Skip to main content
Symplectic Harmonic Thom Forms
2011 Fall Eastern Sectional Meeting (2011)
  • Yi Lin

Consider the symplectic Harmonic Thom forms of an oriented submanifold of symplectic manifold. It was shown by Bahramgiri that the symplectic harmonic Thom forms of co-isotropic and symplectic submanifolds exhibit interesting properties very different from Riemannian Harmonic forms. In particular, when the submanifold is co-isotropic, the symplectic harmonic form is supported in a tubular neighborhood of the submanifold; and when the submanifold is symplectic, its symplecitc harmonic form is supported everywhere on the ambient symplectic manifold. In this talk, I will give a quick introduction to symplectic hodge theory and explain the main ideas involved in the work of Bahramgiri. I will then discuss what I know about the symplectic harmonic forms of isotropic submanifolds.

  • Symplectic Harmonic Thom forms
Publication Date
September, 2011
Citation Information
Yi Lin. "Symplectic Harmonic Thom Forms" 2011 Fall Eastern Sectional Meeting. Cornell University. Sep. 2011.