materials while
piezoelectricity is limited to non-centrosymmetric materials. Furthermore, as a strain gradient is inversely proportional to the spatial
scale, the flexoelectric effect is size-dependent; it is small at the macro-scale, usually on the magnitude of 10−9 C/m2 in terms of
flexoelectric polarization and becomes increasingly prominent as the system size diminishes.

The recent interest in the flexoelectric effect in dielectric materials is partly driven by the device miniaturization and the use of
nanotechnologies in which the size-dependent flexoelectric effect may play an increasingly critical role. The present review is focused
on flexoelectricity in solids whereas the terminology flexoelectric effect is also used in areas of liquid crystals [1,2] and biological
membranes [3,4]. There are several existing review articles on solid-state flexoelectricity from a number of different perspectives,
including general overviews of flexoelectric effect in solids [5–7], in 2-D materials [8], and at nanoscale [9,10], fundamental physics
[11], experimental progress [12,13], comparison between soft and hard materials [14], development of the first-principles theory
[15], thermodynamics [16], applications [17,18], etc. Very recently, a compendium devoted to flexoelectricity in solids has also be
published [19]. The present review will focus on several more recent discoveries and progress in both theory and experiments as well
as a number of remaining confusions and controversies associated with the basic concepts and fundamentals of flexoelectricity in
solids.

We first present the progress in the theory of flexoelectricity of solids and in the computational modeling efforts to understand the
flexoelectric phenomenon at different length and time scales. Then, we survey on the experimental measurements and computational
techniques of flexoelectric effects and summarize the flexoelectric coefficients of a variety of ceramics and single crystals obtained
from both experiments and calculations. The common experimental methods for flexoelectricity measurement are compared. The
fourth section is on the manifestation of flexoelectric effect in a number of systems, leading to modification of physical properties,
new switching mechanisms, novel interfacial structures, exotic transport phenomena, etc. Section 5 is dedicated to the challenges and
controversies in the study of flexoelectricity, including the ambiguities and subtleties in the definitions of flexoelectric phenomena,
flexoelectric tensors, and flexoelectric fields. Especially, the discrepancies among the flexoelectric coefficients obtained from ex-
periments and theories and among different calculation results are discussed, and the possible reasons are summarized. Section 6
presents a brief account of the emerging trends, as well as the typical flexoelectric structures, flexoelectric composites, and the
applications of flexoelectricity. The review will conclude with a summary and a perspective of the flexoelectric research.

2. Progress in theories and modeling of flexoelectricity

This section provides an overview of the macroscopic and microscopic theories of solid-state flexoelectricity as well as the
corresponding numerical modeling methods. We will first survey on the history and development of the theoretical aspects of
flexoelectricity, followed by the macroscopic and microscopic descriptions. Numerical modeling of flexoelectric-related phenomena
based on these theoretical groundworks utilizing finite element methods, phase-field simulations, and atomistic approaches will be
reviewed. The theoretical evaluation of flexoelectric coefficients and possible subtleties and controversies involved in the theoretical
description of flexoelectricity are deferred into Section 4 and 5, respectively.

2.1. Development of flexoelectricity theories

The earliest theoretical description of flexoelectricity in solids could be dated back to 1960s in the study of lattice dynamics
[20–23], electron-phonon interactions [24], and anomalous electromechanical effects [25] in centrosymmetric ionic crystals. In-
itially, there was no consensus in the definition of this higher-order electrochemical coupling effect, and the direct (strain gradient
induced polarization) and converse responses (field induced bending) were treated separately. It was only after more than a decade
later that Indenbom et al. [26,27] firstly borrowed the terminology “flexoelectricity” from the liquid crystals community where a
similar phenomenon had been more comprehensively investigated [1]. Systematic theoretical treatments on the solid-state flex-
oelectricity appeared in the 1980s, represented by Tagantsev’s formulation of the phenomenological and microscopic descriptions of
flexoelectricity in crystalline dielectrics [28–30]. The author distinguished the flexoelectric effect from the piezoelectric effect,
identified four different contributions to flexoelectric responses, and suggested the significance of flexoelectricity at the nanoscale
especially in high-κ materials such as ferroelectrics. However, for a long period after that, there were limited interests in the solid-
state flexoelectricity, among which only a few were relevant to ferroelectric materials [31–33]. The situation changed when the series
of experiments led by Ma and Cross reported unexpectedly high flexoelectric responses in a variety of perovskite ceramics at the
beginning of the 2000s [34–39]. These experimental findings, in turn, rejuvenated theoretical research on flexoelectricity, parti-
cularly in establishing a state-of-the-art first-principles framework and advancing the continuum mechanics description. To depict a
big picture, we illustrate the milestones in the development of flexoelectricity theories chronologically in Fig. 2.1.

The theories of solid-state flexoelectricity include the macroscopic theory based on the continuum medium assumption and the
microscopic theory accounting for the discrete nature of materials. The macroscopic theory, or the phenomenological theory of
flexoelectricity within the condensed-matter community, is based on the thermodynamics of a dielectric by introducing a flexo-
electric contribution into the total free energy to interpret the electric polarization induced by bending a non-piezoelectric [28,29].
The dynamic flexoelectric coupling can also be included into the kinetic energy to account for the polarization wave induced by a
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propagating acoustic wave [28,29]. Combined with the Landau-Ginzburg-Devonshire (LGD) theory of ferroelectrics, the phenom-
enological flexoelectricity theory is remarkably powerful for studying the impact of flexoelectric coupling on the static and dynamic
behaviors of ferroelectrics and related materials. Recent advancement in this direction includes developing the theory for generalized
flexo-type couplings [40,41], improving surface and dynamic flexoelectric contributions [42,43], and combining electrochemistry
and semiconductor theories [44] to account for flexoelectric-mediated behaviors in more complex systems. In addition, the LGD-
based theory is fundamental to the various numerical modeling of flexoelectric-related phenomena at a macroscopic scale, e.g., the
phase-field method [45–47].

The similar macroscopic treatment on the flexoelectric effect is also recognized as the continuum theory of flexoelectricity in the
mechanics community. It originates from Mindlin’s seminal work on the polarization gradient-strain coupling in elastic dielectrics
[22] which is known as the converse flexoelectric effect in nowadays’ context. A full description of both direct and converse
flexoelectric couplings was later documented by Sahin and Dost [48] to formalize the spatial and frequency dispersion effects in
ferroelectrics. It was also in this work that the strain gradient-strain gradient coupling (strain gradient elasticity) and flexoelectric
coupling were firstly treated in a unified continuum framework, the necessity of which has been recognized only recently [49–51].
However, the plethora of parameters used in Ref. [48] restricted its practical implementation; a modified version for isotropic
dielectrics has been proposed by Maranganti et al. [52] to analytically solve continuum mechanics problems complicated by flex-
oelectricity. Recent advances in the continuum flexoelectricity theory are affected by the variants of gradient elasticity theory [53].
Reformulated formalism using strain-gradient theory [48,54], couple-stress theory [55,56], and rotation-gradient theory [57,58]
have been promoted for more accurate and complete total energy functionals. Meanwhile, efforts towards a nonlinear flexoelectricity
theory abandoning the infinitesimal strain assumption have been made [59,60], allowing for modeling the electromechanical be-
haviors in low-dimensional and flexural systems that can sustain large deformation. Notably, the continuum flexoelectricity theory
also underpins the finite element analysis [61–63] and topology optimization [64–67], which are of critical importance in designing
complex flexoelectric-based structures.

From a microscopic viewpoint, the contribution to a flexoelectric response comes from both atomic displacements and electronic
charge density redistribution. Early microscopic theories of flexoelectricity tend to focus on the former, representing atoms as rigid
ions with fixed point charges [29] or as polarizable core-shell pairs [68]. The first attempt toward a microscopic description of
flexoelectricity was attributed to Askar et al. [68] who utilized a core-shell model, and a lattice dynamics approach to quantify the
macroscopic parameters introduced by Mindlin in the polarization gradient theory of elastic dielectrics [22]. Later, Tagantsev
adopted the rigid-ion approximation and established the relationship between flexoelectric responses and nonuniform atomic dis-
placements through a longwave method [28,29]. In this context, the phenomenological flexoelectric coefficient can be expressed in
terms of microscopic quantities such as dynamic matrices and effective Born charges. A comparative revisit of the core-shell and
rigid-ion models of flexoelectricity has recently been given by Marangantti and Sharma [69]. In addition to lattice dynamics models,
there were also simple linear chain models stemming from the study of flexoelectricity in non-crystalline polymers [70] and elas-
tomers [71]. This linear chain model has later been extended to account for flexoelectric effects in dielectrics [72] and order-disorder
ferroelectrics [73]. More recently, a 2D chain model has been proposed to examine the higher-order flexoelectric couplings [74].

Fig. 2.1. Timeline and milestone achievements in the development of macroscopic and microscopic theories of flexoelectricity in solids.
Abbreviations: Landau-Ginzburg-Devonshire (LGD), density functional theory (DFT), density functional perturbation theory (DFPT).
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The classical microscopic theories mentioned above primarily focus on the lattice aspect of flexoelectric effects. Consequently, the
electronic contribution was either explicitly neglected or empirically addressed (i.e., through core-shell model) despite its critical
importance. The first formal attempt toward the electronic contribution of flexoelectric response was given by Resta [75] who,
inspired by Martin’s quantum mechanics theory on piezoelectricity [76], examined the electronic flexoelectricity in the simple cubic
lattice and questioned the conclusions drawn from classical rigid-ion models [29]. The electronic flexoelectricity in general dielectrics
has later been addressed by Hong and Vanderbilt [77]. Recently, a unified first-principles theory of flexoelectricity in insulating
crystalline with both ionic and electronic contributions has been formulated in the context of density-functional theory by Hong and
Vanderbilt [15] and, independently, in the framework of density-functional perturbation theory by Stengel [78]. On this basis,
Stengel further clarified the surface effect in flexoelectric behaviors [79] and revealed the close relations between the flexoelectric
tensor and other materials physics such as absolute deformation potential [80] and strain gradient elasticity [50], all under a rigorous
quantum mechanical ground. Very recently, a practical scheme to calculate the full flexoelectric tensor using a unit cell-based method
built on density functional perturbation theory has been demonstrated by Dreyer, Stengel, and Vanderbilt [81].

The microscopic theory of flexoelectricity has greatly deepened the understanding of the atomic and electronic mechanisms of
flexoelectric properties. Specifically, it helps establish a direct relationship between the phenomenologically induced flexoelectric
parameters with the microscopically computable quantities, thereby offering a semi-empirical or ab initio routine for calculating the
flexoelectric tensors of practical materials. The theoretical values of flexoelectric parameters can be further utilized to help eliminate
other extrinsic effects in flexoelectric responses and verify the experimental measurements, to serve as inputs for higher-level nu-
merical simulations of flexoelectric-related phenomena, and to design and screen new materials with desired flexoelectric properties
through high-throughput computation and data mining techniques.

2.2. Macroscopic theories

In this subsection, we first outline the phenomenological theory of bulk static and dynamic flexoelectricity. The formulation will
be framed within the LGD theory of ferroelectric materials, the applications of which to predicting and explaining flexoelectric-
related behaviors in a variety of systems are reviewed. Then we summarize the general continuum mechanics theory of flexoelec-
tricity by comparing with the phenomenological flexoelectricity theory and highlighting a few representative works. It should be
noted that since these two branches of macroscopic flexoelectricity theories were independently developed in the solid-state physics
and the mechanics community, they employ different terminology and expressions and have different foci. For comprehensiveness,
we decide to present both of them separately in this subsection.

2.2.1. Phenomenological theory
To facilitate the discussion, we first outline here the phenomenological theory of bulk static and dynamic flexoelectricity. Notably,

we formulate the thermodynamics within an LGD framework specifically for ferroelectrics since more comprehensive descriptions for
general dielectrics have been exhaustively reviewed in many excellent existing articles [11,19,30]. Afterwards, the applications of the
phenomenological theory to explaining and predicting flexoelectric behaviors and recent advances of the theory will be briefly
reviewed.

2.2.1.1. Outline of the theory. The phenomenological thermodynamic theory of ferroelectrics, also known as Landau theory or LGD
theory, lays the thermodynamic foundation for the study of ferroelectric phase transitions. According to LGD theory, the total free
energy with the flexoelectric contribution can be written as a function of the spontaneous polarization Pi, strain ij, and their spatial
gradients, i.e.,

= + + + +F dV P P P P P P q P P c g P P P E E E f P P1
2

1
2

( ) 1
2

1
2

( )ij i j ijkl i j k l ijkl ij k l ijkl ij kl ijkl i j k l i i ij
b

i j ijkl i j kl kl j i, , 0 , , (2.1)

where the α’s are the Landau-Devonshire coefficients (expanded up to 4th-order for simplicity), cijkl is an elastic stiffness tensor
component, qijkl is an electrostrictive tensor component, gijkl is a gradient energy coefficient of polarization, 0 is the dielectric
permittivity of the vacuum, and ij

b is the background dielectric constant. Ei is the total electric field related to the electrostatic
potential via =Ei i, . In the present paper, the comma in the subscript indicates spatial derivative, e.g., = x(.) (.)/i i, . The strain is
symmetrically defined, i.e., = +u u( )ij i j j i

1
2 , , , where ui is a mechanical displacement component. The flexoelectric contribution to the

total free energy density is written as

=f f P P1
2

( )flexo ijkl i j kl kl j i, , (2.2)

where fijkl is the so-called flexoelectric coupling tensor (flexocoupling tensor). This form of coupling term is also known as the Lifshitz
invariant, which is allowed by symmetry [82].

With the total free energy functional (2.1), the equation of state is then obtained by variation in the free energy through = 0F
Pi

and =F
ijij
where ij is the mechanical stress. The former equation gives

= + =F
P

P P P P q P g P f E2 4 2 0
i

ij j ijkl j k l klij kl j ijkl k jl ijkl kl j i, , (2.3)

By assuming linear dielectrics and keeping the first term in polarization, the change of polarization due to the flexoelectric coupling
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and the applied electric field is

= +P E E( )j ij i
f

i0 (2.4)

where = q( ) /2ij ij ijkl kl
1 is the dielectric susceptibility, and Ei

f is the flexoelectric field

=E fi
f

ijkl kl j, (2.5)

Thus, the net effect from the flexoelectric coupling is equivalent to the presence of an additional electric field, which can asymme-
trically change the free energy profile of a dielectric in analogy to an electric field. Assuming zero external electric field, one can
recover from (2.4) the phenomenological definition of the flexoelectric-induced polarization in (1.1). Hence, the flexoelectric tensor
and the flexocoupling tensor are connected by

=µ fijkl
E

im mjkl0 (2.6)

where superscript E stands for the fixed electric field boundary condition. The latter equation of state gives the generalized Hooke’s
law, i.e.,

= = +F c q P P f P1
2ij

ij ijkl kl ijkl k l klij k l,
(2.7)

From (2.7) one can identify that an inhomogeneous polarization generates additional mechanical stress, i.e., the converse flexo-
electric effect.

The above two equations of states (2.3) and (2.7) are solved in combination with the mechanical equilibrium equation (assuming
no body forces),

= 0ij k, (2.8)

and the Poisson equation for electrostatic equilibrium (assuming no free charge carriers),

= Pij
b

ij i i0 , , (2.9)

where stands for the electrostatic potential related to the electrical field. By solving the coupled equations (2.3), (2.7)–(2.9) with
appropriate boundary conditions, one can determine the equilibrium state of a ferroelectric.

Flexoelectricity can also influence the dynamical behaviors of a dielectric, e.g., the soft-mode phonon dispersion, through a
different mechanism known as the dynamic flexoelectric effect [28,29]. The dynamic flexoelectricity describes the polarization
response to the accelerated motion of the medium in the time domain [5,11]. In analogous to (1.1), the dynamic flexoelectric effect
can be expressed as,

=P µ u
ti ij

dyn i
2

2 (2.10)

where µij
dyn is the second-rank tensor of dynamic flexoelectric effect and t is time. To consider this interaction within the phenom-

enological theory, one needs to introduce a cross-term between polarization Pi and displacement ui time derivatives, Mij
P
t

u
t

i j , into the
kinetic energy K, i.e.,

= + +K dV L P
t

P
t

M P
t

u
t

u
t2ij

i j
ij

i j i
2

(2.11)

The tensor Mij is the dynamic flexoelectric coefficient (flexodynamic coefficient [83]), Lij is a kinetic coefficient related to polar-
ization dynamics, and is the density of the material. Together with the total free energy (2.1), one can readily write down the
LagrangianL of the ferroelectric through

L = dt F K( ) (2.12)

Then the equation of motion can be derived by using the Euler-Lagrange equation

=
q q

d
dt

0
(2.13)

where generalized coordinate q represents the displacement ui or polarization Pi, and q represents their corresponding time deri-
vatives. Similar to (2.6), one can obtain the relation between µij

dyn and Mij as

=µ Mij
dyn

is sj (2.14)

By solving the equation of motions with proper initial and boundary conditions, one can obtain both the static and dynamic
flexoelectric effects on dynamic behaviors of a system of interest.
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2.2.1.2. Applications and progress of the theory. The LGD theory with a bulk flexoelectric contribution discussed above includes the
static and dynamic interactions among polarization, strain/stress, and electric fields. Though simple in its formulation, the LGD
theory of flexoelectricity can explain or predict a variety of phenomena where flexoelectricity is believed to play a role. For instance,
based on a simple strain relaxation model for thin films, Catalan et al. [84,85] demonstrated that the flexoelectric effect is responsible
for the smearing of the dielectric constant near the Curie temperature and the thickness dependence of coercive fields and remnant
polarization. Similarly, the LGD theory has also suggested the flexoelectric effect is the primary cause of built-in electric field and
resulting offset of the hysteresis loop in compositionally graded ferroelectric heterostructures [86,87].

Morozovska and Eliseev et al. have extensively explored the flexoelectric effect and its interactions with other electro-mechano-
chemical couplings and structural order parameters using a phenomenological framework built upon the LGD theory [44]. They have
predicted a list of phenomena directly induced or indirectly mediated by flexoelectricity, including the appearance of polarization
and pyroelectricity in twin domain walls, surfaces [88], and antiphase boundaries (APBs) of ferroics [89], the high conductivity at
nominally neutral domain walls [90,91], the disappearance of the critical size for ferroelectric transition in nanostructures [312], and
the change in kinetic behaviors of polarization reversal.

The LGD theory considering the dynamic flexoelectric effect has also led to several exciting discoveries. For example, Kvasov and
Tagantsev showed a viable routine to estimate the bulk flexoelectric tensor from the phonon spectrum obtained by experimental
measurement or ab initio calculations [83]. Morozvoksta et al. explored the modification of flexoelectricity on the soft-mode phonon
dispersion [42,92,93], generalized permittivity responses [42], and the emergence of spatially modulated structures [41] in bulk
ferroics. Eliseev et al. [43] predicted the existence of shear surface acoustic wave in all crystalline dielectrics enabled by bulk static
and dynamic flexoelectricity, which was formerly regarded as forbidden in nonpiezoelectrics with a homogeneous flat surface. Very
recently, Deng et al. studied the dynamic flexoelectric effect in nanoscale flexoelectric energy harvesters [94]. They found that the
dynamic effect can be comparable to the static flexoelectric effect due to the sharp increase in the natural fequencies from the
miniaturization of a sample.

The flexoelectric effect in finite samples was explored by Tagantsev and Yurkov [95,96]. They showed that the surface piezo-
electricity might contribute to the flexoelectric response in a comparable extent to bulk flexoelectricity. Tagantsev and Yurkov's
prediction was supported by Narvaez et al. [97] who observed a large flexoelectric anisotropy by varying the orientation of BaTiO3

single crystals, which is attributed to a significant surface effect. In the same work, Tagantsev and Yurkov also explained why the
application of a uniform electric field across a capacitor structure could induce bending of the plate (the flexoelectric-bending effect)
[95], thus resolving the long-term debate on whether a flexoelectric sensor can act as an actuator initiated by Cross [12].

