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Unigueness Theorems in Bioluminescence

Tomography

Ge Wang?*, Yi Lif and Ming Jiang

Abstract

Motivated by bioluminescent imaging needs for studies on gene therapy and other applications in the mouse
models, a bioluminescence tomography (BLT) system is being developed in the University of lowa. While the forward
imaging model is described by the well-known diffusion equation, the inverse problem is to recover an internal
bioluminescent source distribution subject to Cauchy data. The primary goal of this paper is to establish the solution
uniqueness for BLT under practical constraints despite the illposedness of the inverse problem in the general case.
After a review on the inverse source literature, we demonstrate that in the general case the BLT solution is not unique
by constructing the set of all the solutions to this inverse problem. Then, we show the uniqueness of the solution
in the case of impulse sources. Finally, we present our main theorem that solid/hollow ball sources can be uniquely
determined up to non-radiating sources. For better readability, the exact conditions for and rigorous proofs of the
theorems are given in the appendices. Further research directions are also discussed.

Index Terms

Bioluminescence tomography (BLT), diffusion equation, inverse source problem, solution uniqueness.

I. INTRODUCTION

Small animals, particularly genetically enineered mice, are of increasing importance for development of the
modern medicine. Small animal imaging offers a major opportunity to understand pathophysilogical and therapeutic
processes at anatomical, functional, cellular and molecular levels. For example, gene therapy is a recent breakthrough,
which promises to cure diseases by modifying gene expression. A key for development of gene therapy is to monitor
the gene transfer and evaluate its efficacy in the living mouse model. Traditional biopsy methods are insensitive,
invasive, and limited in the extent. To depict the distribution of the administered gene, reporter genes such as those
producing luciferase are used to generate light signals within a mious®o. These signals can be externally

measured by a highly sensitive CCD camera [1]. Such a 2D bioluminescent view can be superimposed onto a
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photograph of the mouse for localization of the reporter gene activity. In addition to its application in gene therapy,

this new imaging tool has great potentials in various other biomedical applications as well [2]-[6]. However, the

single view based bioluminescent imaging, like the traditional radiography, takes only a 2D image, and is incapable
of tomographic reconstruction of internal features of interest, that is, the 3D distribution of the bioluminescent

source inside the mouse.

Supported by the National Institutes of Biomedical Imaging and Bioengineering (USA), our team is developing
bioluminescence tomography (BLT) as a hew modality for molecular imaging, initially of living mice [7], [8]. The
novel concept is to collect emitted photons from multiple 3D directions with respect to a living mouse marked by
bioluminescent reporter luciferases, and reconstruct an internal bioluminescent source distribution Hasthd on
the outgoing bioluminescent signals and a pre-scanned tomographic volume, such as a CT/micro-CT volume, of
the same mouse.

Traditionally, optical tomography utilizes incoming visible or near infra-red light to probe a scattering object,
and reconstructs the distribution of internal optical properties, such as one or both of absorption and scattering
coefficients. In contrast to this active imaging mode, BLT reconstructs an internal bioluminescent source distribution,
generated by luciferase induced by reporter genes, from external optical measures. In BLT, the complete knowledge
on the optical properties of anatomical structures of the mouse is established from an independent tomographic
scan, such as a CT/micro-CT scan, by image segmentation and optical property mapping. That is, we can segment
the CT/micro-CT image volume into a number of structures, and assign optical properties to each structure using
a database of the optical properties compiled for this purpose.

The outline of this paper is as follows. $rl, we present the basics for BLT, including the diffusion approximation
for the radiative transfer equation, or Boltzmann equation, and formulate the BLT probleimllljnve review
known theoretical results relevant to the solution uniqueness of BLE.1Wh we present the main results on the
solution uniqueness of BLT. 16 V, we discuss related issues and future work, and conclude the paper. Because
an accurate presentation of our results requires rather mathematical terms, in the main text we only summarize
our results as three theorems in engineer-friendly terms, then we give their complete conditions and proofs in the
appendices. All the theorems in the main text are referenced by the roman numbers, while those in the appendices

are indexed by the roman letters.

Il. PROBLEM STATEMENT

Let 2 be a domain in the three dimensional Euclidean sfRit¢hat contains the object to be imaged. Lét, 6)
be the light flux in directiord € S? atz € Q, whereS? is the unit sphere. A general model for light migration in
a random medium is given by the radiative transfer equation, or Boltzmann equation [9]-[11]:
10u

Ea(m,@,t) +60-Vu(z,0,t) + p(x)u(z,0,t) = us(x)/ n(0 -0 u(x,0',t)do" + q(z,0,t) )

S2
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for ¢t > 0, andz € 2, wherec denotes the particle speed= u, + us With p, and s being the absorption and

scattering coefficients respectively, the scattering kennisl normalized such thaf (¢ - 6’)d¢’ = 1, andq is the

internal light source. The initial condition far is formulated as >
u(z,0,0) =0, forzecQandfc S? )
while the boundary condition for represents the incoming flux
u(z,0,t) = g~ (x,0,t), fort>0,andx €T, dc S? such thatv(z) -6 <0, (3)

wherev(z) is the exterior normal at: on the boundanf’ of 2. Then, we want to reconstruct the internal light
sourceq from measurements of the outgoing radiation, i.e., the escaping energy through a unit arealat

perpendicular to the exterior norma{z) on T" [10], [11]
g(x,t) = / v(x) - Qu(z,0,t)dd, t>0andzeTl. 4)
SZ

