
Ge Wang
Yi Li, Wright State University - Main Campus
Ming Jiang

Available at: https://works.bepress.com/yi_li/88/
Let \(\tilde{W}(x) = \sum_{i=1}^{m} \lambda_i \int_{r'_i}^{r_i} u_n r^{N-1} \varphi_1(r) \, dr \) \(F_1(x, x_i) - \sum_{j=1}^{M} \Lambda_j \int_{R'_j}^{R_j} u_n r^{N-1} \varphi_1(r) \, dr \) \(F_1(x, X_j) \), \(\forall x \in R^N \setminus \left\{ \bigcup_{i=1}^{m} \{ x_i \} \cup \bigcup_{j=1}^{M} \{ X_j \} \right\} \), then \(\tilde{W} = W \equiv 0 \) \(\forall x \in \bar{\Omega}_i \) and \(\tilde{W} \) satisfies

\[-D_1 \Delta \tilde{W} + \mu_1 \tilde{W} = 0, \quad R^N \setminus \left\{ \bigcup_{i=1}^{m} \{ x_i \} \cup \bigcup_{j=1}^{M} \{ X_j \} \right\} ,\]

which implies that \(\tilde{W} \equiv 0 \) in \(R^N \) and thus our conclusion.