Another direction in the phenomenological theory of flexoelectricity attempts to generalize it to other flexo-type coupling effects,
including flexomagnetic [40,49], flexomagnetoelectric [98–100], and flexoantiferrodistortive [41,88] couplings. A brief review of the
general flexo-type effects has been given by Eliseev et al. [41]. These exploratory studies expanded our understanding of gradient-
enabled effects and laid the theoretical foundation for further harnessing the related nanoscale phenomenon.

2.2.2. Continuum mechanics of flexoelectricity
The flexoelectric effect is treated in a broader context known as the extension of the classic theory of elastic dielectric in the

continuum mechanics community. Comparing to the phenomenological LGD theory, the continuum theory of flexoelectricity is
complicated by higher order and nonlocal mechanical and electromechanical couplings in the internal energy, multiple definitions of
deformation metrics, and subsequently more comprehensive governing equations and boundary conditions. It can also be seen as an
extension of gradient elasticity theory by combining the continuum electrostatics and electrodynamics with nonlocal terms.

2.2.2.1. Outline of the theory. Here, following Maranganti et al. [52], we briefly summarize the key ingredients in the continuum
mechanics of flexoelectricity, including internal energy, constitutive equations, and governing equations with boundary conditions.
Consider an elastic dielectric occupying a domain V bounded by a surface S, which separates V from an outer vacuum V’. In the
extended linear theory of dielectrics, the internal energy density U can be expressed in a similar formulation as (2.1), i.e.,

= + + + + +U P P g P P c f P u d P h u u1
2

1
2

1
2

1
2ij i j ijkl i j k l ijkl ij kl ijkl i j kl ijkl i j kl ijklmn i jk l mn, ,

I
, , , , (2.15)

where fijkl
I is the flexocoupling coefficient defined by unsymmetrized strain (type-I flexocoupling coefficient, c.f. Section 5.1), dijkl the

polarization gradient-strain coupling tensor introduced by Mindlin [54], hijklmn the strain gradient elasticity tensor, and all other
quantities are defined in the previous subsection. The constitutive equations are derived through thermodynamic analysis as,

= U
uijk

i jk, (2.16a)

= U
ij

ij (2.16b)

=E U
Pi

i (2.16c)

=E U
Pij

i j, (2.16d)
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where ijis the same as the stress tensor in classical elasticity, Ei is the local electric field, and ijl and Eij can be understood as the
higher order counterparts of ij and Ei, respectively.

The governing equations (balancing laws) can be routinely deducted through Toupin’s variational principle [101] with the aid of
the constitutive relations obtained from (2.16). We omit the lengthy derivation (which can be found in Ref. [52,102]) and simply
present the governing equations, i.e.,

+ =b( ) 0ij ijk k j i, , (2.17a)

+ + =E E E 0ij j i i i, ,
0 (2.17b)

+ =P V0 inii i i0 , , (2.17c)

= V0 in 'ii, (2.17d)

where i, is the Maxwell self-field, bi and Ei
0 are the external body force and electrical field, respectively. The boundary conditions

on S are given by,

=n t( )i ij ijk k j, (2.18a)

=n E 0i ij (2.18b)

+ =n P( ) 0i i i0 , (2.18c)

where ni is the surface normal unit vector, ti the surface traction, and the symbol denotes the difference of enclosed quantity on V
and V’. The governing equation (2.17) under boundary conditions (2.18) in combination with the constitutive equations (2.16)
complete the continuum theory of an flexoelectric dielectric.

2.2.2.2. Application and progress of the theory. The continuum theory outlined above is a simplified version of Sahin and Dost’s
seminal work [48] where several other nonlocal mechanical and electromechanical couplings and kinetic energy including
polarization inertia effects were included. Furthermore, Shen and Hu [102] also proposed a more comprehensive continuum
framework of flexoelectricity by taking account of the surface effect. Later, Majdoub et al. [103] expanded this static continuum
theory by incorporating the kinetic energy and employing Hamilton’s principle to obtain the equations of motion. However, these
continuum theories of flexoelectricity usually contain a plethora of independent material coefficients, particularly due to the use of
general strain gradient theory, which restricts its implementation to model practical materials. To simplify the flexoelectricity theory
formulated by the general strain gradient theory, some authors [56,57] borrowed concepts from the rotation gradient theory, couple
stress theory, and general gradient elasticity [53]. Assuming a small rotation, the rotation tensor and its dual vector can be written as,

= u u1
2

( )ij i j j i, , (2.19a)

= 1
2i ijk kj (2.19b)

where ijkis the permutation tensor. The rotation tensor ij contains 9 independent components, in contrast to the 18 components of
strain gradient, largely reducing the degrees of freedom in the gradient elastic and flexoelectric terms of the energy functional [57].
Hajesfaniari developed the couple stress theory of flexoelectricity [56], which uses the antisymmetric part of the rotation gradient,
i.e., = ( )ij ij ji

1
2 , as the deformation metrics, thereby further simplifying the formulation. A systematic formulation of the couple

stress-based theory of linear flexoelectricity and its comparison with strain gradient-based models are documented in a recent article
by Poya et al. [104].

Recent advances in the continuum flexoelectricity theory include several aspects. First, there are attempts to generalize the
treatment of flexoelectricity to a broader continuum framework with multiple physical and chemical couplings. For example, Liu
et al. proposed a general theory for magneto-electro-elastic continua which may be applied to various hard and soft functional
materials [105]. Ebrahimi-Nejad et al. studied the static and dynamic mechanical behaviors of piezoelectric nanobeams under
magneto-thermo-electro-mechanical loads [106]. Lecoutre et al., by utilizing the principle of virtual power, theorized the continuum
mechanics of deformable semiconductors with inhomogeneous strain, polarization and magnetization gradients [107]. Another route
is to develop the nonlinear theory of flexoelectricity for systems with large deformation [59,108,109] and where dissipation is
naturally present [60,107]. Besides, efforts have also been made to explore flexoelectric coupling in dynamic behaviors where a
separate dynamic flexoelectric effect may play a role, such as the wave propagation in piezoelectrics [110], band structure of
phononic crystals [111], and vibration dynamics in energy harvesters [60].

The continuum theories of flexoelectricity discussed above have been applied to analyzing the static and dynamical behaviors of a
variety of systems subjected to mechanical and electrochemical loads. For certain simple structures, the closed-form solutions can be
obtained. For example, Maranganti et al. have derived the Green function solution of an embedded inclusion in flexoelectric materials
[52]. Mao et al. [51] derived the governing equations for a flexoelectric solid under a small deformation and provided analytical
solutions to several boundary value problems. Later, they applied the same method to studying the flexoelectric effect around
material defects, including point defects, edge dislocations, and cracks [112]. Analytical solutions and mechanical analyses have also
been reported in classical macro-structure models such as Euler-Bernoulli beams [113–117], Timoshenko beams [118], Kirchhoff
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plates [119,120], etc. On the other hand, the developed continuum mechanics frameworks also enable numerical analysis of the
electromechanical fields in more complex structures. In nanostructures where the size-effect from flexoelectricity becomes dominant,
for instance, extensive works have been documented to study the static and dynamic actuating behaviors (e.g., bending, buckling,
and vibration) and sensing properties of nanobeams [113,115,116,119–124], nanoplates [125–127], nanorings [128–131], and other
complex structures (e.g., truncated pyramids [132], shells [133–135], composite multilayers [136–138], etc.). A systematic survey in
this respect has recently been published by Yan and Jiang [139]. Additionally, there is growing interest in the topology optimization
of flexoelectric structures [64,67,140]. These advanced analyses based on continuum mechanics of flexoelectricity allow for de-
signing novel flexoelectric structures for versatile applications including curvature sensors, actuators, transducers, and energy har-
vesters.

2.3. Microscopic theories

The microscopic origin of flexoelectricity in a solid crystal comes from the redistribution of bound and/or free charges driven by a
strain gradient [11]. Roughly speaking, the microscopic flexoelectric response can be separated into a purely electronic (frozen-ion)
contribution and a lattice-mediated contribution [15]. The lattice contribution is associated with the atomic displacement induced by
a strain gradient, which can be described by a lattice mechanics theory. The electronic part originates from the change of electronic
structure and requires a quantum-mechanics treatment. The macroscopic approaches discussed in the previous subsection cannot
appropriately address the two aspects. Therefore, the microscopic theory becomes critical in understanding the atomistic and
electronic mechanisms of flexoelectricity. It also offers a viable way to quantifying the intrinsic flexoelectric coefficients, which can
be used to validate experimental measurements, to provide flexoelectric parameters for higher-level modeling, and to potentially
design new materials with ideal flexoelectric properties.

In this subsection, we heuristically classify the microscopic theories of flexoelectricity into the classical microscopic theory, which
solely focuses on the lattice-mediated response using lattice mechanics approaches, and the first-principles theories, which explicitly
address the lattice and electronic contributions on a quantum-mechanics ground. For each category, we briefly touch upon the key
concepts and procedures used to construct the microscopic theory and summarize the primary conclusions. We attempt to compare
different works to clarify their relations. Emphasis is then placed on the recent progress in the first-principles theory of flexoelec-
tricity. Limited by the scope of this review, we presented many equations in this subsection without resorting to a rigorous formalism;
especially, we intentionally omit the sub-/superscripts of some tensor quantities wherever possible. For detailed and rigorous de-
rivations, readers are encouraged to read the original articles and several theoretical-oriented reviews [11,19].

2.3.1. Classical microscopic theories
There are majorly three types of classical microscopic theories that have been proposed to treat flexoelectricity in solids: the shell

model proposed by Askar et al. [68] for general dielectrics, the rigid-ion model established by Tagantsev [28,29] for ionic crystals,
and the linear chain model developed by Marvan and coworkers for polymers [70–72] and order-disorder ferroelectrics [73]. We will
focus on the rigid-ion model in this section for its profound implication in the follow-up research of flexoelectricity.

The basic assumption of the rigid-ion model approximates a crystal as a set of lattices consisting of undeformable and un-
polarizable ions with fixed point charges (point-charge approximation). In other words, it models an “ideal” ionic crystal. In this
sense, the polarization can be readily determined from the atomic displacements and the effective point charges. The rest of the
problem reduces to developing the relation between the atomic displacements and the strain gradients.

To fully evaluate a flexoelectric response, two scenarios are often considered: the static bending of a slab and the dynamic elastic
wave propagating within an infinite crystal. In the static scheme, the flexoelectric response corresponds to the average polarization
driven by a homogeneous strain gradient under zero macroscopic electric field, following the definition of flexoelectricity in (1.1). In
the dynamic scenario, also known as the long-wavelength analysis [141], one concerns the amplitude of the polarization wave
generated by the elastic wave. For a heuristic purpose, here we simply outline the former scenario to give a sense of some basic
concepts in the microscopics of flexoelectricity.

Consider a finite-sized crystal subjected to a uniform strain gradient. In general, the displacement w of an isolated atom in the
deformed crystal can be written as a combination of external and internal displacements, i.e.,

= +w w wext int (2.20)

The external displacement describes the “ideal” atomic displacement due to the unsymmetrized strain ui j, under the elastic medium
approximation, i.e.,

=w u dxi
ext

x

R
i j j,

j

j
0 (2.21)

where xj
0 is an immobile reference point and Rj the positions of the isolated atoms before the deformation. In a centrosymmetric

crystal subject to a homogeneous strain, the external displacements well capture the total atomic displacements, as shown in
Fig. 2.2a. However, if the applied strain is non-uniform, or if the material is non-centrosymmetric, the real atomic displacements
contain an additional term known as the internal displacement (internal strain by convention) [141]. To the lowest approximation,
this internal displacement can be represented as linear functions of strains and strain gradients, i.e.,

= +w Ni
int

ijk jk ijkl kl j, (2.22)
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where and N are the internal-strain tensors with respect to strains and strain gradients, respectively, which can be further expressed
in terms of the dynamic matrix. Now we have established the relation between the strain gradient and the atomic displacements.

On the other hand, the point-charge approximation adopted in the rigid-ion model simplifies the expression of polarization in
terms of atomic displacements and effective charges. Accordingly, the electric polarization is determined by the displacement wn of
the n-th atom originally located at Rn and associated with an effective point charge Qn as,

= +
V

Q
V

QP R w R1 ( ) 1
fin n

n n n

n

n n

(2.23)

where V and Vfin are the volumes of the crystal before and after deformation. By substituting (2.22) into (2.23) one arrives at the
polarization response of a finite sample subject to a uniform strain gradient, i.e.,

= + +P
V

Q
V

Q N P1 1
i

n

n
ijk
n

jk
n

n
ijkl
n

kl j i
ext

,
(2.24)

The first and second terms in (2.24) are conditioned by the internal-strain tensors and control the piezoelectricity and lattice
contribution of bulk flexoelectricity, respectively. By comparing (2.24) with (1.1) and assuming zero macroscopic electric field, one
can readily find the flexoelectric coefficient µijkl as,

=µ Q N1
ijkl ijkl

(2.25)

To arrive this expression, we replace the summation over the entire crystal of volumeV by over the unit cell of volume wherein
numerates on the sublattices. This formula suggests a viable way to evaluate flexoelectric coefficients by computing the dynamic

matrix (thus internal-strain tensors) and Born effective charges, which has later been adopted [69,83] to calculate the full flexo-
electric tensor of a variety of practical materials. Finally, the last term in (2.24), conditioned by the external strain and the volume
change of the crystal, serves as a correction term and is related to the surface flexoelectric effect. A detailed explanation of Pext was
given in Refs. [11,30].

From the static and dynamic scenarios, Tagantsev [28,29] identified four dissimilar sources that are responsible for generating
flexoelectric responses, namely, the static bulk and dynamic bulk flexoelectricity, the surface flexoelectricity, and the surface pie-
zoelectricity. The static bulk response is controlled by the flexoelectric coefficient defined in (1.1) and has a direct analog to the
piezoelectric effect. The dynamic bulk flexoelectricity describes the polarization induced by the acceleration of the medium. It
becomes dominant when the driving force is a propagating wave, e.g., acoustic phonons, or when the frequency of driving forces goes
beyond the resonance of the sample, e.g., high-frequency vibration of a cantilever beam. Meanwhile, this dynamic effect does not
have a counterpart in the piezoelectric effect. The surface flexoelectricity originates from the correction term in (2.24) and is sensitive
to the surface states. The surface piezoelectricity results from the symmetry-breaking nature of surfaces; therefore, it is universal
among crystals irrespective of symmetry. Interestingly, unlike other surface effects, the two surface contributions do not vanish at the
bulk thermodynamic limit, i.e., when the surface-to-bulk ratio approaches zero. Consequently, they can mimic a flexoelectric re-
sponse in a bending mode of a finite sample, causing non-trivial extrinsic electromechanical effects. For example, as shown by

Fig. 2.2. Schematic of atomic displacements in two neighboring unit cells of a centrosymmetric crystal at pristine undeformed state (a), under a
uniform macroscopic strain (b), and under a homogeneous strain gradient (c).
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Tagantsev and Yurkov [95,96], the surface piezoelectricity drives the so-called flexoelectric bending, i.e., a converse flexoelectric
effect induced by applying a uniform electric field across a symmetric capacitor structure. Finally, it has been shown that all four
contributions except the surface flexoelectricity scale with dielectric permittivity, suggesting the latter can be safely neglected in
high-κ materials. The primary features of these four contributions to a flexoelectric response are summarized in Table 2.1 for clarity.
Notably, there are unsettled debates on the existence of surface flexoelectricity and on the identity of static and dynamic bulk
flexoelectricity. A more comprehensive discussion on these controversies will be deferred into Section 5.3.

The rigid-ion model discussed above is based on the point-charge assumption. In this sense, the major contribution to a flexo-
electric response comes from ions while the effect of electronic charge density redistribution has been generally neglected. One
improvement of the rigid-ion model is to replace the rigid ion by core-shell pairs, thus enabling polarizability of the atoms. This has
been adopted in Askar et al. [68], who treats an ion as a rigid core with a charged shell linked by a harmonic spring. In this sense, the
shell model of flexoelectricity implicitly considers the lattice and electronic contributions in a semi-empirical way. The rigid-ion and
core-shell models have recently been revisited by Marangantti and Sharma where a detailed comparison has been made [69]. Another
insight to advance the rigid-ion model is to replace the point-charge approximation by a continuous-charge distribution, in a similar
spirit as Martin’s piezoelectricity theory [76] that built upon Born and Huang’s classical theory [141]. As briefly addressed in Ref.
[11], the continuous-charge model produces a formulation consistent with those derived from quantum-mechanical theories which
will be discussed in the next subsection.

2.3.2. First-principles theories
The classical microscopic theories of flexoelectricity discussed above are either limited to the ionic contribution (rigid-ion model)

only or implicitly treat the electronic contribution in a semi-empirical way (core-shell model). The theoretical discovery of curvature-
induced polarization in covalent-bonded 2D systems, e.g., carbon nanoshells [142], graphenes [143], and boron nitrides [144],
suggests a significant electronic contribution to the flexoelectric response.

Essentially, a microscopic description of flexoelectricity seeks a connection between the strain gradient and the induced polar-
ization. To this end, one needs to find one or more intermediate physical quantities to bridge the gap. For the lattice contribution, the
atomic displacement plays the central role, which can be calculated from a strain gradient via the lattice dynamics approach and,
meanwhile, constitutes the polarization with effective charges. For the electronic contribution, other entities need to be defined. One
immediate choice is the bound charge density r( ), which relates to polarization via =P r r· ( ) ( ).

From a more fundamental consideration, the microscopic polarization results from the electronic cloud distortion which is
adiabatically described by the quantum-mechanical probability current-density J r( ). Note that in a classical picture, the current-
density relates to microscopic polarization via =J r( ) t

P r( ) . Indeed, there are two branches in the development of first-principles
flexoelectricity theory, one utilizes charge-density response functions, and the other utilizes the current-density response functions.

Resta [75] made the first effort toward understanding the electronic contribution to flexoelectricity in bulk crystals. Based on
Martin’s piezoelectricity theory, the author considered the microscopic electric field response function as the intermediate ingredient to
obtain polarization from long-wave or uniform atomic displacements. Using an elemental cubic lattice, Resta demonstrated that the
longitudinal electronic flexoelectric coefficient, at least in this simplest class of dielectrics, is free of surface contribution, and the
dynamic and static bulk responses are consistently described by the same flexoelectric coefficient. These conclusions contradict to the
conventional recognition established from the rigid-ion models, motivating further fundamental investigations into the microscopics
of flexoelectricity.

Inspired by Resta’s attempts [75], Hong and Vanderbilt [77] extended the ab initio theory of electronic flexoelectricity into
arbitrary crystalline insulators. Taking the local charge-density response as the “bridge,” the authors derived the longitudinal
electronic flexoelectric coefficient in terms of the third moment of the charge-density response, which is consistent with Resta’s
results. Afterwards, the same authors developed a comprehensive first-principles description of flexoelectricity [15] with explicit
consideration of electronic and lattice-mediated contributions. They found that the flexoelectric tensor can be conveniently divided
into longitudinal and transverse components. The former can be computed from the multipolar expansion of the charge-density
responses to atomic displacements while the latter requires access to the current-density responses.

Independently, Stengel developed another version of the first-principles theory of flexoelectricity based on the density-functional
perturbation theory (DFPT) [78]. Instead of working with the real space moments of the charge-density response of isolated atoms,
the author conceives the problem in reciprocal space with the current-density responses to atomic displacements induced by a long-
wavelength acoustic phonon. In this context, the full flexoelectric tensors, containing both lattice and electronic contributions and
with all independent tensorial components, can be explicitly expressed in terms of well-defined linear responses. Hereafter, following
Stengel [78], we briefly identify the key ingredients needed to construct the flexoelectric coefficient using the current-density

Table 2.1
The four types of contribution to a direct flexoelectric response.