Reconstruction of the light sourcg is quite complex based on the measuremgrand above initial-boundary
conditions with the radiative transfer equation (1) as the governing equation, mainly due to the difficulty in computing
the flux« as the forward problem (1), (2) and (3). Then, we seek an approximation to simplify the radiative transfer
equation (1). Because the mean free path of the particle is between 0.005 mm and 0.01 mm in biological tissues,
which is very small compared to a typical object in this context, the predominant phenomenon is scattering instead
of transport [11]. Hence, we can approximate the the radiative transfer equation (1) with a much simpler equation,
the diffusion equation, which has already been widely used in optical tomography [10], [11], bet the average

photon flux in all directions, i.e., the diffusion approximation,

ug(x,t) = i/ u(zx, 0,t)do. (5)
47 S2
and gy be defined similarly
1
nlant) = 5= [ ale.0.0)0. ©)
™ S2

It can be shown that, satisfies the following initial-boundary value problem [10], [11]

——p — V(DVuo) + ptatig = qo,  t>0andz € Q, (7)
uo(, t) + 2D(m)%(x,t) =g (z,t), t>0andz €T, 8)
uop(z,t =0)=0, z€Q, 9)

where
D) = ! (10)

3(pa(x) + pi(x))

1Although we havey— = 0 in a typical BLT case, we prefer keeping here for generality of the formulation. For example, if we perform
BLT of two mice simultaneously, the outgoing flux of one mouse would be partially intercepted by the other mouse as its incoming flux.
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The measurement equation (4) after the diffusion approximation reads [10], [11],

gla,t) = —D(w)%(x,t), t>0andz eT. (11)
1%

The above diffusion approximation procedure is also calledith@pproximation [10], [11].
Because the internal bioluminescence distribution induced by reporter genes is relatively stable, we can use the
stationary version of equations (7) — (9) as the forward model for BLT. By discarding all the time dependent terms

and equation (9), the stationary forward model is

— V- (DVug) + patio = qo, z € Q, (12)
uo(x) + 2D(x)%(x) =g (x), =xeTl, (13)

and the stationary measurement equation (11) reads
g(x) = —D(m)%(x) xel. (14)

Given the measurement (14), it follows that the boundary value,¢t) can be obtained according to (13) as
follows:

uo(z) =g~ (z) +29(x), xeTl. (15)

Hence,u, satisfies the following Cauchy condition on the boundgarf12]:

UO(‘T) = gi(x) + QQ(w)a HAS Fa (16)
D)2 (1) = ~g(a), weT. a7)

Therefore, BLT is equivalent to reconstruct the soufg®f equation (12) from givem,(z) and %(m) forz €T,
under the governing diffusion equation (12).
In summary, the BLT problem can be stated as follo®&zen the incoming fluy~ (z) and outgoing fluxy(x)

for x € T, find a sourcegy with one corresponding photon fluxto satisfy

—-V- (DV’LL())-‘FM@UO =gqy, x€

(BLT) ¢ uo(x) + 2D($)%(Ji) =g (z), zeT (18)
D@) G2 () = —gla), zeT,

or, equivalently
—V - (DVug) 4 pauo = qo, x € €

(BLT) < uo(z) =g () +2g(z), z€T (29)
- D(m)%(m) =g(x), xzel.

The optical parameter® and y, can be established point-wise from a pre-requisite tomographic scan, such as

a CT/micro-CT scan [7], [8]. In this paper, we assume #as a bounded smooth domain &, although the
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case of our main interest 8 = 3. We always assume that the paramet@rs- Dy > 0 for some positive constant
Dy and thatu, > 0 are bounded functions in this work. We further assume thas sufficiently regular near’,
e.g., D is equal to a constant neéar
In practice, it is difficult to obtain all the measurement along the bountiake consider the case in which the
measurement can only be taken on a portigncC I'. The BLT problem then becomes
— V- (DVug) + patio = qo, x € €

BLT(RY) { uole) +2D(@) 22 () = g (), z € Py (20)

ov
D(m)%(m) =—g(z), x€ Py.

IIl. LITERATURE REVIEW

BLT as formulated above is for reconstruction of an internal source from Cauchy data, which is called the
inverse source problem of partial differential equations [13]. There are several theoretical studies relevant to the
uniqueness of the solution to this type of problems. Although they do not provide a satisfactory answer to the
solution uniqueness of BLT, these results do form a background for us to establish the uniqueness theorems under
practical constraints for BLT. For a detailed historical survey, please refer to [13] and the references therein.