Origins Types of contribution Symbols Scale with permittivity? Vanish at infinitesimal surface/bulk ratio? Manifestation

Flexoelectric Bulk Static μ Yes – Static slab bending
Dynamic M Yes – Acoustic wave propagation

high-frequency slab bending
Surface – μsurf No no Static slab bending

Piezoelectric Surface – dsurf Yes yes Static slab bending
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response and the force-constant matrix which are computable quantities in a DFPT framework.
Consider a crystal lattice spanned by the translation vector Rl and basis vector . Then = +R Rl l k denotes the atom positions of

sublattice and cell l. The atomic displacements associated with a long-wave acoustic phonon with wave-vector q is given by

=l t eu U( , ) i i tq q R· lk (2.26)

where Uq is an eigenvector of the dynamical matrix at q, and is the frequency. Assuming the long-range electrostatic field at zone
center has been adequately screened, one can perform the Taylor expansion of Uq with respect to q as,

= + +u U iq q q N( )i
q

i ij k ijk k l ijkl (2.27)

where N and are internal-strain tensors which can be derived from the force-constant matrix (pseudoinverse of the dynamic
matrix). On the other hand, the perturbation of atomic sublattice along direction j, i.e., =u l t t e( , ) ( )j

iq R· l , gives rise to a mi-
croscopic polarization response P j

q through the microscopic current density J, i.e.,

= J eP r r( ) ( )
j

i

j

iq q r·

(2.28)

The cell average of P j
q ,

= d rP P r¯ 1 ( )j cell j
q q3

(2.29)

can be expanded for small-q as

= +iq
q q

P P P P¯ ¯ ¯
2

¯j j k j
k l

j
klq (0) (1,k) (2, )

(2.30)

which gives the ingredients we need to construct flexoelectric coefficients. Note that zeroth-order P̄ j
(0) corresponds to the cell-

averaged Born dynamical charge tensor Z*; the remaining P̄ j
(n)-tensors can be regarded as its higher-order counterparts and can be

further calculated from the small-q expansion of charge-density responses J.
With these ingredients in hand, we can readily express the flexoelectric coefficient in terms of microscopic polarization responses

P̄(0,1,2) and the internal-strain tensors N and . For simplicity, we adopt the type-I flexoelectric coefficient, which is defined as the
change of polarization by the unsymmetrized strain gradient, i.e.,

=µ P
ijkl

i

j kl

I

, (2.31)

It can be decomposed into three parts, i.e., the electronic (frozen-ion), the lattice mediated, and the mixed terms, as

= + +µ µ µ µijkl ijkl
elec

ijkl
mix

ijkl
lattI I, I, I,

(2.32a)

=µ P1
2

¯
ijkl

elec
i j

klI, (2, )

(2.32b)

=µ
Z

Nijkl
latt im

mjkl
I, ,

(2.32c)

= +µ P P1
2

( ¯ ¯ )ijkl
mix

mjl i m
l

mjk i m
kI, (1, ) (1, )

(2.32d)

For clarity, we summarize all the necessary quantities required to evaluate (2.32) and indicate their relations in Table 2.2. In fact,

Table 2.2
Equations for calculating the piezoelectric and flexoelectric coefficients using microscopic polarization responses.

Piezoelectric tensor Flexoelectric tensor
Type-I

Flexoelectric tensor
Type-II

Electromechanical tensors =eijk
Pi
ij

=µijkl
Pi
j kl

I
,

=µijkl
Pi
kl j

II
,

= +e e eelec latt = + +µ µ µ µI I,elec I,mix I,latt = + +µ µ µ µII II,elec II,mix II,latt

Electronic contribution e P̄elec (1, ) µ P̄I,elec (2, ) µ P̄II,elec (2, )

Lattice contribution e Zlatt µ Z NI,latt 1 µ Z LII,latt 1

Mixed contribution – µ P̄I,mix (1, ) µ P̄II,mix (1, )

Force-response tensors T C
Internal-strain tensors N T L C

The symbol∼ denotes a relation that the left-hand quantity can be obtained by the right-hand quantity or quantities.
The explicit expression of the products is omitted which is given in the original publications.
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the formulation for the piezoelectric coefficient and for type-II flexoelectric coefficients are closely analogous to (2.32) and are also
listed in Table 2.2 for comparison. Besides, we strongly refer readers to the original articles [78] and the Chapter 2 in [19] for
rigorous formalism and derivations.

Based on the expression of the type-II flexoelectric coefficient listed in Table 2.2, we briefly interpret the physical meaning of each
component, following Hong and Vanderbilt [15], and Stengel [78]. The electronic term µ elecII, is active in all insulators regardless of
symmetry or composition. Numerical results from Hong and Vanderbilt [15,77] suggest that longitudinal parts of the electronic
flexoelectric coefficients are negative in sign for most cubic crystals. The lattice contribution µ lattII, refers to the microscopic po-
larization due to internal atomic displacements induced by a strain gradient. It has been proven that the internal-strain tensor in
µ lattII, is explicitly atomic mass-dependent, analogous to the dynamic flexoelectric tensor proposed by Tagantsev [11,29], suggesting
that flexoelectricity is an intrinsically dynamic effect. The lattice-electronic mixed term µ mixII, is nonzero only in crystals char-
acterized by Raman-active phonons, such as Si and Ge with the diamond structure. Accordingly, this term vanishes in the cubic
perovskite structure. The implication of the mixed term to flexoelectricity in insulating crystals of lower symmetries is elucidated in
Ref. [15,78].

Although the explicit expression of flexoelectric tensors has been rigorously derived [15,78], it is still challenging to implement
the theory to computing flexoelectric properties of practical materials. The main reason is the fact that the microscopic current-
density response is not accessible from public available DFPT codes and its computation involves several technical complexities. To
circumvent this issue, Stengel devised a strategy based on a reformulated DFPT theory using a curvilinear coordinate system sa-
tisfying covariance requirements [145]. Instead of computing the current-density response, one can resort to the open circuit elec-
trostatic potential built up by bending a slab structure, which directly gives access to the flexocoupling coefficients. In this finite
sample method, however, the surface contribution is involved and need to be explicitly addressed. The author demonstrated this
approach by computing the bulk and surface frozen-ion flexoelectric coefficients in SrTiO3 slabs [79]. The finding that the magnitude
and sign of flexoelectric coefficient depend on surface terminations is encouraging. It not only dispels the controversy in the existence
of surface contributions to flexoelectric response, including both surface piezoelectricity and surface flexoelectricity, but also opens
up new avenues for tuning flexoelectric responses via surface engineering.

Aside from this “workaround”, Dreyer et al. recently tackled the current-density response problem based on DFPT by carefully
determining a form of the current-density operator that is valid for nonlocal pseudopotentials and long-wavelength phonon per-
turbations [81]. The calculated bulk frozen-ion flexoelectric tensor of SrTiO3 perfectly matches those obtained from Stengel’s slab
method [79]. Moreover, Dreyer’s methodology outperforms other supercell-based methods in that it allows for the calculation of
flexoelectric property from a single unit cell, which is conceived to be more computationally efficient.

More recent advances in the first principle theory of flexoelectricity are concerned with clarifying the relations of the flexoelectric
tensor with other physical properties. Stengel argued that flexoelectricity is closely related to two other effects, namely, the absolute
deformation potential [80] and the strain-gradient elasticity [50]. The absolute deformation potential describes the change of
electronic energy levels due to a strain field. It suffers from the same arbitrariness as does the flexoelectric effect due to the band-
energy dependence which can only be rationalized through a unified formalism of both effects. The strain-gradient elasticity serves as
a nonlocal correction to the classical elasticity, describing the energy contribution from the square of strain gradients. The energies
associated with the strain-gradient elasticity and flexoelectricity follow a gauge invariance whereby their respective reference-de-
pendence can be canceled out only by summing up, thus obtaining physically well-defined tensor properties. Stengel also advocates
the necessity to simultaneously include flexoelectricity and nonlocal elasticity when constructing a thermodynamic function for
systems where flexoelectricity and ferroelectricity coexist [50], as recently proposed by several works based on the continuum
description of flexoelectricity, e.g., Ref. [51].

Although the first-principles theories of flexoelectricity have been formulated within both density-functional theory (DFT) and
density-functional perturbation theory (DFPT) frameworks, their implementation for computing the flexoelectric tensors of practical
materials is still computationally laborious and not yet available in publicly available ab initio packages. Other theoretical approaches
to the first-principles calculation of flexoelectricity are under development, including the cyclic DFT [146] and geodynamical method
[147], which may improve our ability to compute the flexoelectric properties from ab initio.

2.4. Continuum and atomistic modeling of flexoelectric effects

The macroscopic and microscopic flexoelectric theories summarized above have established the foundation for developing
multiscale numerical models to study flexoelectric behaviors at the continuum, meso, and atomic scales. For example, finite element
analyses based on the continuum theory of flexoelectricity has been employed to determine the electromechanical field distributions
and describe the stationary and dynamical mechanical behaviors of flexoelectric structures under various mechanical loading con-
ditions. The mesoscale phase-field method based on the LGD theory allows one to systematically investigate contributions of flex-
oelectricity to the static domain and domain wall structures of ferroic materials and their dynamic evolution under external fields.
Atomistic modeling techniques, such as molecular dynamics and Monte Carlo simulation based on ab initio constructed effective
Hamiltonian energy potentials can be used to understand and quantify the flexoelectric properties at the atomic scale.

2.4.1. Continuum mechanics modeling
The mechanics community uses extensively the finite element method to model the static and dynamic electromechanical re-

sponses in active materials. A finite element framework can be formulated based on the continuum mechanics theory of flexoelec-
tricity discussed above. However, the fourth order nature of these partial differential equations poses challenges to the finite element
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implementation using the C0-continuous basis function (which is continuous itself but not its derivatives) through a direct Galerkin
method. Abdollahi et al. [61] firstly circumvented this difficulty by applying a meshfree technique. This approach allows them to
interpret the flexoelectric responses in the cantilever bending and pyramid compression—two schemes extensively used for flex-
oelectricity measurement—with higher accuracy. Alternatively, Mao et al. [62] developed a mixed finite element formulation for
both piezoelectric and flexoelectric effects, which offers a more convenient implementation into public available finite-element
packages. Based on a continuum theory with rotation gradients, mixed element techniques suitable for C0-continuous elements have
been put forward in 2D [63] and 3D systems [148]. Another strategy is to use the isogeometric analysis [149](IGA), which fulfills the
C1-continuity requirement and is thus suitable for flexoelectric-related problems. The IGA approach has been integrated with phase-
field simulations to account for the flexoelectricity in ferroelectrics with an arbitrary geometry [150]; it has been adopted to identify
the full flexoelectric properties from electrical impedance curves [151]; and it has been formulated to solve flexoelectric problems in
nanoscale systems under large deformation [152]. Besides, a decoupled finite element analysis has also been adopted to simplify the
calculation of piezoelectricity and flexoelectricity in nanowire beams [153].

Using the finite element implementation in Ref. [61], Abdollahi et al. explored the effect of flexoelectricity on mechanical and
electromechanical properties in several complex structures [138,154,155]. In the presence of a stationary fracture in a dielectric
[155], they found the flexoelectric coupling leads to a size-dependent fracture toughening, i.e., increasing resistance to fracture as the
structural size decreases, and asymmetric toughness depending on the direction of polarization. This theoretical prediction has recent
been observed in experiments [156]. In a piezoelectric bimorph structure for actuating/sensing applications [138], they identified
that flexoelectricity can either enhance or suppress the piezoelectric effect at the nanometer scale depending on the device config-
uration. This prediction was recently confirmed experimentally by Bhaskar et al. [157]. By performing three-dimensional finite
element simulations, Abdollahi et al. [154] further revisited the truncated pyramid compression method, a paradigm setup for
measuring the flexoelectric coefficients. They demonstrated the compression field is complicated by the structure and, consequently,
the effective flexoelectric constant depends strongly on the pyramid area ratio and the inclination angle. We will elaborate more on
the outcome of these findings in Section 5.2.

2.4.2. Phase-field method
The phase-field model of ferroelectrics is a well-established mesoscale method for modeling, understanding, and predicting the

microstructure evolution in materials (see, e.g., brief reviews [158,159]). It has been widely used to analyze the stabilities of various
ferroelectric phases and domain states under different electromechanical boundary conditions, investigate the domain structure
evolution induced by external electric and mechanical fields, and calculate the electromechanical responses and other physical
properties. It employs a set of order parameter fields to describe the states of heterogeneous systems. For example, the in-
homogeneous distribution of the spontaneous polarization is employed as the order parameter field to monitor the spatial and
temporal evolution of polarization domain states by solving the time-dependent Ginzburg-Landau (TDGL) equation, i.e.,

=P P
Pt

L F ( )
(2.33)

where L is the kinetic coefficient related to the domain wall mobility, and F is the total free energy of the ferroelectric given by the
LGD theory (Eq. (2.1)).

The study on flexoelectricity using phase-field methods emerges quite recently [45–47,160]. To incorporate flexoelectricity, the
phase-field method of ferroelectrics was extended by introducing new flexoelectric coupling terms in the thermodynamic potentials
and driving forces for polarization evolution [161]. Compared with finite element-based mechanics modeling, the phase-field method
can better capture the inhomogeneous microstructure evolution in a more efficient way. Compared with atomistic simulation
techniques, the phase-field simulation is computationally less costly and is applicable to larger spatial and temporal scales. Moreover,
using a phase-field model allows one to conveniently separate the flexoelectric contribution from other relevant effects, e.g., pie-
zoelectricity, which is critical to understanding the primary mechanism underlying the emergent phenomena. Below, we discuss a
few examples of phase-field simulations of flexoelectric effects in ferroelectric materials.

(1) Domain structures modified by flexoelectricity

Chen et al. first employ the phase-field method to study the impact of flexoelectric coupling on domain structure properties in
ferroelectric thin films [47] and ordinary dielectrics [162]. Ahluwalia et al. explored the influence of flexoelectric coupling on
domain patterns in bulk ferroelectrics using 2D phase-field simulations [46]. It was found a fine structure forms when the coupling
strength exceeds a critical value and is related to a local transition into an incommensurate phase. Similar modulated domain
structure formation has later been simulated by Jiang et al. [163,164], who proposed a phase-field model with finite element
implementation considering both flexoelectricity and strain gradient elasticity. Cao et al. compared the effect of flexoelectric tensor
components on polarization rotation at a/c domain walls in Pb(Zr0.2Ti0.8)O3 thin films [165], which was also observed by TEM
[166,167] and is attributed to the flexoelectricity enabled by local strain gradients.

(2) Domain wall structures complicated by flexoelectricity

Gu et al. studied the domain wall structures of BaTiO3 and found the 180-degree ferroelectric domain walls have mixed Bloch-
Neél-Ising feature due to the flexoelectric effect [45,168]. Complexity in the 180-degree domain wall has also been documented using

B. Wang, et al. Progress in Materials Science 106 (2019) 100570

13



a similar model [169]. In a following phase-field study on CaTiO3 domain walls, Gu et al. showed that the domain wall polar order is
likely induced by the flexoelectric effect [170]. The flexoelectric effect on domain walls will be further discussed in Section 4.

(3) Mechanical switching of ferroelectric polarization enabled by flexoelectricity

The mechanical switching of polarization induced by atomic force microscopy (AFM) probe was first theoretically explored by Gu
et al. using phase-field simulations [171]. The flexoelectric effect and piezoelectric effect were separated and compared. The in-
fluences of the AFM tip geometry, the applied force strength, and the film thickness on the mechanical switching were also discussed.
Cao et al. simulated the polarization switching of Pb(Zr0.2Ti0.8)O3 thin films under concurrent electric and strain fields created via a
piezoresponse force microscopy (PFM) probe [172]. By separating the effects from an electric field, a homogeneous strain, and a
strain gradient, they revealed that the homogeneous strain increases the coercive field, and the strain gradient causes a lateral offset
of the hysteresis loop. Jiang et al. studied the switching behavior of incommensurate phases induced by the flexoelectric coupling in
ferroelectric thin films [163]. They found that the transverse flexoelectric coupling introduces antiferroelectric-like double hysteresis
loops, while the longitudinal coupling component gives rise to a imprint-like hysteresis loop. Chen et al. systematically studied the
domain switching of PbTiO3 nano-films subjected to cylindrical bending by 3D phase-field simulations [173]. It was demonstrated
that the domain patterns can be significantly modified by the mechanical loads and the related flexoelectric field. They further
explored the possibility of mechanical erasing by virtue of different loading schemes [160]. Effects of domain size, film thickness,
temperature and different mechanical loads, including uniform strain, cylindrical bending, and wavy bending, were investigated.

Recently, advances have been made in the phase-field model of flexoelectricity to be applied to more intriguing problems. For
example, Chen et al. included the surface contribution to the total free energy and studied the surface screening effect on the
mechanical domain switching [174]. They found that the surface effect is more efficient than the flexoelectric effect, which can
introduce upward domain switching and even ripple-like propagating domain switching. Xu et al. coupled the phase-field model with
the transport of electrons and holes to study the leakage current of ferroelectric thin films subjected to a mechanical load [175]. They
showed that local compressive force can increase the hole current while reducing the electron current via flexoelectric interactions.
Further experiments are needed to validate their predictions.

2.4.3. Atomistic modeling
There are also a few efforts to model flexoelectric effects utilizing atomic-level simulation techniques such as molecular dynamics

[65,122,176,177] and the effective Hamiltonian method [178]. Majdoub et al. firstly applied molecular dynamics to simulate the
effective piezoelectric responses generated by bending a nanocantilever [122]. It is shown flexoelectricity interacts with piezo-
electricity in BaTiO3 nanocantilevers leading to a strong size-dependent enhancement of the overall piezoelectric property comparing
to the bulk value. Molecular dynamics also enables the calculations of the full flexoelectric coefficients and its temperature de-
pendence using a finite size model [177]. The finite-temperature flexoelectric behaviors can also be modeled using Monte Carlo
simulations based on an effective Hamiltonian energy potential where the ground state flexocoupling tensor needs to be calculated ab
initio. Based on this technique, Ponomareva et al. examined the temperature dependence of flexoelectric properties in Ba0.5Sr0.5TiO3

[178] which substantiates the phenomenological argument that flexoelectricity scales with temperature in parallel with the dielectric
permittivity [29]. Notably, the accuracy of capturing flexoelectric responses by molecular dynamics or effective Hamiltonian si-
mulations highly relies on the parameters used to construct the corresponding interatomic force field or the Hamiltonians.

3. Progress in the quantification of flexoelectricity

To understand and further utilize flexoelectricity, it is critical to quantitatively measure the flexoelectric effect and compute
flexoelectric coefficients of a material. From the experimental end, the magnitude of flexoelectricity is fundamental to the materials
design of flexoelectric-based devices. It is of equal importance to seek for materials with reduced flexoelectricity to minimize un-
desired flexoelectric-induced outcomes. From the computational end, an efficient way to calculate flexoelectric tensor serves as an
effective validation of experimental measurements and helps to distinguish the intrinsic and extrinsic contributions. Moreover, ad-
vances in computational methods for flexoelectric effects may provide guidance to the development of new flexoelectric materials
with desirable performance. In this section, we provide a brief update on recent progress made in quantifying flexoelectricity in solid
materials by both experiments and theoretical computations.

3.1. Experimental measurement of flexoelectric coefficients

3.1.1. Experimental methods
Although a few experimental observation indicated the existence of flexoelectric effect in solids as early as 1960s [25], a sys-

tematical measurement of flexoelectricity was not performed until early 2000s by Ma and Cross at Penn State. In their seminal works
[34–39], three experimental schemes were established to measure the flexoelectric tensor of several ceramic oxides, as schematically
illustrated in Fig. 3.1a–c. The dynamic cantilever bending [CB, Fig. 3.1a] and quasi-static four-point bending [4PB, Fig. 3.1c]
methods are designed for the transverse flexoelectric coefficient, µ12 (∼indicates effective), while the pyramid compression [PC,
Fig. 3.1b] method is used for the longitudinal flexoelectric coefficient, µ11. For these two flexural bending methods, keeping the
neutral line within the sample helps eliminate the residual piezoelectric response. Moreover, 4PB bending can generate a much larger
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strain gradient (∼1 m−1) in the sample than CB, thus allowing for the examination of nonlinear flexoelectric behaviors at a large
load. Aside from measuring the direct flexoelectric tensor, Cross and coworkers [179] also proposed a practical approach to mea-
suring the flexoelectric property by utilizing the converse flexoelectric effect. By applying a graded electric field across a pyramid
sample, the induced surface displacement can be captured via high-resolution optical approaches and the flexoelectric coefficient is
thereby obtained. To accurately extract the converse flexoelectric coefficient using this approach, however, a careful exclusion of the
electrostrictive responses and other spurious charge generations is necessary [12].

The pioneering experiments led by Cross and his coworkers inspired further flexoelectricity measurements. Besides the afore-
mentioned three experimental schemes, a three-point bending [3PB, Fig. 3.1d] scheme was developed by Zubko et al. based on the
earlier work of Kityk et al. [180] to measure the full flexoelectric tensor in single crystal SrTiO3. The same technique has later been
applied to examine the temperature dependence, chemical composition dependence, and anisotropy of flexoelectricity in other
ferroelectric single crystals [97,181]. A systematic comparison of the three bending methods in measuring transverse flexoelectric
coefficients has recently been conducted [182]. Alternatively, as an extension of CB method, the cantilever twisting [CT, Fig. 3.1e]
approach was devised to measure the shear flexoelectric component and has been implemented in various ferroelectric polymers.
Utilizing the converse flexoelectric effect, Shu et al. [183] also measured the shear flexoelectricity of (Ba,Sr)TiO3 (BST) ceramics
using a pyramid sample with electrodes on the two sloping sides. In principle, the full flexoelectric tensors of a cubic-symmetric
insulator can be determined efficiently owing to the development of well-designed experimental frameworks. Nevertheless, most of
the flexoelectric coefficients measured using these macroscopic methods are only effective properties which may consist of various
flexoelectric contributions and combine multiple flexoelectric tensor components. Therefore, a direct comparison between experi-
mental results and theoretical calculations should be made with care.

Fig. 3.1. Schematics of flexoelectric experimental setups for direct mesurements of flexoelectric constants: (a) Cantilever bending (CB), (b) cylinder
twisting (CT), (c) four-point bending (4PB), (d) three-point bending (3PB), and (e) pyramid compression (PC), and for converse flexoelectric
constant measurement: (f) normal-electrode pyramid (NEP) and (g) side-electrode pyramid (SEP).
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Aside from these direct methods, which are directly based on the constitutive equation of flexoelectricity (Eq. (1.1)), indirect
techniques to estimate flexoelectricity have also been proposed. Representative works in this respect are listed in Table 3.1. The
indirect techniques measure material properties and phenomena mediated by flexoelectricity from which the flexoelectric coefficient
can be deducted. For example, it is known the flexoelectric interaction gives rise to the repulsion between transverse acoustic and
transverse soft-mode optic phonons of ferroelectrics [11]. Therefore, the phonon dispersion of a ferroelectric single crystal, which can
be accurately measured by using neutron inelastic scattering or Brillouin scattering [184–187], provides information on the bulk
static and dynamic flexoelectric responses. Estimated flexoelectric coefficients based on phonon spectra, however, are semi-quan-
titative because the sign of each component is difficult to be unambiguously determined, and the static and dynamic flexoelectric
effects coexist in this context. Another indirect approach makes use of the contribution of inverse flexoelectricity on the photo-
refractive response in single crystals, leading to the estimation of a longitudinal converse flexoelectric constant in Bi12TiO20 [188].
Implementation of this optical approach to examine flexoelectricity of more well-studied perovskites is still missing. In addition, since
flexoelectricity is related to the indentation size effect in dielectrics [189], a nano-compression method [190] has been proposed to
extract the longitudinal flexoelectric components at the nanoscale and applied to quartz [189], BaTiO3,[191] and SrTiO3 single
crystals [192]. These indirect measurements exhibit advantages over the direct measurements in serval aspects. The phonon spec-
trum-based method enables the assessment of the dynamic flexoelectric effect while eliminating side effects from the surface. The
nano-indentation approach is voltage-free, and it generates large and localized strain gradients, thus allowing for studying nonlinear
flexoelectric behaviors under large stimuli [193]. Notably, using indirect approaches on known flexoelectric materials can serve as
mutual corroboration for the flexoelectric coefficients measured by direct methods.

3.1.2. Flexoelectric materials
For high flexoelectricity, one of the prime candidate materials is the ferroelectrics since the flexoelectric property scales with the

dielectric permittivity [28,29]. Cross et al. investigated the strength of flexoelectricity in Pb(Mg,Nb)O3 (PMN) [34], BaTiO3 [35], BST
[39], (Pb,Sr)TiO3 [12], and Pb(Zr,Ti)O3(PZT) [36,37] ceramics and highlighted the exclusively enhanced flexoelectricity in BST,
which is two order-of-magnitude larger than the other Pb-containing polycrystalline ferroelectrics. The Pb-free nature of BST
complies with the ecological concerns of next-generation electronic devices, generating considerable research interests into the BST-
based systems. In contrast, the lead-containing oxide ceramics generally show much smaller flexoelectric responses, the chemical and
physical origins of which is yet elusive.

The magnitude of flexoelectric coefficients and its temperature dependence can be tuned through doping extrinsic elements or
forming composites with other ceramics. For example, Shu et al. reported that the room-temperature transverse flexoelectric coef-
ficient of BTS ceramics can be doubled by doping 0.5 wt% Al2O3 [194,195]. Li et al. demonstrated the existence of flexoelectricity in
non-ferroelectric (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(BZN) by forming a 3–3 composite with Ag powders [196]. The same authors also re-
ported enhanced flexoelectricity in BST by creating 3–3 Ba0.6Sr0.4TiO3/Ni0.8Zn0.2Fe2O4 (BST/NZO) composites [197]. We provide a
comprehensive survey on the low-frequency room-temperature flexoelectric coefficients of ceramics, ceramics composites, and single
crystals measured from experiments, as listed in Table 3.2. It appears that the BST-based ceramics has the record-high room-tem-
perature flexoelectric coefficient (∼120 μC/m) among others. For the intrinsic flexoelectricity of single crystals, the highest value is
attributed to BaTiO3 (∼100 μC/m) at Curie temperature, the enhancement of which may be relevant to remnant polar nanoregions
[97]. The experimental measurement of BaTiO3 single crystals of various crystallographic orientations also reveals large anisotropy in
the flexoelectric effect, indicating a strong surface contribution [97]. To further increase the flexoelectric strength, joint efforts from
experiment and computation are required to systematically understand the physical and chemical mechanisms of doping, compo-
siting, and microstructure effects on flexoelectricity in solids.

Apart from seeking for high flexoelectric constants, it is also desirable to develop materials with an excellent linearity of flexo-
electric responses with respect to applied loads and with a controlled dependence of flexoelectricity on temperature and loading
frequency. Earlier studies on ceramics have revealed remarkable linearity of flexoelectric polarization to applied strain gradient-
induced polarization up to∼ 0.3m−1 in almost all perovskite oxides investigated, as shown in Fig. 3.2a. Nonlinear behaviors in
ceramics [37], as well as single crystals [198], were observed only at large mechanical loads [37] (∼1.0m−1), indicating the
ferroelectric contribution from domain wall motion and possibly flexoelectric poling. As for the converse flexoelectricity, good
linearity between mechanical deformation and electrical field-gradient up to 107 V/m2 has been reported [199]. Notably, even
though the validity of linear flexoelectricity has not been unambiguously demonstrated, the presumption of linear dependence down
to the nanoscale where the gradient term becomes enormously large (106–108 m−1) has been widely adopted. Very recently, non-
linear flexoelectric behaviors have been observed [200] and theoretically examined [74].

The temperature dependence of the flexoelectric coefficient is believed to be similar to that of the dielectric permittivity due to the
proportional relationship between flexoelectric coefficients and dielectric constants. However, measurements of various oxides showed
that this relationship reasonably holds only at small and intermediate permittivity (Fig. 3.2b). For example, a sublinear drop at low
permittivity and a superlinear increase of flexoelectricity near the transition temperature are commonly observed, suggesting an ex-
trinsic mechanism of induced polarization. Notably, in relaxor-based ferroelectrics, such as PMN-28PT single crystals, the relaxor-like
broadening of the permittivity peak is also captured in the flexoelectricity. Another interesting behavior of flexoelectricity is the thermal
hysteresis: the flexoelectric polarization measured upon heating is large than that upon cooling until up to a temperature T*, as seen in
PMN-PT and BaTiO3 single crystals [97,181]. In PMN-28PT and PMN-30PT, T* coincides with the onset of the anelastic softening
measured by resonant ultrasound spectroscopy [201], indicating the extrinsic contribution to flexoelectric response by the reorientation
of short-range polar nanodomains remnant above Tc. Additionally, the high anisotropy of the flexoelectric coefficient observed in the
high-temperature paraelectric phase of BaTiO3 indicates the existence of surface piezoelectricity [97].
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The frequency dependence of flexoelectricity is of critical importance but remains understudied. A small dispersion is beneficial
for the reliability of flexoelectric-based devices under varying loading conditions while a frequency-sensitive flexoelectricity indicates
good tunability. Shu et al. [202] have shown a nearly 50% enhancement of effective flexoelectric coefficient in PMN-PT single
crystals by slightly increasing the mechanical load from 3Hz to 12 Hz, suggesting a tunability on the flexoelectricity in relaxor-based
oxides. However, an opposite trend of loading frequency on flexoelectric responses has also been reported elsewhere [197]. Ap-
parently, more exploration on the frequency dependence of flexoelectricity is desirable for a fundamental understanding of its the
microscopic and macroscopic mechanisms.

3.2. Atomistic computation of flexoelectric coefficients

As early as the 1960s, Kogan estimated the flexocoupling constants of ionic crystals to be of 1–10 V [24] using a simple phe-
nomenological model. [15]. With the establishment of the microscopic theory of flexoelectricity, it is possible to calculate the
flexoelectric coefficient of a number of crystals using semi-empirical techniques and state-of-the-art first-principles methods. For

Fig. 3.2. Features of flexoelectric properties of various materials measured by experiments. (a) The linearity of flexoelectric polarization with
respect to strain gradient. Insets show the zoom-in regions. (b) Scaling of the flexoelectric coefficient with respect to relative permittivity. (c)
Temperature dependence of flexoelectric coefficients. Abbreviations: (Ba,Sr)TiO3(BST), Ni0.8Zn0.2FeO4(NZO), BaTiO3(BT), Ba(Zn0.5Ti0.5)O3(BZT),
Ba(Ti,Sn)O3 (BTS), (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7(BZN), Pb(Zr,Ti)O3(PZT), Pb(Mg0.33Nb0.67)O3(PMN), PbTiO3(PT), Pb(In0.5Nb0.5)O3(PIN).
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instance, the flexoelectric constants for rocksalts, binary semiconductors, and perovskites have been calculated by Marangantti and
Sharma [69] based on Tagantsev’s rigid-ion [29] and Askar’s core-shell [68] models. The ab initio computation of the longitudinal
component of a flexoelectric tensor was firstly performed by Hong et al. through a supercell-based direct method [218]. More recent
advances allow one to obtain the full flexoelectric tensor of arbitrary solid crystals [15,78,79], which confirms Kogan’s pioneering
result in terms of the magnitude of intrinsic flexoelectricity. This subsection summarizes the recent ab initio and semi-empirical
calculation results of the flexoelectric constants of solid crystals, especially, ferroelectric perovskites.

3.2.1. First-principles calculations
There are mainly two approaches to evaluate flexoelectric constants from first-principles density-functional theory calculations.

The direct approach follows the definition of the flexoelectric coefficient in (1.1) and directly evaluate the polarization induced by an
applied strain gradient. Since the strain gradient needs to be compatible with the periodical boundary condition, it is achieved by
imposing a sinusoidal atomic displacement to the supercell. The induced polarization is calculated by fixing one sublattice while
relaxing the rests. Finally, the flexoelectric component is obtained by dividing the local polarization over the applied strain gradient.
Hong et al. firstly utilized this direct method to calculate the longitudinal component for BaTiO3 and SrTiO3 [219]. Later, it has been
extended by Xu et al. to evaluate the transverse and shear flexoelectric components [220]. Although the direct method is straight-
forward to implement, the results are sensitive to the choice of constrained sublattice (force-pattern, c.f. Section 5.3) and the size of
the supercell. Furthermore, it implicitly assumes an open circuit (fixed-D) boundary condition, making it difficult to compare with
experimental values which are usually performed under the short-circuit (fixed-E) boundary condition. Additionally, the calculated
flexoelectric constants inherently contain the lattice and electronic contributions, making it difficult to elucidate the microscopic
origins of flexoelectricity.

The indirect method is based on the first-principles theory of flexoelectricity. In this context, the flexoelectric tensor can be
decomposed into the lattice-mediated, the frozen-ion (electronic), and the mixed contributions (c.f. Section 2.3 and Table 2.2). By
computing each component within a consistent quantum mechanics framework, one can finally obtain the full flexoelectric tensor
which can be separated into its lattice and electronic contributions. Following this philosophy, Hong and Vanderbilt have provided a
supercell-based method and performed systematic computations of the full flexoelectric tensors for a number of elementary, binary,
and perovskite crystals with cubic symmetry. For all materials computed, their flexoelectric coefficients under fixed-D condition are
on the order of −0.1 nC/m and the corresponding flexocoupling coefficients are within the range of −10 to −20 V. Note that the
flexoelectric tensor components are identically negative in stark contrast to the positive values from experimental measurements.
Also, this ab initio estimated values are two orders of magnitude smaller than common experimental results, which is believed to be
related to surface contributions [15]. Besides, it is still challenging to obtain the full flexoelectric tensor without invoking the current-
density response formulation which is complicated to implement.

Evaluating the surface contribution to a flexoelectric response is later made possible by Stengel. The author devised an alternative
stratety to circumvent the difficulty in calculating the microscopic current-density responses by reformulating the density functional
perturbation theory (DFPT) onto a curvilinear coordinate system [145]. Stengel showed that total (bulk and surface) flexocoupling
coefficient is equivalent to the open circuit voltage V induced across a bent slab in the limit of large thickness t, i.e.,

=f
t

Vlim 1
xijk

jk i, (3.1)

where jk i, is the gradient of symmetrized strain, fxijk is the sum of bulk flexocoupling tensor fxijk
bulk and surface contribution fxijk

surf , and
the subscript x denotes the direction normal to the slab surface. In this sense, rather than seeking for the polarization response of a
bulk, one can instead resort to the electric field response of a slab. To obtain fxijk with both electronic and ionic contributions, one
needs to first perform a slab calculation in a “truncate-bulk” scheme to obtain the frozen-ion contribution, and then relax the slab for
the lattice-mediated response. Meanwhile, to access the full tensor fijkl with cubic symmetry, slabs with three independent crystal-
lographic orientations should be consistently evaluated. Following this procedure, Stengel obtained the surface and bulk flexoelectric
constants for SrTiO3 including frozen-ion and lattice-mediated contributions [78]. The overall relaxed lattice flexoelectric constants
exhibit an interesting surface state-dependence which signifies the surface contribution to the flexoelectricity.

More recent efforts focus on refining the calculation to further rationalize the discrepancy in the sign and the magnitude of
flexoelectric tensors with experimental values. To this end, many subtleties and ambiguities in the theoretical calculations of the
flexoelectricity have been revealed. These issues include the choice of reference energy and subsequent ambiguity in defining the
electric field under a structural gradient [80], the pseudopotential dependence of microscopic response functions [15,77], the ne-
cessity to unify the theory of the flexoelectricity with other effects [50,80], etc. We will turn back to discuss these issues in Section
5.3.

3.2.2. Semi-empirical calculations
In addition to pure ab initio attempts, semi-empirical methods have also been utilized to quantify flexoelectric coefficients

combining first-principles calculations with higher-level computation techniques. These semi-empirical techniques include lattice
dynamics [69,83], molecular dynamics [103,176,177], and effective Hamiltonian methods [178]. In each approach, experimental
parametrization and/or DFT-based first-principles calculations have been used to obtain the essential ingredients of the model, such
as the dynamic matrices and phonon spectra [83], empirical interatomic potentials [177], and flexocoupling coefficients in energy
functionals [178,221].
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Maranganti and Sharma [69] firstly implemented Tagantsev’s classic microscopic theory of flexoelectricity [29] and computed the
flexoelectric tensors of various cubic crystals in the context of classic lattice dynamics. The DFT calculation is used to compute the
dynamic matrices and Born effective charges which are then used to obtain the flexoelectric coefficients. Kvasov and Tagantsev [83]
recently applied similar strategies to study the dynamic flexoelectric (flexodynamic) coefficient in SrTiO3 through dynamic matrices,
Born effective charges, and phonon spectra obtained from DFPT. They argued that the dynamic flexoelectricity is comparable to or
even stronger than the static bulk part under certain conditions. However, it remains controversial whether the dynamic and static
bulk flexoelectric are intrinsically equivalent or not.

Molecular dynamics simulations have been utilized to compute the flexoelectric tensors through a direct method. The full
flexoelectric tensor can be readily obtained using three independent schemes of longitudinal, transversal, and shear strain gradients
in a periodical system. Chatpoulus reported the flexoelectric tensor of MgO [177], which shows a much smaller order of magnitude
than those of ferroelectric materials. This result is expected considering the large difference in dielectric permittivity. A similar
technique has also been utilized to study the temperature dependence of the flexoelectric constant in a BaTiO3 pyramid sample built
by a molecular dynamics simulation [176]. The temperature-behavior is however opposite to those obtained by experiments [35].
Very recently, Zhuang et al. performed molecular dynamics simulations to evaluate the flexoelectric constants of several re-
presentative 2D materials, providing an effective approach to explore the flexoelectricity in low-dimensional materials [222]. No-
tably, the accuracy of the flexoelectric coefficient evaluated by molecular dynamics highly relies on the choice of the atomistic model
and the effective interatomic potentials.

Another ab initio-based method is employed by Ponomerava et al. [178] The flexocoupling tensor is first computed using a
supercell-based direct method and then utilized to construct an effective Hamiltonian for the finite temperature simulation of a slab
model. Accordingly, the finite temperature flexoelectric tensor of a paraelectric Ba0.5Sr0.5TiO3 film and its dependence on tem-
perature and film thickness are examined. Their results demonstrate that the flexocoupling coefficient is nearly independent of
temperature while the flexoelectric coefficient scales with temperature approximately by the dielectric permittivity, consistent with
the conclusion from early phenomenological prediction [29]. The enhancement of the flexoelectric response in thinner films also
highlights the importance of surface contributions.

3.2.3. Other computational methods
Recently, the advancement and popularity of machine learning techniques have brought new insights to materials design. Li et al.

demonstrated a unique approach [223] to statistically estimate the flexoelectric constant by learning from experimental measure-
ment. He performed data mining on a set of HRTEM images of the ferroelectric polarization distribution in the PbTiO3/SrTiO3

superlattice [224] to obtain the statistical features of a vortex nanodomain. Meanwhile, the authors conducted high-throughput
phase-field simulations with parameterized flexoelectric constant to “fit” the machine-learned statistical features. In this sense, it is
implicitly assumed that flexoelectricity, other than extrinsic defect-related factors, is the primary contributor to the variation of
vorticity at the core of polarization vortex arrays in the PbTiO3/SrTiO3 superlattice. The estimated flexocoupling coefficients for both
PbTiO3 and SrTiO3 agree well with theoretical values to the order of several volts. This work highlights the power of integrating big
data and machine learning techniques to resolve controversies for flexoelectric-related phenomena.

Recently, large-scale simulations have been employed to study the flexoelectricity based on the second-principles theory in-
corporating both electronic and lattice degrees of freedom [225]. Comparing to the conventional density functional theory, it has the
advantage of being able to handle larger systems with 100,000+ atoms, while comparing to semi-empirical methods, it contains the
information about the electronic degrees of freedom. Considering the importance of both electronic and ionic contributions to
flexoelectricity (Section 5.3), we expect the second-principles theory will serve as a promising, additional computational technique
for understanding the flexoelectric-related phenomena and evaluating flexoelectric properties in the future.