In [13], when the domaif is a bounded Lipschitz domain in thedimensional Euclidean spa®&”, the source

go = aq1 + go with gg =0fori=1,2 and z?T(i > 0, whereq is given, and the coefficienb does not depend

on x, andu, > 0, theng, is uniquely determined by the Cauchy data (16) and (17).
In [14], Q is a cylindrical domair2 = ' x Q”, ' ¢ R™, Q’ ¢ R"". The governing equation is the Poisson
equation
—Aug = qo (21)

i.e., D=1andu, = 0. The source is assumed to be cylindrical
qo(x) = b(a'h(x"),z = (2', 2"). (22)

If qo is with one known factor and a positive height-part, then it is uniquely determined by Cauchy data (16) and
(17). In the standard case of = 1, b andh are referred to as the base and height of the source, respectively.
In [15], Q is a bounded Lipschitz domain in a two-dimensional Euclidean spgcelhe governing equation is

the Helmholtz equation

Aug + k2uo = qo (23)
i.e.,, D=1 andp, = —k>. The source is assumed of either the form:
qo(z) = p(x)x B () (24)
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where B is an open subset @2, y is the characteristic function dB?, or the form

qo(z) = div[p(z)xB(x)a], (25)

wherea is a non-zero constant vector. Under some additional technical conditions, the convex hull of the source
supportB can be uniquely reconstructed given Cauchy data (16) and (17).
In [16], Q is a bounded domain dR™ with sufficiently regular boundary and partitioned into connected sub-

domains coated in layers (see [16] for a precise presentation). The governing equation is
=V - (DVug) = qo (26)
i.e., u, = 0. The coefficientD is constant in each sub-domain. The source distribution is assumed of the form
qo = f: X (27)
k=1

where x,,, is the characteristic function of a ball, with centerS; and radiusr,. The centers must be distinct

but the balls may overlap each other. It was proved that the numbarballs w;, and their parameterS;, andry

can be uniquely determined by Cauchy data. Note that these sources are assumed to have identical intensity values;
otherwise, the uniqueness does not hold. There is a counterexample in [1G] thaX;x.,, with different \; and

w; for i = 1,2 such that

U; = .f7 on F7 (29)
Ot _ gonr, (30)
ov

with the samef andg. To that effect, it suffices to set the parameters for hatlsuch that
S = SQ, and )\17‘% = )\27“%. (31)

It is interesting that the solution uniqueness holds for the equation (26) assuming a combination of mono and

dipolar sources of the following form [16]:
go(x) =Y Meds, + Y _p;Vic, (32)
k=1 j=1

wherem, andmy are positive integersS;, andC; are points inQy, A\r andp; are respectively scalar and vector
quantities,ds, andVdg, are aé-function and the the gradient of&function atS; andCj, respectively.

The counterexample given in (28) — (31) shows the non-uniqueness of the solution to inverse source problems.
Reconstructing sources of the forp = Ay, with the Poisson equation (21) as the governing equation is related

to the inverse gravimetry problem in geophysics, where the uniqueness does not hold unless the source support

2The characteristic function of any s&t is deinfed asyp(z) = 1 for z € B andxp(z) = 0 for = ¢ B.
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is star-shaped or convex [13]. For the Helmholtz equation, the inverse source problem does not admit a unique
solution because of the possibh®nradiating sourceswithin the source suppor® [17]-[19]. In [14], with the
Poisson equation as the governing equation it was proved that all the solutions to the inverse source problem with

Cauchy data can be expressed as

do = q1 + q2, (33)

hereq; is the minimal L2-norm solution of the inverse source problem satisfyindq; = 0 and ¢z = —Ah for
someh with zero Cauchy data. Hence, is unique. They, part corresponds to the nonradiating sources.

For clarity, our literature overview is summarized in Table I. As shown in Table I, the solution uniqueness results
are not available for BLT, in which the diffusion equation assumes spatially variable optical propertesl D,

and its Cauchy data are measured on the domain boundary.

TABLE |

SUMMARY OF KNOWN RESULTS

Reference| Domain Equation La D Source Unigueness ofjy
[13] general | diffusion (12) arbitrary ggﬁ =0 qo = aqi + g2, known «; ODTL'I:L =0, yes
2o >0
[14] cylindrical | Poisson (21) 0 D=1 b(z')h(z'"), one known factor yes
[15] general Helmholtz (23) 0 negative constant| p(z)xp(z) convex hull of B
[16] general | diffusion (26) 0 piecewise constant > | Xw, yes
[16] general | diffusion (26) 0 piecewise constant go(z) = Y;"!) A\ds, + X722 pidc; yes
[16] general | Poisson (21) 0 D=1 qo(x) = Axs no
[14] general Poisson (21) 0 D=1 arbitrary no (go = q1 + q2)
IV. RESULTS

Given its physical meaning, BLT must have at least one solution. Therefore, in this section we will not discuss
the existence of the BLT solution, and primarily focus on the solution uniqueness of BLT. To convey our main
points clearly we will just present our three theorems in a manner easily accessible to physicists and engineers
while giving rigorous statements and proofs in the appendices.

The first result is about the solution structure of the BLT problem (18), which is a generalization of (33) in [14].