A comparison of various methods mentioned in this subsection is summarized in Table 3.3. The flexoelectric and flexocoupling
coefficients of several perovskite oxide crystals evaluated by these approaches are listed in Table 3.4.

The advances in the first-principles calculations and atomistic models allow us to quantify the full flexoelectric tensors of various
crystal materials from ab initio. Both bulk and surface flexoelectric effects, as well as a static and dynamic contributions, can be
appropriately identified with an organic combination of various techniques. We expect these advances would further deepen the
microscopic understanding of flexoelectric phenomena and facilitate the computational design of novel flexoelectric materials.

4. Progress in the manifestation of flexoelectric effects

The flexoelectric effect manifests itself when the intrinsic flexoelectric coupling is high, e.g., in ferroelectric materials, and/or
when the structural or field gradient is significant. As the material aspect has been elaborated in the previous section, we focus on the
latter aspect in this section about where to find and how to generate large gradients for the manifestation of flexoelectricity.

There are a few points need to be emphasized. First, the origin of a gradient can be directly or indirectly related to the definition of
flexoelectricity. Strain/stress gradients may directly arise from inhomogeneous structural deformation while electric field/polar-
ization gradients may arise from the nonuniformity of polarization or electric fields. These mechanical and electrical gradients may
also be indirectly induced via chemical inhomogeneity, thermal gradients, and variation of other structural orderings due to the
omnipresent coupling between multiple state variables. Second, strain gradients may be spontaneous, such as due to the spontaneous
polarization change across a ferroelastic domain wall, or can be generated by external stimuli, such as by the local stress field created
by SPM tip pressing. Furthermore, for dynamic flexoelectric effects, even the temporal variation of atomic displacements or polar-
ization contributes to the flexoelectric response. The diverse types of gradients in practical materials provide a rich playground to
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explore flexoelectric-related phenomena.
In this section, we highlight three scenarios at the micro/nanoscale where appreciable strain, stress, and other gradients can be

present, and the role of flexoelectricity becomes significant.

Table 3.4
Theoretical calculated flexoelectric constants of perovskite crystals.

Materials Type of tensors and Units SI units Longitudinal
f1111 or μ1111

Transverse
f1122 or μ1122

Shear
f1221 or μ1221

Methods Reference

BaTiO3 FEC type-I nC/m 0.15 −5.5 −1.9 Rigid-ion model [69]
FEC type-II −0.37 Direct, DFT [218]
FEC type-II −0.36 1.6 −1.5 [220]
FEC type-I −0.16 μ1122+ 2μ1221=−0.21* Indirect, DFT [15]
FEC type-I (−370.8)** μ1122+ 2μ1221 = (−481)*
FEC type-I μeff=0.1–0.6 MD [176]
FCC V −18.2 −23.6* Indirect, DFT [15]

SrTiO3 FEC type-II nC/m −1.4 Direct, DFT [218]
FEC type-I −0.16 μ1122+ 2μ1221=−0.17* Indirect, DFT [15]
FEC type-I (−48.4) μ1122+ 2μ1221 = (−53.5)
FEC type-II −0.89 2.3 −6.6 Direct, DFT [220]
FEC type-I −0.26 −3.7 −3.6 Rigid-ion model [69]
FEC type-II −0.87 −0.84 −0.08 Indirect, DFPT [81]
FCC V −17.7 μ1122+ 2μ1221=−19.5* Indirect, DFT [15]
FCC −16.2 −15.1 −1.5 Indirect, DFPT [79]
FCC −2.1 −2.5 −1.5 Rigid-ion model [83]
FCC |f1111 − f1122| < 0.5 |f1221| = 1.5 Phonon spectra, DFPT

Ba0.5Sr0.5TiO3 FCC V 5.1 3.3 0.045 Effective Hamiltonian [178]

BaZrO3 FEC type-I nC/m −0.19 μ1122+ 2 μ1221=−0.21* Indirect, DFT [15]
FEC type-I (−2.8) μ1122+ 2 μ1221 = (−3.2)
FCC V −21.8 μ1122+ 2 μ1221=−24.4*

PbTiO3 FEC type-I nC/m −0.2 μ1122+ 2 μ1221=−0.25* Indirect, DFT [15]
FEC type-I (−26.4) μ1122+ 2 μ1221 = (−34)
FCC V −22.4 μ1122+ 2 μ1221=−28.9*
FCC V |f1111 − f1122| < 3 |f1221| ∼ 2 Indirect, ML [223]

* Values in parenthesis indicates they are under short circuit boundary condition at room temperature.
** Abbreviations: FEC – flexoelectric coefficient; FCC – flexocoupling coefficient; MD – molecular dynamics; ML – machine learning.

Table 3.3
Theoretical methods to calculate flexoelectric constants.

Type Method Strengths Drawbacks Reference

First-principles Direct Straightforward to implement;
all tensor components

Supercell size dependent;
mixed lattice and electronic contribution;
uncontrolled electrical boundary conditions

[218,220]

Indirect Longwave method Separate lattice and electronic
contributions

Complex to implement;
only longitudinal component

[15,77]

Separate lattice and electronic
contributions;
unit-cell based;
all tensor component

Complex to implement [81]

Slab model Surface contribution;
all tensor component

Supercell-based;
complicated to implement (curvilinear
coordinate)

[79]

Semi-empirical Molecular dynamics Temperature and geometry factors;
straightforward to implement;
all tensor component

Effective potential dependent [176,177]

Effective Hamiltonian Temperature and geometry factors;
all tensor component

Flexocoupling coefficients dependent [178]

Lattice dynamical Shell model Inverse flexoelectric coefficient Rely on phonon spectra data;
sensitive to core-shell interaction

[68]

ab initio Bulk dynamic contribution;
straightforward to implement

Rely on phonon spectra data;
ignore electronic contribution

[69,83]
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4.1. Manifestation by strain gradient engineering

Fabrication of epitaxial oxide thin films may unintentionally induce strain gradients along the out-of-plane direction. This unwanted
structural nonuniformity is believed to be detrimental to the dielectric properties of ferroelectric films [84,85]. However, a strain
gradient can be deliberately engineered in ferroelectric nanostructures to realize desired functions, a process known as the strain-
gradient engineering. Typical examples of strain-gradient engineering in thin film ferroelectrics and the impact on ferroelectric and
transport properties are shown in Fig. 4.1. For instance, Noh’s group demonstrated that the strain relaxation behaviors can be tuned by
adjusting the oxygen partial pressure [226] and/or the deposition temperature [227,228] during the film growth. As a result, a giant
strain gradient of 105–106 m−1 can be built into epitaxial ferroelectric thin films [226,228]. The resulting built-in field aligns the dipole
defects during the cooling process and consequently modifies the domain configurations and the corresponding hysteresis loops
[226,228]. Along with controlling the film thickness, the self-poling direction of epitaxial BiFeO3 [227] and BaTiO3 [229] films can be
altered, and the resultant rectifying diode behaviors have been explored [227,228,230]. These studies have expanded the strain en-
gineering of functional oxides [231] into the heterogeneous strain regime where the flexoelectric effect may dominate.

Aside from generating gradients by strain relaxation, there are other strategies to bring strain gradients into nanostructured
ferroelectrics. For example, compositionally graded PZT and BST thin films have shown significant chemical and structural gradients,
leading to modified ferroelectric and dielectric properties [86,87,232]. An extreme example utilizing the chemical inhomogeneity to
create strain gradients may be the recent work by Wu et al. where a digitized nanofilm with a layer-varying composition of SrTiO3 and
LaAlO3 demonstrates a flexoelectric polarization [233]. The flexoelectricity enabled by chemical gradients has also been realized in
core-shell dielectric nanoparticles at temperatures as high as 800 °C [234]. Moreover, high-quality multilayered heterogeneous oxides
bring a new dimension of materials design and, concomitantly, emergent phenomena such as new topological phases in ferroelectric
superlattices [224]. The large strain gradient from a single layer can be continuously transferred into multilayer heterostructures, as
demonstrated by Tang et al. [235]. With large and continuous strain gradients across the layers, it is interesting to explore how the
flexoelectric coupling plays a role in these heterostructures. A very recent work has revealed that a strain gradient coupled with the
composition gradient is able to control the disorder dynamics in KTa1-xNbxO3 single crystals [236]. Additionally, localized strain
doping by helium implementation [237–239] and dynamical optical enhancement of long-range strain gradients [240] also open new
perspectives in the strain gradient engineering for enhanced flexoelectricity.

4.2. Manifestation by stress gradients at the nanoscale

Although the aforementioned strain gradient engineering provides a viable way to tune long-range or local structural in-
homogeneity, it is challenging to dynamically and locally modulate the introduced strain gradients. In contrast, it is more flexible to
activate flexoelectric-related phenomena via external mechanical stress rather than built-in strains.

Fig. 4.1. Strain gradients and its influence on ferroelectric and electrical properties in ferroelectric thin films. (a) Variation of the average in-plane
strain as a function of penetration depth in HoMnO3 thin films deposited at different oxygen partial pressure PO2. (b) Corresponding polarization
hysteresis loops varying from double loops to biased single loops for different PO2 during the growth process. (c) Measured out-of-plane and in-plane
strain gradients in 200 nm BiFeO3 films deposited at different temperature TD. (d) Corresponding current density-electric field curves measured in
BiFeO3 films at different TD. (a, b) Adapted with permission from [226] Copyright © 2011, American Physical Society. (c, d) Adapted with
permission from [228] Copyright © 2014, John Wiley and Sons.
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The advancement of scanning probe microscopy (SPM) techniques offers such a mechanical control. A crude estimation shows
that, by applying a few μN force through a rigid, sharp probe onto an oxide surface, one can generate stress of several GPa, which
decays in tens of nanometers from the center of the contact area. The created highly-concentrated stress field can directly interact
with the ferroelectric polarization through both piezoelectric and flexoelectric effects. For example, it is conventionally believed that
a mechanical force can only induce non-180-degree ferroelastic switching via piezoelectricity. However, Lu et al. demonstrated that,
due to the flexoelectric effect, the ferroelectric polarization in ultrathin BaTiO3 films can be reversed by 180-degree through a ∼1 μN
mechanical load from an SPM tip (Fig. 4.2a) [241]. Similar mechanical switching of ferroelectric domain has been realized in a wide
spectrum of ferroelectric thin films, such as BaTiO3 [242,243], PbTiO3 [244], PbZr0.2Ti0.8O3 [245], nanopolar regions in SrTiO3

[246], Al-doped HfO2 [247], bismuth-layered K0.5Bi4.5Ti4O15 [248], ferroelectric polymers PVDF-TrFE (Fig. 4.2b) [249], and mul-
tiferroics such as BiFeO3 [250,251], TbMnO3 [252] and Bi5Ti3FeO15 (Fig. 4.2c) [253]. These findings demonstrate the universal
existence of strong flexoelectricity in ferroelectrics. Theoretical studies of mechanical switching have highlighted the role of flex-
oelectricity over piezoelectricity in unbalancing the free energy landscape [171] and creating polarity, while a few recent studies
have also examined alternative mechanisms for the observed mechanical switching, such as bulk chemical transport and surface
effects [174,254].

The mechanical approach to switching ferroelectric domains circumvents voltage-induced side effects, such as leakage, charge
injection, and dielectric breakdown. Moreover, mechanically-written nanodomain arrays are spatially denser than the electrically-
induced counterparts [249,255] while exhibiting comparable response time and retention properties [249]. These features of me-
chanical switching offer a new perspective for designing low-energy ultrahigh-density memories. Furthermore, attempts have been
made to utilize mechanical control of polarization for ferroelectric nanodomain lithography in capacitors (Fig. 4.2d) [256], gating
ferroelectric field-effect transistors (Fig. 4.2e) [257], controlled selection of switching paths (Fig. 4.2f) [251], domain wall en-
gineering (Fig. 4.2g and h) [244,258], and switching electroresistivity for ferroelectric tunneling junctions (Fig. 4.2i) [259]. Although
mechanical switching by SPM pressing is limited to the unidirectional polarization reversal, recent theoretical [174,260] and ex-
perimental explorations [251,261] have attempted to go beyond this limit.

Fig. 4.2. Mechanical control of multifunctionalities in ferroelectric and multiferroic nanostructures by using SPM tips. Detailed descriptions and
reference of each figure are given in the text. (a) Adapted with permission from [241] Copyright © 2012 The American Association for the
Advancement of Science. (b) Adapted with permission from [249] © 2015 AIP Publishing. (c) Adapted with permission from [253] Copyright ©
2017 Springer Nature. (d) Adapted with permission from [256] Copyright © 2016 American Chemical Society. (e) Adapted with permission from
[257] Copyright © 2017 IOP Publishing. (f) Adapted with permission from [251] Copyright © 2018 Springer Nature. (g) Adapted with permission
from [244] Copyright © 2017 AIP Publishing. (h) Adapted with permission from [262] Copyright © 2013 American Chemical Society. (i) Adapted
with permission from [259] Copyright © 2012 American Chemical Society. (j) Adapted with permission from [263] © 2017 CC BY license. (k)
Adapted with permission from [258] Copyright © 2017 CC BY license.
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Aside from polarization switching, many other mechanically-mediated phenomena have been reported where flexoelectricity is
directly or indirectly involved. For example, Das et al. applied a mechanical scanning probe to dynamically reconfigure the surface
oxygen vacancy distribution in a nonferroelectric SrTiO3 thin film (Fig. 4.2j) [263]. The depolarization field generated by flex-
oelectricity is attributed to be the main driving force. Similar pressure-induced migration of charged defects in oxides has also been
evident in tuning the LaAlO3/SrTiO3 interface conductivity (Fig. 4.2k) [262] and switching the electroresistance in non-stoichio-
metric NiO films [264,265]. In addition, a reversible super tetragonal-to-rhombohedral phase transition in highly-strained BiFeO3

films can be modulated by a mechanical scanning probe [266–269] whereas the role of flexoelectricity in this stress-induced tran-
sition has not yet been explored. Besides, ferromagnetic switching accompanied by ferroelectric switching in response to a me-
chanical load has been reported recently in multiferroic Bi5Ti3FeO15 thin films [253], yet whether the flexomagnetic effect or a
flexoelectric-mediated magnetoelectric coupling is responsible for the phenomena remains an open question.

Flexoelectricity also plays a significant role in nanoindentation, where an irreversible deformation on a bulk single crystal sample
is created by a relatively large indenting force. The size-dependent hardening effect has been measured in BaTiO3 [189] and SrTiO3

single crystals [191] and is attributed to the flexoelectric effect [192]. It is interesting to note that this elastic stiffening in na-
noindentation has enlightened a viable method to quantify flexoelectric coefficient [164] and to mechanically identify the polar-
ization directions in single crystal ferroelectrics [270].

4.3. Spontaneous flexoelectricity at general interfaces

Interfaces in materials are characterized by structural and property changes from the adjacent regions. In a chemically homo-
geneous mono-phase single crystal, twin walls and APBs are typical types of homogeneous interfaces. Phase boundaries appear in
multiphase materials and the grain boundaries in polycrystals. Heterogeneous interfaces represent the boundary where two different
materials conjunct and the structures and properties can be distinct than the two neighbors. Finally, surface as one special interface
has unique properties dissimilar to corresponding bulk. In principle, flexoelectricity exists in all these general interfaces. In this
subsection, we provide a few examples to illustrate the spontaneous appearance of flexoelectricity at general interfaces.

4.3.1. Domain walls
Ferroic transitions often lead to the formation of domains separated by domain walls. The overall responses of a ferroic solid to

external fields are often strongly influenced by the behavior of domain walls. Interestingly, domain walls also possess intriguing
properties, for instance, high electronic conductivity [90,271–273], chirality [274,275], and oxygen vacancy segregation [276,277]
in ferroelectric domain walls and polar domain wall arising from incipient ferroelectrics [201,278–282]. It was suggested that the
domain walls of ferroelectrics might even be treated as a new engineering element in multifunctional materials [283]. Due to the
experimental difficulty of separating flexoelectric contribution from the piezoelectric effect, most existing efforts studying the in-
fluence of flexoelectric effect on domain wall structures have been based on the phenomenological LGD theory. The flexoelectric-
induced behaviors of domain walls can be classified into the following three categories.

(1) Polar domain walls in nonpolar paraelectric phases

By introducing the flexoelectric coupling terms to the LGD free energy, Tagantsev et al. [284] demonstrated that the flexoelec-
tricity can introduce polar instabilities at the APBs of SrTiO3. Morozovska et al. [88,89] systematically studied the so-called roto-flexo
effect, i.e., the appearance of electric fields proportional to polarization and structural order parameter gradients across a domain
wall. They demonstrated that the flexoelectric effect can induce polarization as high as several μC/m2 in both the APBs and the twin
walls of SrTiO3. Employing the phase-field method, Gu et al. [170] also demonstrated that the flexoelectric effect is the most likely
origin of the polar domain walls in CaTiO3.

(2) Domain wall structures complicated by the flexoelectric effect

The 180-degree domain walls of tetragonal ferroelectric phases (with out-of-plane polarization) have long been believed Ising-
like, i.e., with no in-plane component associated with polarization rotation. Yudin et al. [275] revisited the 180-degree domain wall
of BaTiO3 and showed that the conventionally-believed Ising walls are complicated by a Bloch component and become bichiral due to
the flexoelectric effect. The polarization component perpendicular to the domain wall (Neél component), which may also be in-
troduced by the flexoelectric effect, is however ignored in this work. Based on phase-field modeling [45] and DFT calculations [168],
it was shown that the 180-degree domain wall of tetragonal BaTiO3 exhibits both Bloch and Neél characteristics in addition to the
Ising feature. As shown in Fig. 4.3, the additional two features are complicated by the domain wall orientation which is related to the
flexoelectric effect [45].

(3) Flexoelectric-mediated domain wall conduction

Domain wall conduction has been extensively observed and investigated in ferroelectric materials. Apart from charged domain
walls, uncharged domain walls have also shown appreciable conductivity due to carrier accumulation around wall regions in fer-
roelastics, multiferroics, and semiconducting ferroelectrics. The flexoelectricity induced by the strain and structural gradient across
the domain walls is believed to be responsible for or at least contribute to some of these phenomena. For example, Eliseev et al. [285]
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theorized the direct and indirect mechanism of uncharged domain wall conductivity where flexoelectric and rotostrictive couplings
are involved. Morozovska et al. demonstrated that the flexoelectric coupling and angle-dependent electrostriction lead to the local
band bending and thus anisotropic domain wall conductivity [91].

4.3.2. Morphotropic phase boundaries
Morphotropic phase boundaries (MPB) are phase boundaries associated with structural phase transitions without composition

changes. The most famous MPB exists in PZT near 52/48 composition and is believed to account for the high piezoelectric perfor-
mance in this perovskite solution system. A strain-stabilized MPB has been reported in BiFeO3 by Zeches et al. [286] where the
coexistence of rhombohedral-like and tetragonal-like polymorphs leads to huge structural variation across the MPB, indicating a high
likelihood for flexoelectric-related effects to occur. Chu et al. [200] firstly observed an enhanced anisotropic interfacial photocurrent
at the MPB of highly strained BiFeO3 thin films. They used phase-field simulations to show that the strong flexoelectric effect at the
domain wall gives rise to the charged domain walls. The charges across a wall generate a strong built-in electric field, which separates
the electron-hole pairs and consequently enhances the photocurrent. In similar mixed-phase BiFeO3 thin films, Cheng et al. [287]
established a correlation between the elastic stiffness modulation and piezoresponse across the phase boundary. They believe that the
flexoelectric effect gives rise to the enhancement of piezoelectric responses at the boundaries and rhombohedral-like phase which
accounts for the giant electromechanical properties of mixed-phase BiFeO3 thin films. Additionally, modulated phases and their
evolution at the ferroelectric-antiferroelectric MPB in Sm-doped BiFeO3 have been spatially resolved by high-resolution scanning
transition electron microscopy [288]. Theoretical analysis has attributed this instability to the negative effective domain wall energy
which arises from flexoelectric coupling between local structural and polarization orderings in ferroics. The intrinsic flexoelectric
coupling is also believed as the driving force for incommensurate phase transitions in antiferroelectricity in PbZrO3 [289] and other
incommensurate crystals [290].