Let L be the following differential operator
Liv] = =V - (DVv) + pav, (34)
we have
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Theorem IV.1. Assume that the BLT problem is solvable. There is one special solytifor the BLT problem (18),
which is of the minimaL2-norm among all the solutions. All the solutions can be expresseg asqz + L[m], for

anym € HZ2(S2), which is the closure of all smooth functions{irnvanishing ol up to order one. (cf. Theorem B.2.)

Given the difficulty that there is no unique solution to BLT in the general case by Theorem IV.1, we must restrict
the solution space to a sub-space of bioluminescent source distributions so that the solution uniqueness may be
established in that specific case. For example, we can study source distributions in a certain parameterized form to
remove the ambiguity in the BLT solution.

In the following, we first consider the case of a linear combination of bioluminescent impulses

= Z aid(y — yi) (35)

i=1
where eachy; is a constant coefficient, ang the location of a point source inside, for i = 1,--- ,m. We have
Theorem IV.2. Assume that the conditions in Theorem D.4 (Appendix D) holdy(f) = >_ a;0(y — ;) and

=1

Qo(y) = Z A;0(y —Y;) are two solutions to the BLT problem (18), then= A and there is a permutation
of [1,m] such thata; = A.;) andy; = Y ;).

Then, let us consider a linear combination of solid/hollow ball sources
m
= i o (x 36
) Zl iXB,; s (x;) (36)
1=

for the more general BLT{,) problem (20), which covers the BLT problem as a special case. To present our finding

in this case, we need the following notations. For edchr < r; < oo, z¢ € RV, let B, -, (zo) denote a hollow

ball specified byry < |z — z¢| < 1 for 7o > 0 and a solid ball specified by — z¢| < r for o = 0. To study

the solution uniqueness, we need some practical assumptions on the demaither assumption is that the
coefficientsD and i, must be piecewise constants, which is also reasonable in practice. Please see Theorem D.4

(Appendix D) to find the exact conditions for the following theorem.

Theorem IV.3. Assume that the conditions in Theorem D.4 (Appendix D) holg: () = > A\ixs ., , (z;) and
i=1 "or
q2(y) Z AJXBW - (X;) are two solutions to the BLT)) problem (20), thenn = M and there exist a
permutat|0nr of [1,m] and a mapC : [1,m] — [1, I] such thatr; = X, ;) € Q¢(;) and
A / SOC( )d’/‘ = AT(Z-) / o ’I”N71<pc(i) (7‘) d’l“7 for i = 1,...,1, (37)
R7C
wherey; is the unique solution of
N -1
—D; (%’ + Ts@}) + wjipj =0, (38)
@i(0) =1, ¢}(0)=0. (39)
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V. DISCUSSIONS ANDCONCLUSION

Theorem IV.1 reveals a fundamental feature of BLT. That is, without incorporation of effertimé knowledge
on the source distribution there would be no hope to determine a unique solution. Actually, no matter how many
higher order derivatives are measured, the uniqueness of the solution cannot be claimed without use of additional
constraints on the source. For examplegifis a solution andn(x) is any smooth function with compact support
in Q@ and D“m|. = 0 for all «, then it is straightforward to prove that = (, + aL[m] is also a solution to the
BLT problem. Physically speaking, no matter how many measures are taken in an open band around the boundary
of the domain(2, we will not be able to find the solution uniquely without utilization of adequmteri knowledge.

In other words, Theorem IV.1 suggests that one must utilize all possible information on the source distribution to
achieve the best possible reconstruction for BLT.

Theorem V.2 is not only theoretically inspiring but also practically useful. As a modality for molecular imaging,
BLT is often intended for detection of small pathological events and changes such as for cancer screening. In this
context, a combination of bioluminescent impulses may model the early stage of tumor development very well. With
increasingly more imaging probes and smart drugs available, the solution uniqueness in that case would definitely
facilitate early diagnosis and better treatment of the cancer in general.

Theorem IV.3 is our main result in this paper. Interestingly, if we only consider solid ball sources and assume
that their intensities are known, it can be readily shown that the solution to the BLT problem is unique. Practically,
the source intensity is closely related to the strength of the molecular/cellular activity, such as gene expression.
Hence, it is often reasonable to take the intensity or its parametric form as known to find the unique solution.

Our unigueness results are instrumental for reconstruction of a bioluminescent source distribution. For sources
as parameterized in Theorem IV.3, once a solution is found, any other solution can be easily constructed by
adjusting a limited number of source related parameters (intensignd so on) according to the relationships
given in Theorem IV.3, subject to any other available anatomical and physiological constraints. Note that since a
practical source function can be approximated by a linear combination of solid/hollow ball sources as parameterized
in Theorem IV.3, our uniqueness results cover a quite general class of source distributions, spanned by those
solid/hollow ball sources.

We emphasize that BLT as defined in this paper is a new area, and there remain many theoretical, numerical
and experimental issues to be resolved. Theoretically, we would like to relax the assumptions on the properties of
the scattering media and enrich the family of parametric source distributions. The solution uniqueness with some
additional internal measurement, such as endoscopic measurement, may improve the well-posedness of BLT. The
stablity of the BLT solution is also an important problem to be addressed. The perspective for multi-spectral and
dynamic BLT should be even more challenging. While the continuous domain formulation is important, various
digital algorithms must be designed for practical BLT. However, development and evaluation of these algorithms are

beyond the scope of this theoretical paper. Currently, we are developing our BLT prototype with an initial emphasis
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on mouse models of various lung diseases [8].