Fig. 4.3. Polarization profiles of 180° domain walls. (a) P1 and P2 distribution at θ=5π/12 and (b) at θ=π/12 from the phase-field method. (c) P1
and P2 profiles at θ=5π/12 from first-principles calculations. (d) Maximum absolute value of the polarization components induced by the
flexoelectric effect in the wall as a function of the rotation angle θ, calculated from the phase-field method. P1 remains identical while P2 flips with θ.
Both P1 and P2 are independent of P3. θ indicates the angle between the domain wall and the crystallographic direction [1 0 0]C. The subscript C
denotes the original crystallographic coordinate of the pseudocubic lattice. The domain wall lies in the x2-x3 plane and perpendicular to the x1
direction. Reprinted with permission from [45] Copyright © 2014, American Physical Society.
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4.3.3. Heterogeneous interfaces
The heterogeneous interfaces separating different crystalline materials usually possess distinctive properties and lead to emergent

phenomena. The structural, physical, and chemical gradients across the heterogeneous interfaces suggest that strong flexoelectric
effects may spontaneously occur in the proximity. Majdoub et al. [291] demonstrated that the dead layers at the metal-dielectric
interfaces are associated with the flexoelectric effect using a continuum theory. Similarly, Liu and Wang [292,293] showed that the
flexoelectric effect gives rise to enhanced piezoelectric responses in layered super-lattice structures.

4.3.4. Surfaces
Surface polarization has been widely observed in nonpolar dielectric materials. Its emergence may have several different origins,

such as surface piezoelectricity [294,295], band gap modifications [296], and surface reconstructions [297]. Even if the surface
polarization originates purely from the strain, it still at least has two possible origins, i.e., surface piezoelectricity and surface
flexoelectricity [28]. Due to the complexity of surfaces, only a few works have been dedicated to the surface flexoelectric effect.
Theoretically, Morozovska et al. investigated the flexoelectric effect at the surfaces using LGD theory [88]. It was found that the
flexoelectricity-induced polarization could reach as high as 1–5 μC/cm2 at the surfaces of incipient ferroelectric SrTiO3. Experi-
mentally, Tararam et al. characterized the nanoscale electromechanical properties of noncentrosymmetric CaCu3Ti4O12 ceramics
using PFM [298]. They believe that the surface flexoelectricity gives rise to the observed polarization which shows direction and
amplitude dependence on grain orientation. Recently, Yang et al. used in situ grazing incidence X-ray diffraction and X-ray reflectivity
to explore the surface structure of a single domain epitaxial BiFeO3 film with the (1 1 1) orientation [299]. They found large strain
gradients (∼107 m−1) at the surface region of the film, giving rise to an irreversible surface structure transition at 500 K via the
surface flexoelectric effect. It should be noted that extreme care is needed to separate the surface flexoelectric effect from other
interfering effects.

4.3.5. Other defects
Apart from the interfaces, which can be regarded as 2D defects of a crystal structure, there are other types of defects where the

ideal periodicity of crystal breaks down. In the proximity of these defects in dielectric materials, large structural variation occurs, and
consequently, flexoelectricity can manifest itself. Theoretical predictions of polarization appearance in the vicinity of dislocations,
voids, and cracks due to the flexoelectric coupling have been documented [112,300]. A very recent STEM observation on the po-
larization appearance around the dislocations in SrTiO3 thin films [301] has provided evidence at the atomic level.

4.4. Manifestations by other gradients

The flexoelectric coupling, by definition, connects structural gradients and polarization orderings or vice versa. However, in many
classes of materials, especially in ferroics, there are other direct couplings between the structural and polarization orderings that may
indirectly mediate flexoelectric effects. In this sense, flexoelectric effects can be indirectly mediated by other graded fields. For
example, Kim et al. [302] reported a graded electrical field generated by a thermal gradient across a BST sample with symmetric
geometry, which further causes measurable strain due to the converse flexoelectricity. Li et al. [240] demonstrated a giant transient
enhancement of strain gradients in BiFeO3 initiated by an optical approach, which can serve as a new dynamical control of flex-
oelectricity.

The dynamic flexoelectric effect, as phenomenologically defined in Section 2.2, describes the induced polarization due to the
acceleration of the medium. In this sense, by measuring the inherent vibration modes of crystals, such as the phonon spectrum, one
can identify the role of flexoelectric effect by fitting the spectrum using lattice dynamics theories with flexoelectric coupling con-
sidered. For example, Astafiev et al. have shown significant flexoelectric coupling between ferroelectric soft-mode and acoustic
phonon branch leads to a sharp maximum in the field dependence of dielectric loss in SrTiO3 [303].

Additionally, the converse flexoelectric effect, e.g., applying a uniform electric field gives rise to a nonuniform strain, or, applying
a nonuniform field generates a uniform strain, can be realized as for the direct flexoelectric effect. In this sense, a graded field is not
necessary to induce flexoelectric phenomena. Several pieces of experimental evidence on the flexoelectric bending enabled by the
converse flexoelectric effect have been documented [304–306]. Very recently, other manifestations of converse flexoelectric effects
have been reported, such as the mimicry of piezoelectric responses in non-piezoelectric materials [307], electronic hybridization and
lattice vibration enabled by artificial inhomogeneous fields [308], and enhanced actuation in ceramics with graded permittivity by
geometric design [309].

The above discussions on a variety of ways to manifest flexoelectric effects at micro and nanoscale are summarized in Table 4.1.
The essential philosophy is that flexoelectricity, by coupling with graded fields, enables a viable way to break the symmetry of materials,
thereby giving access to emergent phenomena that are otherwise forbidden in the pristine state. Finally, as a closing remark for this section,
we would like to add a caveat to using this philosophy in the opposite way. After all, it is not always justified to attribute every
emergent phenomenon to flexoelectricity in systems subjected to an intrinsic or extrinsic gradient.

5. Challenges: Ambiguities and controversies

Although significant progress has been made in the past two decades in understanding solid-state flexoelectricity, there are
remaining ambiguities and controversies even at the conceptual level. There are three major outstanding issues: (1) the arbitrariness
and ambiguities in some fundamental concepts due to the lack of convention, (2) the order-of-magnitude discrepancies between

B. Wang, et al. Progress in Materials Science 106 (2019) 100570

27



theoretically computed and experimentally measured flexoelectric coefficients, and (3) the disagreements among theoretical eva-
luations of the flexoelectric coefficient. In this section, we attempt to clarify the ambiguities in the basic concepts, discuss possible
origins for the discrepancies in evaluating flexoelectricity, and reveal the subtleties among theoretical calculations of flexoelectric
tensors. Some open questions are briefly mentioned as well.

5.1. Ambiguities in some basic concepts

5.1.1. Flexoelectric phenomena
The flexoelectricity is a multidisciplinary topic involving researchers from materials science, chemistry, physics, mechanical

engineering, electrical engineering, etc. As a result, there is a lack of consistency in the convention of terminology and symbols,
causing confusions even at the fundamental level. On the one hand, the same or similar terminology may refer to disparate phe-
nomena. For example, flexoelectricity also refers to the coupling between electric polarization and inhomogeneous magnetization in
the magnetism community (a.k.a. spin flexoelectricity) [320–322]. On the other hand, different types of terminology have been used to
denote the same phenomenon. For instance, nonlocal piezoelectric effect [31,32,323] or flexure-electric effect [324] has been used in
some early works to refer to the phenomenon known as the flexoelectric effect in nowadays’ context. Therefore, it is of primary
importance to unify the terminology.

Another ambiguity is related to the diverse contributions of a flexoelectric response. According to Tagantsev’s [28], unlike pie-
zoelectricity which is purely a static bulk property, the flexoelectric response in a finite sample consists of bulk and surface con-
tributions that are comparable in amplitude. The bulk flexoelectricity is characterized by different tensor coefficients under static and
dynamic stimuli while the surface contribution inevitably combines a flexoelectricity-originated and a surface piezoelectricity re-
sponse. For most experimental measurement of flexoelectricity, the static bulk and surface contributions can be comparable, whereas
corresponding theoretical models generally assume a bulk static flexoelectric contribution only. Therefore, it may be inappropriate to
interpret the experimental values as the bulk flexoelectric property of the material. Instead, it is encouraged to explicitly elucidate
which types (bulk or surface, static or dynamic) of flexoelectric coefficients one refers to before making a comparison.

The direct flexoelectric effect has its converse counterpart known as the converse or inverse flexoelectric effect. However, it is
unclear how to define this converse flexoelectric effect in a thermodynamically consistent way. Specifically, the converse flexoelectric
effect can refer to the homogeneous strain/stress response induced by a graded electric/polarization field, as defined in some works
(e.g., Ref. [12]); it has also been used to denote the inhomogeneous strain/stress response caused by a homogeneous electric/
polarization field [31,304,305,325]. This ambiguity is closely related to the paradox that “a flexoelectric sensor is not an actuator at
the same time” which has been addressed by considering the finite-size effect [11,95]. However, an unambiguous treatment of the

Table 4.1
Summary of various manifestations of flexoelectric effects.

Type of gradients Source of gradients Property/Phenomena Reference

Strain gradient Strain relaxation Self-poling [226–228,310]
PE loop change (imprint, double loop) [226,228]
Dielectric degradation [84,85]

Dislocations Emergence of piezoelectric response [112]
Crack Fracture toughening [155,112]

Stress gradient AFM pressing Mechanical switching [241,256,257,259]
DW motion (correlated switching) [244]
Charged defect migration [262–264]
Phase transition at MPB [266–269]
Bulk photovoltaic effect (flexo-photovoltaic effect) [311]

Nanoindentation Indentation size effect [189,191,192]
Indentation asymmetry [270]

Inherent interfaces and defects Surface Ferroelectricity and critical thickness [312–314]
Shear surface acoustic wave [43]
Surface polarity [298,299]

Domain walls Bichiral, mixed Ising-Neél-Bloch components [45,168,275,315]
Polarity in incipient ferroelectrics [170,316]
DW conduction [90,273,317]

Heterogeneous interface Dead layer [291]
Emergence of polarity, piezoelectric response [88,89,318]
Enhanced piezoelectric response [292,293]

Morphotropic phase boundary Enhanced piezoelectric response [287]
Enhanced anisotropic photocurrent [200]

Intrinsic vibration Phonon Antiferroelectric phase transition [289]
Incommensurate phases transition [288]

Electric fields Graded field Bending [157,319]
Uniform gradients Surface bending [31,304,305]

Chemical inhomogeneity Composition gradient Built-in field [87]
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converse flexoelectric effect is still absent.
Finally, arising interests in the flexoelectric effects in 2D materials, polymers, and soft bio-membranes (c.f. Section 6.2) may

generate other new concepts. For example, as the soft and low-dimensional materials can sustain large bending curvature, it is very
likely the relationship between a strain gradient and the induced electric displacement is no longer linear, which may have a distinct
origin from the linear flexoelectricity that is being intensively investigated so far. In this sense, it is necessary to differentiate between
the linear and nonlinear flexoelectricity [60,74,200].

5.1.2. Flexoelectric tensors
The flexoelectric tensor µijkl is often defined as a fourth-rank tensor linking the strain gradient to the induced electric polarization.

At first glance, it resembles other fourth-rank tensors, e.g., elastic stiffness cijkl compliance sijkl and electrostrictive tensor Qijkl, but
scrutiny of µijkl reveals complications due to its reduced symmetry. Here, we first briefly describe three possible ambiguities in the
definition of a flexoelectric tensor, including the definitions, the symbols, and the subscript orderings. Next, we focus on the
flexoelectric tensor defined by the symmetrized strain tensor and discuss the feasibility of using the reduced notation for flexoelectric
tensors in cubic and isotropic materials.

5.1.2.1. Definition of flexoelectric tensors. The ambiguity in the definition of the flexoelectric tensor is threefold. First, various forms of
the constitutive equation for the flexoelectric effect have been adopted. Consequently, different versions of flexoelectric tensors are
defined. Taking the electric field E and the mechanical strain ε as the two independent thermodynamic state variables, one can
readily derive the constitutive equation for an isothermal process as

= + +P E e µi ij j ijk
E

jk ijkl
E

kl j0 , (5.1a)

= + +c e E µ Eij ijkl
E

kl kij k klij k l, (5.1b)

where cijkl
E , ij0 ,eijk

E and ekij, and µklij
E and µklij are the corresponding elastic, dielectric, piezoelectric, and flexoelectric coefficients,

respectively. The superscript indicates the tensor quantities are determined under fixed-electric field or fixed-strain conditions.
Following Maxwell relationship, one can easily prove that =e eijk

E
kij and =µ µijkl

E
klij. Similarly, by choosing other pairs of state

variables, the other versions of constitutive equations combining dielectric, piezoelectric, and flexoelectric properties can be obtained
as

= + +s g P F Pij ijkl kl kij k klij k l, (5.1c)

= + +E P g F( )i ij j ijk jk ijkl kl j0
1

, (5.1d)

= + +P E di ij j ijk jk ijkl kl j0 , (5.1e)

= + +s d E Eij ijkl kl kij k klij k l, (5.1f)

= + +E P h f( )i ij j ijk jk ijkl kl j0
1

, (5.1g)

= + +c h P f Pij ijkl kl kij k klij k l, (5.1h)

The superscripts of relevant materials property tensors are omitted for simplicity. In Eqs. (5.1a–h), eijk, gijk, dijk, and hijk represent the
components of the four types of piezoelectric tensors while µijkl, Fijkl, fijkl and ℳijkl are for flexoelectric tensors. The latter four are
mutually related by

=µ fijkl im mjkl0 (5.2a)

=F s fijkl ijmn mnkl (5.2b)

= s µijkl ijmn mnkl (5.2c)

= Fijkl im mjkl0 (5.2d)

Generally, the flexoelectric coefficient is recognized as the linear relationship between a strain gradient and polarization, e.g., µijkl in
Eqs. (5.1a, b) with an SI unit as C/m. Another commonly used flexoelectric tensor is the fijkl in Eqs. (5.2 g,h), which is also termed the
flexoelectric coupling (flexocoupling) coefficient, or the flexovoltage coefficient [97], with an SI unit of V. It is believed the flexocoupling
coefficient serves as a ground-state property, which is nearly independent of temperature and dielectric permittivity.

The second ambiguity originates from the different metrics of the deformation, i.e., the definition of the strain tensor. For
flexoelectric effect in solids, the deformation is usually infinitesimal, and the linearized strain tensor is often adopted. The sym-
metrized is defined as = +u u( )ij i j j i

1
2 , , while the unsymmetrized as = uij i j, . In the couple stress theory of flexoelectricity

[56,57,326], the rotation gradient is used as the metric for the higher order elasticity, i.e., the gradient of the anti-symmetry part of
the displacement gradients, = u u( )ij i j j i

1
2 , , . For systems with large deformation, the nonlinearized strain tensor becomes a con-

venient choice [60,123]. For simplicity, here we focus on the infinitesimal strain definition and discuss the difference in deriving
flexoelectric tensors by using the symmetrized or the unsymmetrized strain tensor. This ambiguity was underlined by Hong [15] in
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developing the microscopic theory of flexoelectricity. Following Hong et al. [15], we write the type-I flexoelectric tensor as

=µ P
ijkl

i

j kl

I

, (5.3)

where j kl, is the gradient of the unsymmetrized strain. This definition is straightforward for complex mathematical derivations in the
microscopic theory of flexoelectricity (e.g., Ref. [15]). Sometimes it is more convenient to use the type-II flexoelectric tensor defined as

=µ P
ijkl

i

kl j

II

, (5.4)

where kl j, is the gradient of symmetric strain kl. This type-II flexoelectric tensor is more suitable for formulating the thermodynamic
LGD models and for drawing comparisons with experimental measurements. Besides, type-I and type-II flexoelectric tensors can be
mutually converted using the relations

= +µ µ µ µijkl iklj iljk ijkl
II I I I

(5.5a)

= +µ µ µ1
2

( )ijkl ikjl iljk
I II II

(5.5b)

In the present review, we use µijkl to denote the type-II flexoelectric tensor unless otherwise stated.
Lastly, the subscript ordering for a flexoelectric tensor matters. For the type-II flexoelectric tensor defined in Eq. (5.4), only two of

the four subscripts representing the symmetrized strain are interchangeable. However, the position of this pair of interchangeable
indices varies in different works. The inconsistent use of the subscript ordering may lead to misinterpretation. For instance, µ1122 may
refer to the transverse (the last two subscripts are interchangeable, µ1122 (bold here for emphasis)) or the shear (the middle two
subscripts are interchangeable, µ1122 (bold here for emphasis)) components of a flexoelectric tensor. Here in this review, unless
otherwise stated, we keep using the last two subscripts as interchangeable indexes for the strain tensor, which has been most often
used in literature.

Based on the discussion above, we suggested a convention of the terminology, definitions, symbols and subscript orderings as
listed in Table 5.1.

5.1.2.2. The symmetry of flexoelectric tensors. Flexoelectricity exists in all crystals because it is described by the fourth-rank
flexoelectric tensor. However, unlike other fourth-rank tensors such as the electrostrictive tensor (Qijkl) and the elastic stiffness/
compliance tensor (cijkl/sijkl), the flexoelectric tensor is invariant only by interchanging the two indexes of the symmetrized strain
tensor, i.e., μijkl= μijlk, whereas other possible symmetries, e.g., Qijkl=Qjikl=Qijlk and cijkl= cjikl= cklij, are not applicable to μijkl.
Using the three-dimensional rotation group theory, Quang and He [330] calculated the number and types of all possible rotational
symmetries for flexoelectric tensors and the number of independent tensor components for each symmetry class. Later, Shu et al.
[331,332] used the fundamental tensor relationship, obtained the same results, and further extended the symmetry analysis to
converse flexoelectric tensors. Table 5.2 summarizes the number of nonzero components of cijkl/sijkl, Qijkl, and μijkl for different point
groups and Curie groups. Compared with the other common fourth-rank tensors, the flexoelectric tensors (both direct and inverse)
generally have more independent nonzero components. For example, for the point group with the lowest symmetry, there are 54
independent components for μijkl whereas 36 for Qijkl and 21 for cijkl/sijkl.

Notably, the number of independent components is identical for all these fourth-rank tensors in the cubic and the isotropic point
groups. As a result, Voigt notation commonly used for cijkl/sijkl has been extensively adopted to reduce the fourth-rank flexoelectric
tensor into a 6-by-6 matrix, e.g., in Ref. [12]. However, the conventional Voigt notation, as pointed out by Shu et al. [333], does not

Table 5.1
The unified definitions of flexoelectric tensors.

Naming and SI units Definition Symbols appear in the literature

Flexoelectric coefficients
Type-I flexoelectric coefficients µijkl

I , (C/m) =µijkl
Pi
kl j E

I
,

where =kl
uk
xl

μ in Refs. [15,69,77]
f in Ref. [30]

Type-II flexoelectric coefficients µijkl
II b, (C/m) =µijkl

Pi
kl j E

II
,

μ in Refs. [12,34–39,75,178,179,291,327–329]

where = +kl
uk
xl

ul
xk

1
2

f in Refs. [166,189,198,218,226,241]
F in Ref. [330]

Flexoelectric coupling coefficients (type-II)
a.k.a. flexocoupling, flexovoltage coefficients

fijkl, in V
=f µ( )ijkl im mjkl0 1 II

where =im mj ij

2(γ+ η) in Ref. [84,85,313]
h in Ref. [69]
f in Ref. [5,11,178]
φ in Ref. [79]
g in Ref. [15]
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generally apply for the low-symmetry flexoelectric tensor. Instead, a 6-by-9 matrix should be used to adequately represent the 54
independent components of a direct flexoelectric tensor while a 3-by-18 matrix for the converse flexoelectric tensor. The full matrix
notations of the flexoelectric tensors for all point groups are given in Refs. [331,333]. Nevertheless, for crystals with the cubic
symmetry, it is still safe to use three components to denote the longitudinal, transverse, and shear components of a flexoelectric
tensor, i.e., μ1111= μ11, μ1122= μ12, μ1212= μ44. Very recent, it has been suggested by Eliseev et al. that there exists a hidden
symmetry in the flexoelectric tensor, which may lead to a further reduction in the number of independent components [334].