While we were in the stage of finalizing this paper, it came to our attention that some similar work was performed
at Xenogen as reported in a SPIE paper [20] and the company website (http://www.xenogen.com/). Some 3D imaging
systems have been recently released to a few test sites, which take multiple views around a mouse or rat. A diffuse
luminescent imaging tomography algorithm is used to reconstruct an internal source, couplechantiogeneous
scattering-media assumption. Clearly, this approach may reveal subcutaneous depth information, but satisfactory
reconstruction of a bioluminescent source distribution (both geometric and power) cannot be achieved in general
without compensation for theeterogeneouanatomy of the mouse.

In conclusion, we have determined the set of the solutions to BLT in the general case to demonstrate that the
generic BLT problem is not uniquely solvable. Then, we have established the solution uniqueness in the cases of (i)
impulse sources, and (ii) solid/hollow ball sources (up to non-radiating sources) assuming that the scattering media
are piece-wise constant in terms bf and p,. It has been emphasized that by introducing pieri knowledge
on the bioluminescent source structure the BLT problem becomes well defined. Therefore, the BLT is feasible for
localization and quantification of the bioluminescent source distribution. We believe that BLT will grow into an

important molecular imaging modality, and play a significant role in development of molecular medicine.
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APPENDIXA

MATHEMATICAL PRELIMINARIES
A. Notations

The following function spaces [21]-[23] are used in the proofs below:

L2(Q) = {u : /Q ()2 da < oo} (A2)
with the inner product defined by
(w, V) 200y = /Qu(ac)v(x) dx. (A.3)
We need the Sobolev spaces
HY Q) ={ueL*Q): Vue L*(0)} (A.4)
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whereVu is the derivative in the sense of distribution, with the inner product defined by
(u,v) () = (U, V) 2y + (Vi VO) 12, (A.5)
and
H*(Q) ={ue H'(Q): Vue L*(Q)} (A.6)
with the inner product defined by
(u, 0) g2y = (U, V) i) + (Vu, V2U>L2(sz)- (A.7)

The subspace®}(Q) and H3(2) of H'(Q) and H%(2) are the closure of smooth functions with compact support
insideQ in H'(Q) and H%(9) with the associated norms, respectively. In fact, there is a family of Sobolev spaces,
denoted byH*(2), for s € R. Similarly, we can defindd;(2).

To solve the boundary value problems of partial differential equations, we need functidhd\can define the
spaceL?(T") onT similarly. Definitions for the Sobolev spacé (I') on T involve tedious specifics [21]-[23], and
are skipped here. For a smooth functienits boundary value is defined by restrictionwoto I': u|. () = u(x),
for 2 € . For a Sobolev space, it can be established that there is a unique fmap H*(Q) to H*~=(T') such
that: (1)7[u| = u| for a smoothu; (2) 7 is continuous and onte:. is called the trace operator. Hence, for example,
the space for characterizing the boundary values of functior$'iff2) is naturaIIyH%(F). It can be proved that
u € HZ(Q) if and only if 7[u] = 0. It is well-known thatZ?(Q2), H*(Q2) and H'(I") are Hilbert spaces with the
norms induced from the corresponding inner products.

We need the following notations from functional analysis [24]. Yebe a linear operator from a Banach space
X to a Banach space. The kernel or null spacelds defined asV[4] = {z € X : A[z] = 0}, and the range of
Ais R[A] = {y €Y : y = Alz] for somex € X}. For a subspac@/ of a Hilbert spacel, M~ is the set of all
y € H, such that{y,z) =0 for all x € M.

B. Dirichlet-to-Neumann Map

To make the presentation concise, we introduce the following notationsy,Lahd ~; be the boundary value

maps
ou
Yolu] = ulp, and vy = Da— . (A.8)
Vir
Let L[u] be the differential operator

Lu] = =V - (DVu) + pqu. (A.9)

Then, the forward model can be written as
L{u] = qo, in Q, (A.10)
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12
Yolu] + 271 [u] =¢~, onT. (A.11)
Given f € Hz(T'), letw; € H'(Q) be the solution of the following boundary value problem [22], [25]
Liwi] =0, in Q, (A.12)
Yolwi] = f, onT. (A.13)
We define a linear operatdy from Hz(T') to H—2(T') by
N1 =mlwil. (A.14)

N is the well-known Dirichlet-to-Neumann (or Steklov-Poingamap [13].

On the other hand, fog, € L?(12), we consider the problem

L[U}Q] = qo, in Q, (A15)
Yolwz] =0, onT, (A.16)
and define another linear operatbrby

From the regularity theory for second order elliptic partial differential equations,c H?(Q) () Hi(Q) and
v [ws] € Hz (T) [22], [25].
In terms of+ and~;, the BLT problem is to findy, such that

L{u] = qo, in Q, (A.18)
Yo [u] +2m [u] =g ,o0n L, (Alg)
vi[u] = —g, onT, (A.20)

given the observed and assumed—, wherew is unknown. Assume that such a souigeexists. Then, we can

find u by solving the following boundary value problem
L{u] = go, in Q, (A.21)
Yolu] = g~ +2¢g, onT. (A.22)

Let w; be defined as in (A.12) — (A.13) witli = g~ + 2¢, andws be defined as in (A.15) — (A.16). It follows

thatu = w; + wy. The measurement equation implies that

—g =mlu] = yi[w1] +nwa] = N[g™ + 2g] + Alqo], (A.23)

Algo] = N[g~ +2¢] — g. (A.24)
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Conversely, if there exists @, satisfying (A.24), we can construat as indicated above. It follows easily that

satisfies the forward model and the measurement equation. In summary, we have

Proposition A.1. ¢, is a solution for the inverse problem (A.18) — (A.20) if and only it is a solution to (A.24).

C. Green’s Formula

Forv andp € H?(Q) the following Green’s formula is well-known [22], [25]

/ [o- Lip) - p- L{o]) de = — / oy lp] — pya o] dT. (A.25)
Q T

Let F(z,y) be the fundamental solution df on R™ with coefficients smoothly extended frofa to R™ with

the same properties, which tends to zerexafor each fixedr € R™ [26], i.e.,

L,F(z,y)=6(y—z), lim F(z,y)=0, y<c R". (A.26)

Yy—o0
Then, we can apply Green’s formula (A.25) to obtain a formula for the solution of the inverse problem (A.18)
— (A.20). Let u be the solution satisfying (A.18) — (A.20). For any € Q, by Green’s formula (A.25) with
v = F(x,y) andp = u, we have

/Q [F(z,y) - L{u](y) — u(y) - 6(x — y)] dy = — /F [F(x,y)7i[u](y) — w(y)n[F(z,y)]] dTy. (A.27)

Hence,

U(w)Z/Q[F(wvy)-qo(y)] dy—/r[F(x,y)g(y)+(9‘(y)+2g(y))v1[F($»y)]] dly, VzxeQ.  (A28)

Note thatL[F(z, )] = 0 if z € RY \ Q. We obtain, by Green’s formula again,

0= /Q [F(x,y) - q(y)] dy—/F [F(z,)9(y) + (9~ () + 29(¥))n[F(z,y)]] dT'y, vz e RN\ Q. (A.29)

APPENDIXB

PROOF OFTHEOREMIV.1
By Proposition A.1, to study the unigueness property of the BLT solution we should characterize the kernel
NA] of the operatorA : L2(Q) — Hz c L2(T'). We begin with determining the adjoint* of A, because
N[A] = R[A*]" [24]. Let v € H2(T') and ¢ = T[] as the unique solution i/ () c L2(2) of the boundary
problem
Lig] =0, in Q, (A.30)
Yo[¢] = =, onT. (A.31)

Then, by Green’s formula (A.25), (A.16), (A.17) and (A.30),

/Q(Jo-¢dx=/QL[w2}-d)da::—/r[—qﬁA[qO]_wﬂl[ng dp+/

Q

woL[p] dx = /FwA[qo] dr.
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Thus, for the operatora : L2(Q) — Hz(I') ¢ L2(T') andT : H=(T') ¢ L2(T") — L3(Q),

<QO7T[¢]>L2(Q) = <A[q0}7¢>L2(r)a (A.32)
ie.,
A*=T. (A.33)
Then, the kernel of\ is
NA] = RIA*T = RIT) (A.34)

We have the following proposition characteriziﬂiqT]l:

Proposition B.1.
RIT)*: = LIHZ(D)]. (A.35)

Proof. If ¢ € L[HZ(2)] with ¢ = L[p] for somep € HZ(Q), then forv = T[] € R[T], by Green's formula
(A.25),

@bz = [ a-vdo= [ v Dplde= [ bl =onbl+ [ Llo]-pdz =0

becausey,[p] = 0, 11]p] = 0 and L[v] = 0. Hence,q L R[T]. Therefore L[H2(Q)] C R[T]™.
Conversely, assume thate R[T]" = N[A]. We have, by (A.15) — (A.17), there exists, such that

L[wQ] =q, in Qa
Y0 [’wg] =0, on F,
Y1[ws] =0, onT.

We havew, € H?(f2) by the regularity theory for second order elliptic partial differential equations [22], [25].
The above boundary conditions imply that € H3(2). Hence,q = L{ws] € L[HZ(Q2)]. The conclusion follows

immediately. O

By Proposition A.1, all the solutions to the BLT problem form a convex setiff2). There exists one unique
solution of the minimalL.2-norm among those solutions [24], denotedyas Then, all the solutions can be expressed

asqy + N[A]. We summarize the above results into the following theorem.
Theorem B.2. Assume that the BLT problem is solvable. For any colpfe g) such that

N[g~ +2g] —g € H*(T), (A.36)
there is one special solutiapy for the BLT problem (18), which is of the minimaf-norm among all the solutions.

Then, any solution can be expressedgas= qi + L[m], for somem € HZ(1Q).