5.1.2.3. The upper limit of flexoelectric coupling tensors. There is a constraint on the strength of flexocoupling coefficient fijkl, known as
the upper limit of bulk static flexoelectricity [217], which can be derived from the thermodynamic stability criteria of the parent
phase. Beyond this limit, incommensurate polarization states will emerge, as confirmed by phase-field simulations [46,163]. For
cubic perovskites, the upper limit of the flexoelectric tensor can be written as

<f c g1212
2

1212 1212 (5.6a)

<f f c c g g( ) ( )( )1111 1122
2

1111 1122 1111 1122 (5.6b)

where cijkl and gijkl are the tensor components of the elastic stiffness and the gradient energy coefficient. This upper bound estimation
has been extensively adopted to examine the rationality of the measured or calculated flexocoupling constants [15,79]. However, this
relation depends on whether higher-order coupling terms are included in the total thermodynamic potential (c.f. Eqs. (2.1) and
(2.15)). With the strain-gradient contribution, i.e., ( )v x

1
2

2
, added into the free energy, Morozovska et al. [92] demonstrated the

upper limit in Eq. (5.6) reduces to a more general form

< +f cg vS
2 (5.7)

where S is a function of Landau-Devonshire parameters (the ’s in Eq. (2.1)), and thus, the upper bound limit becomes temperature-
dependent. Essentially, the higher-order coupling terms serve as a modification of the smooth criteria of the thermodynamic potential
which has been changed by the Lifshitz form of the flexoelectric contribution. In this sense, for thermodynamic consistency, the
coupling term of strain gradient elasticity should always be incorporated within the phenomenological free energy of bulk
flexoelectricity, i.e., Eq. (2.1), as advocated by many authors as well [51,164,335]. Otherwise, the upper limit given by Eq. (5.6)
needs to be satisfied.

5.1.3. Flexoelectric fields
The concept, flexoelectric field (flexo-field), is coined to represent an effective electric field in the materials subjected to a mechanical

strain gradient. The flexoelectric field is commonly utilized to evaluate the strength of flexoelectricity in many emergent phenomena,
e.g., in Ref. [241]. However, the same terminology has been used to refer to logically distinct physical quantities by different authors,
which may cause confusion and even misinterpretation of the observed phenomena.

The key point to differentiate is whether the flexoelectric field refers to the cause of polarization or the outcome of the polarization
induced by a strain gradient.

From a macroscopic perspective, a strain gradient acts as a driving force to produce electric polarization via the flexoelectric effect
(c.f. Section 2.2.1). Since the driving force of polarization has the same SI unit (V/m) as an electric field, it is convenient to equate the
strain gradient to a local electric field defined as

=E fi ijkl kl j, (5.8)

which is thus termed the flexoelectric field. Notably, the flexoelectric field defined in this sense is by no means a macroscopic electric
field [11]. It is not curl-free in general and cannot be associated with an electrostatic potential. As a result, one should not expect the

Table 5.2
The number of nonzero components of three fourth-rank tensors for different point groups and Curie groups. Reprinted with permission from [331]
Copyright © 2011, AIP Publishing LLC.

Point groups and Curie groups Elastic stiffness/compliance tensor (c/s) Electrostrictive tensor (Q) Direct/inverse flexoelectric tensor (μ/μ*)

1, 1̄ 21 36 54
2, m, 2/m 13 20 28
222, mm2, mmm 9 12 15
3, 3̄ 7 12 18
32, 3m, 3̄m 6 8 10
4, 4̄, 4/m 7 10 14
4mm, 4̄2m, 422, 4/mmm 6 7 8
6, 6̄, 6/m, , /m 5 8 12
622, 6mm, 6̄m2, 6/mmm, 2, m, /mm 5 6 7
23, m3 3 4 5
432, 4̄3m, m3m 3 3 3

, m 2 2 2
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flexoelectric field can act on charged species as a real macroscopic electric field.
On the other hand, a strain gradient corresponds to the inhomogeneous deformation of the ionic lattice as well as causes change in

the electronic structure. Consequently, the local charge redistribution gives rise to a variation of local electric fields. The flexoelectric
field defined as such plays a role in situations where the flexoelectric effect is associated with the transport of charged entities, e.g.,
oxygen vacancy, electrons and holes, and doping elements. In this context, rigorously speaking, the flexoelectric field should be
regarded as a depolarization field.

5.2. The discrepancy between experiments and calculations

There is a well-known order-of-magnitude discrepancy between the theoretically estimated and the experimentally measured
flexoelectric coefficients. Specifically, experimental measurement of the flexoelectric coefficient in the paraelectric phase of many
perovskite oxides reaches up to several tens of μC/m, whereas theoretical estimations suggest the intrinsic flexoelectricity should not
exceed several nC/m. Even by comparing the flexoelectric coupling coefficient f, which is insensitive to temperature and dielectric
permittivity, there are still one-to-two orders of magnitude discrepancies: the theoretical range is 1–20 V whereas the experimental
results generally exceed ∼100 V.

Part of the disparity may originate from the unawareness of different types of flexoelectric coefficients, as discussed in Section 5.1,
but the real cause is still under debate. It is suspected either some extrinsic contributions are unintentionally mixed up with the
intrinsic flexoelectricity in experimental measurement or some key features of flexoelectricity have not been appropriately captured
by theoretical computations. Therefore, many recent studies have attempted to reconcile this issue through experimental efforts
[97,181,207,336–339] and theoretical investigations [15,79,96,154,340]. Here, we summarized a few factors in Table 5.3 that we
believe are responsible for the disparity of flexoelectric coefficients. The details of some factors are briefly discussed below.

5.2.1. The breaking of the microscopic centrosymmetry

In many ferroelectric ceramics and single crystals, anomaly high flexoelectric coefficients have been measured above the fer-
roelectric phase transition temperature TC. Nominally, there is no macroscopic ferroelectric polarization above TC, but practically,
several mechanisms allow for local ferroelectric polarization to persist in the paraelectric phase, which may play a role in the overall
flexoelectric response. We call these mechanisms as the breaking of microscopic (local) symmetry.

For example, the polar nanoregion is a characteristic short-range ordering in ferroelectric relaxors and has been regarded as the
reason for the enhanced flexoelectricity in the early work of Ma and Cross [34]. For relaxor-ferroelectric solutions, such as Pb(Mg1/
3Nb2/3)O3-PbTiO3 (PMN-PT) single crystals, Narvaez et al. [181] observed large differences in the measured flexoelectric response
upon heating and cooling across the transition temperature (Fig. 5.1a), suggesting the “parasitic” ferroelectricity within the high-
temperature phase. This thermal hysteresis disappears when the temperature elevates beyond T* (T*≫ TC) accompanied by the onset
of anelastic softening. Above T*, the flexocoupling coefficient reduces to a theoretical magnitude (∼10 V) and becomes constant,
indicating the intrinsic strength of the flexoelectricity. It is believed that, at least in the relaxor-based crystals, the polar nanoregions
remain ferroelastically active within TC∼T*, which can be reoriented by the applied graded strain and thus imitate the flexoelectric
response. Therefore, the measurement of intrinsic flexoelectric properties should be performed higher than T* to eliminate the
intervention from the polar nanoregions.

Detecting residual ferroelectricity in the high-temperature non-polar phase has also been reported in (Ba1−xSrx)TiO3 (BST)
ceramics where the record-high flexoelectric coefficients were documented [337]. There are several explanations for the residual
ferroelectricity in BST ceramics, aside from invoking the polar nanoregion mechanism. For example, chemical nonuniformity in BST
ceramics gives rise to inhomogeneous local transition temperatures [341]. Therefore, some regions may stay in the ferroelectric phase

Table 5.3
Possible reasons for the discrepancy between the measured and calculated flexoelectric coefficients.

Possible reasons Typical materials References

From experiments
Reorientation of existing polar nanoregions above TC PMN-PT single crystal [181]
Order-disorder phase transition character BaTiO3 single crystal [97]
Local chemical inhomogeneity BST ceramics [337]
Flexoelectric poling BST ceramics [337]
Surface contribution above T* BaTiO3 single crystal [97]
Surface polarity BaTiO3 ceramics [339]
Inhomogeneity induced by synthesis and processing BST ceramics [336]

From theories and calculations
Pseudo Jahn-Teller effect needs to be considered in theoretical estimations BaTiO3 [340]
Subtleties in ab initio calculations BaTiO3, SrTiO3 [15,77,218]
Oversimplification of the models in experiments General [154]
Surface contribution need to be included in ab initio calculations SrTiO3 [79]
Other relevant effects need to be included in ab intio calculations SrTiO3 [50,80]
Surface contribution need to be included in the phenomenological theory General [95]
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even the temperature exceeds the nominal TC. Interestingly, huge above-TC flexoelectricity has also been reported in high quality
BaTiO3 single crystals (Fig. 5.1b) [97]. In this chemically homogeneous system, the residual ferroelectricity may come from the
mixed order-disorder/displacive phase transition of BaTiO3-based materials [341–344], which have been rationalized by the pseudo
Jahn-Teller effect [340]. A recent report shows a fatigue behavior in the flexoelectric responses in lead-free ceramics, which may also
be attributed to the residual ferroelectricity subjected to the domain pinning effect [345].

5.2.2. The breaking of the macroscopic centrosymmetry

The previous mechanism deals with the local symmetry breaking. In some situations, however, macroscopic symmetry breaking
occurs and can also significantly contribute to the overall flexoelectric response. Biancoli et al. performed a series of careful mea-
surement of the pyroelectric, thermal, and structural properties of BST ceramics and single crystals [336]. They found “flexoelectric”
charges are obtained even if there is no graded strain applied to the unpoled samples. The detected pyroelectric charges and thermal
stimulated current suggest the breaking of macroscopic centric symmetry and preexisting polarity in the sample, which is responsible
for the assumed strong flexoelectric response. This symmetry-breaking may be due to the inhomogeneous redistribution of charges or
polar entities introduced during the high-temperature processing, but the exact mechanism is still unclear. Likewise, breaking the
macroscopic centrosymmetry of the sample can also be realized through the so-called flexoelectric poling, as demonstrated by Garten
et al. [337]. By bending an unpoled BST ceramic [337], an internal bias as high as 9 kV/m can be built into the sample, even after the
strain gradient was removed. Further evidence in the macroscopic symmetry breaking due to long-range structural [346] and local
chemical inhomogeneities [347] has been recently documented. These findings remind us of the importance to examine the non-
centrosymmetric state of the sample before conducting a flexoelectric measurement. For example, a very recent experimental work by
Shu et al. [207] has not seen the macroscopic centrosymmetry breaking in their BST ceramic samples.

5.2.3. The pseudo Jahn-Teller effect

The pseudo Jahn-Teller effect [348] is an extension of the Jahn-Teller effect [349], which describes two or more pseudo-de-
generate states. According to the pseudo Jahn-Teller effect, the perturbation of vibronic coupling can induce spontaneous symmetry
breaking. Bersuker [340] employed the pseudo Jahn-Teller effect to explain the order-of-magnitude difference in the flexoelectric
effects in paraelectric BaTiO3 and SrTiO3. The author found that the criterion of the pseudo Jahn-Teller effect is satisfied in BaTiO3

but not in SrTiO3. Therefore, the application of a strain gradient to BaTiO3 creates static local dipolar distortion, which accounts for
the enhanced flexoelectricity. The author also predicted enhanced flexoelectricity in NbO6-octahedral-containing perovskites such as
PMN-PT and KNbO3. This conclusion is aligned with Narvaez et al.’s observation of PMN-PT single crystals [181]. In this sense,
KNbO3 would also be an interesting flexoelectric material to explore.

5.2.4. Surface effects

Yurkov and Tagantsev [96] have theoretically shown that the surface contribution (both surface piezoelectricity and surface
flexoelectricity) to a flexoelectric response is comparable to that of the bulk, even when the surface/bulk ratio is small. Therefore, the
measured flexoelectric coefficient may inevitably contain the contribution from both surface effects. The experimental evidence of a
surface contribution to the enhanced flexoelectricity was presented by Narvaez et al. [97] in the flexocoupling coefficients of BaTiO3

single crystal slab with different crystallographic orientations. It is shown an anomaly strong flexoelectricity, particularly in the

Fig. 5.1. Temperature dependence of the flexoelectric coupling coefficients of (a) PMN-28%PT and PMN-34%PT single crystals and (b) BaTiO3

single crystals with different crystallographic orientations. (a) Reprinted with permission from [181] Copyright © 2014, AIP Publishing LLC (b)
Reprinted with permission from [97] Copyright © 2015, American Physical Society.
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(0 0 1)-oriented crystal, persists into high-temperature regime (T > T*) where the regular and residual ferroelectricity both dis-
appear (Fig. 5.1b). The large anisotropy in the flexocoupling tensor is believed as a sign for a substantial surface effect. Recent first-
principles studies of the flexoelectric coefficient with surface effects considered [79,80] have supported this conjecture. However, it
remains unclear whether the nature of this surface effect is related to the surface piezoelectricity or the surface flexoelectricity or
both. Very recently, another mechanism related to spontaneously polarized surface layers is proposed for ferroelectric ceramics
[339,350].

5.2.5. Oversimplification of strain gradient distribution in experiments

In most experimental measurements for flexoelectricity, a simplified analytical model is generally assumed to obtain the ex-
pression between the measured flexoelectric response to the applied gradient (e.g., Ref. [12]). However, this treatment is questioned
by Abdollahi et al. [61,154]. The authors conducted 2D and 3D finite element modeling on two typical experimental schemes used for
flexoelectric coefficient measurement, i.e., cantilever beam bending and truncated pyramid compression. They found the flexoelectric
effect is sensitive to sample geometry, and the simplification of strain gradients made in experiments may lead to overestimation of
flexoelectric coefficients. As shown in Fig. 5.2, the deviation can be as high as an order of magnitude and becomes more severe for
small-sized samples. This finding adds a caveat to the experimental measurement of flexoelectric properties: using simplified ana-
lytical approximations can lead to significant overestimation of flexoelectric constants.

5.2.6. Other plausible reasons

There have been a few recent proposals to account for the “giant” flexoelectricity observed in previous experiments. For example,
Abdollahi et al. [351] suggested that, in a beam bending model, the asymmetric distribution of piezoelectric coefficient can lead to an
apparent flexoelectric response, which is insensitive to space inversion and thus cannot be easily distinguished from intrinsic flex-
oelectricity. Moreover, their computation shows that even a 1% change in the piezoelectricity across 1mm may cause an effective
flexoelectric coefficient of 1 µC/m. In another theoretical contribution, Morozovska et al. [352] discussed the possibility that the
dynamic flexoelectricity can contribute to the giant static flexoelectric effect in spatially inhomogeneous samples, such as soft
electrets [353,354] and bended piezoelectric bimorphs [351] under high-frequency loading.

5.3. Disagreements among theoretical results

In the previous section, we described a few possible explanations for the discrepancies between theoretically calculated and
experimentally measured flexoelectric coefficients. However, disagreement in the order-of-magnitude and even the sign of flexo-
electric tensors also exist among different theoretical calculations. In this subsection, we shall discuss the subtleties and ambiguities
associated with the theoretically calculated flexoelectric coefficients that can help rationalize the disagreements.

Fig. 5.2. Normalized flexoelectric constant μ′ as a function of the pyramid area ratio R. The results are obtained considering different inclination
angles α. The inset shows the distribution of the through-thickness displacement (u2) in the deformed configuration of the pyramid for the lowest
and highest area ratios. The deformation is exaggerated by a factor of 10 for clarity. The color bar indicates the displacement scale in each case,
normalized by a factor of 10−5 m. Reprinted with permission from [154] Copyright © 2015, American Physical Society.
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For the time being, the most studied flexoelectric single crystals are SrTiO3 and BaTiO3. Therefore, we collected the calculated
flexoelectric/flexocoupling constants of SrTiO3 and BaTiO3 from literature and listed them in Table 5.4. For a better comparison, we
labelled the conditions and assumptions under which the flexoelectric tensors are computed to unravel the origin of discrepancies
among these works. Some key factors are discussed in detail below.

5.3.1. Different macroscopic contributions of flexoelectricity

As mentioned in Section 2.2, a flexoelectric response of a finite sample contains four different contributions from either the bulk
or the surface, and, in either a static or a dynamic regime. The inclusion of surface effects by Stengel [79] demonstrates that the value
of a flexocoupling tensor can change substantially for different surface terminations and even the sign may reverse. Moreover, the
recent work by Kvasov and Tagantsev [83] indicates the significance of dynamic effects which can also be comparable to the static
bulk counterparts [83] and also determine the sign. Notably, however, it remains controversial whether the static and dynamic
flexoelectric tensors are two separate quantities or identical in nature. For a detailed discussion on this issue, readers are referred to
Ref. [78], Ref. [29], and Ref. [19].

5.3.2. Different microscopic contributions to flexoelectricity

From a microscopic perspective, a flexoelectric response involves purely electronic and lattice-mediated contributions. These two
sources may even compete and cancel out. As shown by Hong and Vanderbilt [15,77], while the electronic part always has a negative
sign for all the studied cubic symmetry materials, the lattice dipole part may be either positive or negative, depending on the force-
pattern. Therefore, when comparing calculated flexoelectric coefficients, it is necessary to ensure the two contains the same mi-
croscopic contributions and the force patterns adopted are identical.

5.3.3. Dependence on electric boundary conditions

Similar to piezoelectric coefficients, the strength of the flexoelectric coefficients defined under different electric/mechanical
boundary conditions may vary considerably (c.f. Section 5.1). As shown by Hong and Vanderbilt [15], the flexoelectric coefficient
evaluated under the fixed-D boundary condition, unlike its counterpart defined under the fixed-E boundary condition, does not scale
with the dielectric permittivity. With the high permittivity of perovskite ferroelectrics, one can expect order-of-magnitude differences
between the room-temperature flexoelectric coefficients calculated under different electric boundary condition. It should also be
noted that a few existing calculations do not explicitly specify the electric boundary conditions, e.g., [69,178,220], or adopt a mixed
boundary condition, e.g., Ref. [77]. Therefore, a direct comparison of the results from these work with others would be meaningless.

5.3.4. Subtleties associated with the induced macroscopic electric field

The fixed-E boundary condition also brings other non-trivial issues in calculations. First, for the longwave method using a per-
iodical supercell, the incommensurate atomic displacements lead to a macroscopic electric field along the wave propagation di-
rection. As a result, the Taylor expansion of atomic displacements with respect to the wave vector at zone center suffers from a severe
non-analyticity. In order to obtain well-defined flexoelectric property, the induced macroscopic electric field needs to be eliminated,
either by suppressing the self-consistent electrostatic potential or by assuming a certain screening mechanism [355]. Second, there is
an inherent arbitrariness in specifying the short-circuit boundary condition because the concept of macroscopic field is ill-defined in a
non-uniformly deformed body [50,80,355]. This arbitrariness is associated with the reference energy dependence, which has been
regarded [50,80] as a significant cause of the discrepancy among different theoretical calculations of flexoelectricity. To rationalize
these ambiguities, Stengel [80] proposed to consistently treat the absolute deformation potential effect together with the flex-
oelectricity. Besides, the mixed-space approach developed recently to resolve the macroscopic electric field issue in lattice dynamics
of polar materials may also shed some lights on quantifying the flexoelectric coefficient [356].