Remark B.3. Naturally, the condition (A.36) fofg—, g) is automatically satisfied whepis a normal tracey; [u],
wherew is a solution of the forward model (A.10) and (A.11) fgre L3(9).
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APPENDIXC

PROOF OFTHEOREMIV.2

We present the exact conditions &) D, u, and ¢y for Theorem V.2, which are also part of conditions for
Theorem IV.3.

Cl: Qs a boundedC? domain of RN and partitioned into non-overlapping sub-domaihsi = 1,2, ..., I;

C2: Each{); is connected with piecewise smooth bound&y

C3: D andp, are(C? near the boundary of each sub-domain.

C4: D > Dy > 0 for some positive constar®, is Lipschitz on each sub-domaip;, > 0 and i, € LP(Q)

for somep > N/2;
m M

Theorem C.1. Assume the conditions C1 — C4 holdgd{y) = Z a;0(y —y;) and Qo (y) = Z A;jé(y—Y;) are
two solutions to the BLT problem (18), then= M and thereZTé} a permutation of [1,m] éjtl:h thata; = A,

and Yi = Y'r(i)-
Proof. Forz € RV \ Q, let
b(x) =/F[F(%y)g(y)+(g‘(y)+2g(y))71[F(x,y)H dr,. (A.37)

m M

If g(y) = > aid(y —y:) and Qo(y) = > A;6(y —Y;) are both solutions to the BLT problem (18), then we
1=1 j=1

have, by (A.29), ’

Q i=1
or
> aiF(z,y;) =b(x), YzeRN\Q. (A.39)
=1
Similarly, we have
M
> AjF(2,Y;) =b(x), VeeRN\Q (A.40)

j=1

Now, let us define two functions and W on R¥ as follows,

w(z) = i a; F'(z,y:), (A.41)

=1

and o
W(z) =Y A;F(2,Y). (A.42)

j=1

SinceF(z,y) = F(y,x), we have

—V - (DVw) + praw =0, in R\ {y1, ..., ym}, (A.43)
—V - (DVW) 4+ pcW =0, in RN\ {Y1,...,Yar}, (A.44)
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andw(z) = W(z) in RV \ Q by (A.39) and (A.40). Then, by the unique continuation theory [27], we have

w(z)=W(z), inRY\{y1, ..., ¥m, Y1, ..., Yar}. (A.45)
Now since
~V - (DVw) + prgw = Z a;i6(z —y;), inRY, (A.46)
i;[l
—V - (DVW) + uW = > Ajd(x —y;), in RN, (A.47)
j=1
and from (A.45)
/Q W (y)L[ul(y) dy = /Q w(y)Lul(y) dy, (A.48)
which implies that o
> aiu(y) =Y Ajulys), (A.49)
i=1 j=1

for all rapidly decayingC? functions, it follows thatw and W must possess the same singular point set, i.e.,

{y1, -y ymt = {Y1, ..., Yar} and their weights at each singular point be the same, which finishes this proif.

APPENDIXD

PROOF OFTHEOREMIV.3

Lemma D.1. For any given source, € L?(£2) and any nontrivialC? patch P C T, the solutionu of the forward

model is uniquely determined by the boundary valugf. of u, and % of % on P.

p

Proof. BecauseD and p, can be smoothly extended acraBsby our assumption, the conclusion follows easily

from the unique continuation theory [27]. O

Lemma D.2. For any constantD > 0, . > 0, and any solution:y of —V - (DVug) + pauo = 0 in Br(zp), we

have

T1

/ uo(z) de = (/ wnrN " o(r) dr) uo (o), (A.50)
ro<|x—xzo|<r1

0
where0 < r9 < 71 < R, wy is the surface area of the unit sphere R, and ¢(r) is the unique positive radial

solution of
, N-—-1,
—DAp+ pgp=—D (" + — + o =0 (A.51)

with ¢(0) = 1 and ¢’(0) = 0.
Proof. Define(r) = ;= JoB, (2g) U0(2) dsz, We have
u(0) = .h%ﬂr a(r) = u(xo), (A.52)
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and

N-1

—-D(@" + @)+ pai =0 (A.53)

with @(0) = u(z¢) anda’(0) = 0. Hence, by the uniqueness of the initial value problem,

u(r) = uo(xo)p(r). (A.54)
Now,
/ uo(x)dx :/ dr / uo(x) dSy (A.55)
ro<|z—xo|<r1 "o |z—z0|="r
T1 1
:/ wnrN ra(r)dr = u(xo)/ wnrN " o(r)dr. (A.56)
0 To
O]
Remark D.3. We have, fon, =0,
o(r) =1, (A.57)
and for u, > 0,
Bessel(0, /55 7), N =2
= A.58
SD(T) sinh(\/%'r') N =3 ( )

whereBessellis a Bessel function of the first kind.

Note thaty(r) =1 for u, = 0 is equivalent to the mean value theorem for harmonic functions.

Now, we present the additional conditions @n D, u, andgy for Theorem IV.3:

C4*. D andp, are piecewise constant in the sense that there exist conddants, D; > 0 anduy, ..., ur > 0
such thatD(z) = D; and pi,(x) = s, Vo € Q.