5.3.5. Force-pattern dependence

The lattice-mediated flexoelectric constants depend on the mass distribution of the crystal, an issue known as the force-pattern
dependence [15]. In the direct method of calculating flexoelectric tensors, e.g., [218,220], the periodic strain gradient is applied by
fixing one set of sublattice atoms while relaxing the others, which implicitly assumes a specific force-pattern. In the indirect methods,
e.g., Ref. [15], the authors compared the lattice-mediated flexoelectric coefficients obtained by assuming either even-force or mass-
weighted force distributions and found the latter is generally more negative than the former. As also pointed out in Ref. [15], a
combination of longitudinal and shear flexoelectric components can give a positive overall flexoelectric constant for the bending
mode of a slab even though the sign of each component is negative. Additionally, this force-pattern dependence of flexoelectric
tensors also suggests the dynamic nature of the flexoelectricity in the sense that this material property depends on the atomic mass
distribution.
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5.3.6. Pseudopotential dependence

Hong and Vanderbilt [15,77] found that the longitudinal electronic flexoelectric coefficient depends on the choice of pseudo-
potentials. This is understandable because the formulation of the electronic flexoelectric tensor involves the charge-density response
function. This response function significantly differs when calculated using an all-electron description or using a pseudopotential
approximation. To correct the difference, the authors suggested a method known as the rigid-core correction [77]. This pseudopo-
tential dependence can also be mitigated by a strategy where the surface contribution to flexoelectricity is considered using a
consistent pseudopotential [19,79].

5.4. Closing remarks of this section

The past two decades have witnessed significant advances in both the theoretical prediction and the experimental measurement of
flexoelectric tensors. We summarize a few critical comments:

1. Consistent convention in the terminology, definitions, and symbols are of primary importance before making a rational com-
parison.

2. The order-of-magnitude discrepancy between experimental and theoretical results of flexoelectric coefficients can be rationalized,
considering the extrinsic contribution by the residual ferroelectricity, the macroscopic breaking of centrosymmetry, and the
surface effects, the subtleties and ambiguities in theoretical calculations, as well as the oversimplification of experimental models.

3. There are still several open questions in the fundamentals of solid-state flexoelectricity. First, an unambiguous definition of the
reverse flexoelectric effect is absent. Second, the relation between the surface flexoelectricity and the surface piezoelectricity
remain underexplored. Likewise, it remains unclear whether the static and dynamic bulk flexoelectricity are identical.

4. Many flexoelectric-induced phenomena can also be interpreted by other mechanisms. For example, doubt has been cast on
whether bending induced polarity in SrTiO3 single crystals is induced by flexoelectricity or other mechanisms associated with
deformation and defects [338].

6. Perspectives: Promising applications and emerging trends

The application of flexoelectric effects relies on two basic features: the scaling effect and the symmetry-breaking effect. Due to the
presence of a gradient term in its definition, the flexoelectric effect becomes more and more pronounced as the system dimension
goes down from the macroscopic to the nanoscopic. This unique scalability can be illustrated by the hierarchy of the flexoelectricity
from a few centimeters down to sub-nanometers, as shown in Fig. 6.1. At each level, flexoelectric-related phenomena can be found,
and, correspondingly, potential applications can be envisaged. On the other hand, the symmetry-breaking nature of the flexoelec-
tricity has brought much more opportunities beyond electromechanical applications. Many phenomena or physical properties that
are absent in centrosymmetric materials, e.g., pyroelectricity [357] and bulk photovoltaic effect [311], can be triggered by in-
troducing a controlled graded field into the system.

In the first part of this section, we shall follow the hierarchy of flexoelectric effects and discuss the promising applications at each
length scale. Notably, some topics in Fig. 6.1 such as the strain gradient engineering and the tip-induced effects have been elaborately
discussed in Section 4. In addition, the flexoelectric effect in low-dimensional systems is beyond the scope of the present review. We
shall briefly touch upon this topic in the second part of this section, which is devoted to highlight some emerging trends and to offer a
prospect of flexoelectricity-related research.

6.1. Promising applications of flexoelectricity

6.1.1. Flexible electronics (∼cm)
At the macroscopic length scale, it is usually difficult to create large strain gradients within a rigid solid. However, substantial

mechanical deformation can be generated through the flexible material such as rubber. The flexible electronic devices integrate the
flexoelectric active material with a flexible matrix to realize large electromechanical responses for energy harvesting and converting.
One representative example is the stretchable energy harvester fabricated by Qi et al. [358,359], who has “printed” wavy piezo-
electric nanoribbons onto a bendable rubber substrate. The buckled PZT nanoribbons sustain large strain gradients and give rise to up
to 70% enhancement in the apparent piezoelectric performance, which is attributed to the flexoelectric effect [359]. Similar ideas
have also been applied to other flexible electronic devices which take PZT nanoribbons [360], BaTiO3 thin film [361], PZT nanofibers
[362], PMN-PT nanowires [363], and PZT-decorated multi-walled carbon nanotubes [364] as the electromechanically active com-
ponent. It is also worth mentioning that many elastomers have demonstrated appreciable flexoelectric properties which can work as
the active material themselves. Therefore, it would be interesting to see polymer-based flexoelectric energy harvesters in the near
future.

6.1.2. Flexoelectric structures (mm∼ cm)
Another strategy for exploiting flexoelectric effects at the microscale is to design new flexoelectric structures. Flexoelectric

structures are often made from one single material but with specially designed shape from which substantial gradients can be
generated. In fact, the setups of the direct method for measuring the flexoelectric coefficients (c.f. Section 3.1 and Fig. 3.1) can be
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regarded as some typical flexoelectric structures. Fig. 6.2 shows three basic structure for the design of a flexoelectric accelerometer
[365]. Similar to the design for a piezoelectric accelerometer, there are three modes, namely, the axial, shear, and bending modes
utilizing primarily the longitudinal, shear, and transverse components of a flexoelectric tensor, respectively. These three designs can
serve as the “building blocks” for more complex flexoelectric structures. Other interesting designs of flexoelectric structures include
the multilayered cantilevers [366,367], truncated pyramid cantilever [365], bended wafers [368,369], half-hollow cylinders [370],
micromachined diaphragms [371,372], circular rings [128–130], conic shells [134], etc.

These unique flexoelectric structures made of appropriate flexoelectric materials can be used for sensing, actuating, energy
generating and harvesting applications. Jiang’s group has conducted a series of systematic studies in these directions (see the Review
articles [17,18]). For example, Huang et al. [373] fabricated a Ba0.64Sr0.36TiO3 micro-bar to detect strain gradient change using the
flexoelectric effect for monitoring crack propagation, reaching a high sensitivity of 88 pC·m. Later, Huang et al. designed and
fabricated a flexoelectric unimorph accelerometer using Ba0.65Sr0.35TiO3 [365]. The accelerator provides a sensitivity of 0.84 pC/g in

Fig. 6.2. Basic structures of flexoelectric accelerometers (yellow layers represent the electrodes on the flexoelectric components): (a) axial, (b)
shear, and (c) bending modes. Reprinted with permission from [365] Copyright © 2013, SAGE Publishing.

Fig. 6.1. The hierarchy of flexoelectric effects and potential applications at different length scales. Images (from upper to lower) are adapted or
replotted from [358] with permission Copyright © 2010, American Chemical Society, [328] with permission Copyright © 2009 AIP Publishing,
[319] with permission Copyright © 2015, Nature Publishing Group, [226] with permission Copyright © 2011 American Physical Society, [241] with
permission Copyright © 2012 The American Association for the Advancement of Science, [143] with permission Copyright © 2008 American
Physical Society. Abbreviations: micro-electronmechanical/nano-electromechanical (MEMS/NEMS), low-dimensional (low-D).
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the working frequency from 10Hz to 1.6 kHz. Kwon et al. fabricated a multilayer cantilever, which displayed amplified charge output
[366]. With the scaling effect, the micro-scaled multilayer flexoelectric cantilevers are expected to perform with higher sensitivity
than the piezoelectric cantilevers. The direct measurement of curvature [374] and torque [375] have been realized utilizing the
flexoelectric-based sensors, which have profound implications for in situ structural health monitoring. Recently, Kwon et al. reported
that a new type of microphone with both high sensitivity and strong resonance was fabricated using the flexoelectric Ba0.67Sr0.33TiO3

[376]. This device has the potential to exhibit even higher sensitivity when further miniaturized, which is promising for acoustic
sensing applications.

It is worth mentioning that the topology optimization tends to become a powerful tool for the design of fined and complicated
flexoelectric structures [64,66,67]. For example, Nanthakumar et al. [64] have presented a mixed finite element formulation com-
bined with topological optimization to maximize the energy converting efficiency of flexoelectric nanostructures. Their simulation
results demonstrated the superiority of flexoelectricity, compared with piezoelectricity and surface piezoelectricity, in achieving the
comparable efficiency with thinner structure. More technical improvements in the topology optimization methods have been made
[66,67] allowing for more accurate and efficient design of complex flexoelectric structures.

6.1.3. Flexoelectric composites (µm∼mm)
At this level, the research interests of the flexoelectricity concentrate on making piezoelectric composites from non-piezoelectric

materials. Originally proposed by Fousek, Cross, and Litvin [377], this idea has been the primary motivation for the research of
flexoelectric materials for a long time. Conventional piezoelectric composites contain at least one piezoelectric component, which is
often lead-containing PZT for higher permittivity. With purely flexoelectric materials, it is expected that the composites can achieve
comparably high piezoelectric responses as common single-phase piezoelectrics. Sharma et al. provided a theoretical ground for the
feasibility from the continuum mechanics-based analysis [327]. On the other hand, some problems suffered from single-phase pie-
zoelectric material, such as fatigue and harmonic signal problems [378], can also be avoided with certain design strategies.

Two representative examples of such a piezoelectric metamaterial were illustrated in Fig. 6.3. The truncated pyramid array
(Fig. 6.3a) convert a uniform mechanical load to a local longitudinal strain gradient across each pyramid unit. Utilizing this structure
and taking BST as the active material, Zhu et al. [329] obtained an effective piezoelectric d33∼ 6 pC/N. This moderate performance
has later been improved by miniaturizing the structure from millimeters to microns [379], reaching up to d33∼ 51 pC/N for 50 μm
pyramid unit. The considerable increase of the apparent piezoelectric response proves the excellent scalability of the flexoelectric
composites. A record-breaking design was achieved by Chu et al. [328] with the flexural model sandwiched structure shown in
Fig. 6.3b. In this composite, BST ceramic sheet and tungsten wires were alternately stacked to induce a shear strain gradient between
neighboring layers. The effective non-resonance d33 was measured to be ∼4350 pC/N near the Curie temperature in a six-unit/three-
layer composite, which surpasses most piezoelectric single crystals. The following work has realized the tunability of the resonance
frequency of this flexoelectric composites [212]. Besides, possible flexoelectric structures based on the flexural mode design have
been examined by finite element simulations; a 50 times enhancement of the effective d33 is predicted [380].

Recently, Zhou et al. proposed a new design pathway for the piezoelectric metamaterial [368,381]. They have shown that by
applying an asymmetric chemical reduction of the (1− x)Na1/2Bi1/2TiO3–xBaTiO3 ceramics, two gradient-generating mechanisms,
namely, the spontaneous curvature and chemical inhomogeneity, can be induced. Consequently, the effective piezoelectric coefficient
d33 > 3500 pC/N has been achieved with a good stability at high temperature (> 400 °C).

Finally, it is worth mentioning that some design ideas to enhance the magnetoelectric coupling in multiferroic composites mediated
by flexoelectricity have been proposed [136,382–384], and the experimental verification of which would be encouraging [385].

6.1.4. Flexoelectric N/MEMS (nm ∼ µm)
The flexoelectric effect has long been regarded as a desirable property for advanced nano-/micro-electromechanical systems (N/

MEMS) due to its universality and excellent scaling effect [12], yet the experimental realization only emerges very recently. Bhaskar

Fig. 6.3. Flexoelectric composites: (a) diagrammatic drawing of a flexoelectric piezoelectric composite [329], m, n, and h are the dimensions of the
BST building unit, and d is the thickness of the BST substrate; (b) cross-section of a flexure mode composite using fine tungsten wires to induce
strong transverse strain gradient [328]. (a) Replotted from [329] with permission Copyright © 2006 AIP Publishing. (b) Replotted from [328] with
permission Copyright © 2009 AIP Publishing.
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et al. fabricated a silicon-compatible thin-film cantilever actuator with a single flexoelectrically active layer of SrTiO3 [319]. The
experimental design is shown in Fig. 6.4. The figure of merit (curvature divided by the electric field) of this flexoelectric MEMS
reaches as high as 3.33 MV−1, comparable to that of state-of-the-art piezoelectric bimorph cantilevers. This breakthrough is im-
pressive, demonstrating that flexoelectricity can undoubtedly be explored to fabricate electromechanical actuators and compatibly
integrated into N/MEMS. In the following work, Bhaskar et al. studied the piezoelectric and flexoelectric response exhibited by
nanoscale ferroelectrics [157]. It was demonstrated that the piezoelectricity and flexoelectricity can either collaborate or compete
with each other, which leads to a diode-like asymmetric electromechanical response. This effect needs to be considered when de-
signing micro- or nano-scale electromechanical devices.

The superiority of utilizing flexoelectricity for the N/MEMS design is multifold. First, Flexoelectricity exists in materials of all
symmetry groups. In principle, flexoelectric devices can be fabricated from silicon or any of its gate dielectrics. Second, because they
can be made from ordinary dielectrics, flexoelectric devices can have a linear performance other than hysteretic. Also, using ordinary
dielectrics allows flexoelectric devices to function at extreme temperatures, which is not possible for piezoelectric devices that can
only work below the Curie temperature. Besides, flexoelectricity also simplifies device design. For flexoelectric actuators, a single
dielectric layer is sufficient to achieve field-induced bending whereas the piezoelectric actuator needs to be bimorphs, which also
suffers from a potential risk of delamination. Therefore, we would expect an increasing growth in the research interests and ap-
plications of flexoelectric-based N/MEMS in the future.

6.2. Emerging trends in flexoelectric research

6.2.1. Flexoelectric-mediated effects
Recent research efforts on flexoelectric effect have been focused on its coupling with other material properties and functionalities.

The flexoelectric effect created by giant local strain gradients modifies the internal field, interacts with charge carriers, and con-
sequently introduces anomalous conduction [259], transport [230], bulk photovoltaic [311], and photocurrent [200] phenomena.
Since the flexoelectric effect is not limited by the symmetry of crystal structures, some recent research efforts have also been devoted
to creating piezoelectricity [52,327], pyroelectricity [357,386,387], caloric effects [388–393], using central symmetric materials. For
example, Starkov and Starkov generalized the thermodynamic theory of multicaloric effect in single-phase solids and formalized the
caloric effect of deformation gradient [392,393]. Petal et al. studied the flexocaloric effect in Ba0.67Sr0.33TiO3 [388] and

Fig. 6.4. (a) Optical image of an array of SrTiO3 nanocantilevers. (b) A three-dimensional image of one SrTiO3 nanocantilever with a colour scale
corresponding to the out-of-plane displacement. (c) The digital holographic microscope splits a coherent laser beam into an objective beam and a
reference beam. The objective beam is focused onto the sample and the light reflected is collected to form an interference pattern with the reference
beam. Any difference in height along the sample surface results in a corresponding difference in the phase of the light reflected back from it. Reprint
with permission from [319] Copyright © 2015, Nature Publishing Group.
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Ba0.5Sr0.5TiO3 [386], and predicted that the pyroelectric coefficient of a paraelectric state can be as high as ×11 10 C·m ·K4 2 1.
Further experiments are needed to validate these predictions. Another emerging trend in the study of flexoelectric effect is finding an
alternative way to generate giant strain gradients other than using domain engineering or physical deformation. For instance, Li et al.
demonstrated that strain gradients can be dramatically enhanced by optical means in BiFeO3 thin films [240]. It offers an approach to
manipulate the direct flexoelectric effect without physical deformation.

6.2.2. General flexo-type couplings
There have been attempts to extend the flexoelectric coupling to generic flexo-type couplings in pursuit of new material func-

tionalities. For example, Eliseev et al. studied the spontaneous flexomagnetic effect in nanoferroics [49], linear magnetoelectric
coupling, and ferroelectricity induced by the flexomagnetic effect in ferroics [40]. They also studied the emergence of spatially
modulated structures induced by flexoantiferrodistortive coupling [41]. Tanygin derived the thermodynamic potential of flex-
omagnetoelectric interactions [98] and found that the thermodynamic potential requires four phenomenological constants other than
just one Lifshitz coefficient unless the fixed electric polarization induces the inhomogeneity of magnetization. Zvezdin and Pyatakov
investigated the flexomagnetoelectric effect in multiferroic BiFeO3 [99,100,322]. They explained how the inhomogeneous magne-
toelectric interaction results in the modulated magnetic structure and the increase of electric polarization. The microscopic origin of
the spin flexoelectricity responsible for the spin cycloid ordering was also analyzed. Lukashev and Sbirianov studied the flex-
omagnetic effect in frustrated triangular magnetic structures [394]. Using first-principles calculations and Monte Carlo simulations,
they demonstrated the linear dependence of magnetization on strain gradient in Mn-based antiperovskite compounds. Hertel dis-
cussed curvature-induced magnetochirality [395]. It was shown that the inversion asymmetry connected with curved magnetic
surfaces leads to magnetochiral effects. It should be noted that most of the above-mentioned theoretical studies still need further
experimental validation.

6.2.3. Complex systems sustaining large strain gradients
In addition to oxide dielectric materials, the research focus of flexoelectric effect has also been extended to low-dimensional

materials [142–144,396–408], semiconductors [409], biomembranes [3,4], antiferroelectric materials [410], biological tissues
[411–414], and polymers [59,71,182,415–420]. Since flexoelectric effects are strongly dependent on the spatial scale, 2D membranes
of atomistic scale thickness are likely to display strong electromechanical coupling. The exploration of flexoelectricity in low di-
mensional materials has been mostly based on theoretical calculations, though a few experimental attempts have been made very
recently [421,422]. It was demonstrated that carbon nanostructures have the linear dependence of flexoelectric atomic dipole
moments on local curvature [143,396], while BN sheet exhibits an unusual nonlinear electromechanical dependence [144]. Using
first-principles calculations, Yu et al. showed that mechanical bending shifts the Fermi level and changes the conductivity of 2D
material MoS2, which implicitly indicates the role of flexoelectric effect [400]. For a more thorough discussion of flexoelectricity in
2D materials and membranes, the reader can refer to recent reviews [7,8].

7. Summary

The flexoelectric effect, as a higher-order linear electromechanical coupling, connects electric polarization to strain gradient. It
applies to all crystal symmetry groups and exhibits strong scaling effects. This article summarizes recent progress in both theoretical
and experimental research on flexoelectric effects. These include the advances in developing the first-principles theory of flexoelectric
effects at the electronic structure as well as mesoscale phase-field method and continuum mechanics models based on phenomen-
ological thermodynamics. The recent implementation of first-principles theories made it possible to generate all the flexoelectric
coefficients. The phase-field method and continuum mechanics are powerful in modeling, understanding, and predicting the stabi-
lities and evolution of domain structures and studying the influence of flexoelectric and generic flexo-type effects under various
boundary conditions.

Experimentally, we conducted a thorough survey on the flexoelectric coefficients of several ferroelectric oxides and compared the
strength and weakness of different measurement approaches. Furthermore, it has been demonstrated that flexoelectric effects can be
employed to control the internal electric field, manipulate transport properties, as well as switch ferroelectric domains. The ability to
mechanically switch ferroelectric domains at the nanoscale via the flexoelectric effect has potential high storage density memory
applications. New prototypes of sensors and actuators taking advantage of flexoelectric effects have been proposed with potential
applications in N/MEMS. The flexoelectric effects will become even more prominent due to the miniaturization of devices and the
scaling effect of flexoelectricity. It has also been shown that the flexoelectric effects can also be utilized in composites to produce and
enhance robust piezoelectric performances.

Although significant advances have been made over the last few years, this review calls for the need for the unification of the
terminology and flexoelectric tensor notations. Significant efforts are still required to reconcile the orders of magnitude differences
between the measured flexoelectric coefficients theoretical predictions as well as among those calculated flexoelectric coefficients.
There is a strong need for advances in characterization techniques to accurately measure the local strain state of a solid in order to
reliably determine the flexoelectric coefficients due to the sensitivity of flexoelectric effects to the local environment. There are still
many potential new material systems and applications of flexoelectricity that remain to be explored. A good example is the very
recent demonstration of utilizing flexoelectricity to generate the bulk photovoltaic effects [311].
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