Note that condition C4* is a special case of condition CA4.

C5: There exists a2 patchP, of T;

C6: For each sub-domaif,,, there exists a sequence of indicasis,...,ix € [1,I] with the following
connectivity property: the intersectidhy NT;, contains a smootty’? open patch and’;, N P;,,, contains
a smoothC? open patch, forj = 1,...,k — 1, and€;, = Qy;

C7: qo is of the following form

W) =Y dixs,, (@), (A59)
=1

where each\;, i = 1,..., I, is constant, and each source supp8yt ... (z;) CC Q.3 for somek € [1,1].

3This means thaBré ri (z;) is compactly included if2;; that is, there is a positive distance froB)ré ri (z;) to the boundanyy of Q.
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m
Theorem D.4. Assume the conditions C1 — C4* C5 — C7 hold.gify) = > \ixs, ,(x;) and ¢2(y) =
i=1 70°T1

Z A]XBW - (X;) are two solutions to the BLT) problem (20), thenm = M and there exist a permutation
Jj=

of [1 m] and a mapC' : [ m| — [1, 1] such thatz; = X, ;) € Q¢(;) and
Rz(i)
i / goc( (r)dr = Ay / " erlgoc(i)(r) dr, fori=1,..,1, (A.60)
R3¢
wherey; is the unique solution of
N -1
©;(0) =1, ¢}(0)=0. (A.62)

Proof. Let u; anduy be the solutions to (20) correspondingd¢oand ¢», respectively. Letv = u; — us, thenw

is a solution of

=V - (DVw) + prgw = q1 — ga, in €, (A.63)
ow

wlp, = D5-lp, = 0. (A.64)

Based on the fact that the suppa6itof ¢; Ug2 does not touch any part @for I';, fori = 1,--- , I, in the following
we will show thatw|. = Di%’f‘< =0,i=1,---,1.

First, letQ; be any sub-domain such th& NT'; contains aC? open patch, we have

— V- (D;Vw) + pyw =0, in9Q;\G, (A.65)
ow
wlpr, = Dig, LT 0. (A.66)
oML

Then, there exists an open peripheral narrow bahdof I';: B; = {z € Q; \ G : dist(z,09Q;) < e}* for a
sufficiently smalle > 0. Clearly, B; can be covered fron®, N Q2; by overlapped open balls if2;\G. Then, our

Lemma D.1 implies thatw|, = 0. Hence,w|. = D;9 =0.

Jov ‘F
Next, let us deal with other sub-domains. L&t be any adjacent sub-domain such that" I';, contains aC*
open patchP;;. Then, we have [25],

ow
vy,

wherev,, andv; are the exterior normals df, andI';, respectively. That isw satisfies

+ Dj—

=0 (A.67)
Pjk ez

w\Pj = wl|p, andDy-—
P']')C

~ V- (DyVw) + ppw =0, in Q4 \ G, (A.68)
ow
ik

“Here, dist-, -) denotes a distance function.
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Similarly, we can conclude that there is an open b&pdaroundl’;, in Q;\G such thatw|Bk = 0. Our connectivity
assumption C4 guarantees that the above propagation procedure works for all the sub-domains.

Now, we can proceed with the rest of the sub-domains and show that the conclusion of the theorem holds for
each of those sub-domains. Without loss of generality, we may now assum€ that ;. Let Fi(x,y) be the

fundamental solution ofV - (D1 Vug) + piue with the Dirichlet condition abo, that is,
—V - (DiVFi(z,y)) + mFi(z,y) = 6(x —y), yeRN. (A.70)

Then, according to (A.29), we have

[ Fp@) - ) dy =0, oe R\ 0, (A71)
Q1
Also, we have
_DlAyFl(xvy))—’_,ulel(xvy) :Oa Vr € RN\Ql (A72)
Forz € RY, let us define
~ [ Bilea)@l) - aw) dv (A.73)

Lemma D.2 implies that, for € RV \ Oy,

m M

/Fl z,y) Z/\ZXBL 4 (i) ZAXB%, (X;)]dy

J=1
M
= )\z Fl(.’b, )d — Aj Fl(l', )d

ri<ly—m;|<ri R <|ly—X,|<R]
ri R]
Z /wnr Yo (r)dr) Fy (z, ;) ZA / o1 (r)dr)Fy(z, X;) = 0. (A.74)
h R}
Since
~D1AW + W =0, on RN\{U{%}U U{x; }} (A.75)
j=1

m M
the unique continuation theory [27] implies tHat = 0 in R\ { UA{xtu U {Xj}}, which immediately leads
i=1 j=1

to our theorem. O

Remark D.5. Actually, the solid/hollow ball sources assumed in Theorem D.4 can be generalized to any radial

weight functions with radial supports, such as

m

= Z MGy — x, Ui)XBwiﬁ(,i () () (A.76)
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where B, i g,i(yi) CC €y for somek € [1,I], o < (3 are two fixed constants, and(z,c) denotes the 3D
radial Gaussian distribution of zero mean. The conclusion of Theorem D.4 can be similarly derived but the proof

is omitted here for brevity.
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