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Abstract: This paper is contributed to the elliptic equation

�u+K(jxj)up + �f(jxj) = 0 (0:1)

where p > 1; x 2 Rn; n � 3;� =
nX
i=1

@2

@x2i
and � � 0 is a constant. We study the structure of positive radial

solutions of (0.1) and obtain the uniqueness of solution decaying faster than r�m at 1 if � is small enough
under some assumptions on K and f; where m is the slow decay rate.
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1. Introduction

In this paper, we study the elliptic equation

�u+K(x)up + �f(x) = 0 in Rn; (1:1)�

where p > 1; � � 0 is a constant, x 2 Rn; n � 3;� =
nX
i=1

@2

@x2i
is the n-dimension Laplacian and 0 �

K(jxj); 0 � f 6� 0 are given local Hölder continuous functions in Rnnf0g.

For the physical reasons, we consider the positive radial solutions of (1:1)� when K(x) = K(r), f(x) =
f(r), where r = jxj. Eq. (1:1)� then reduces to

u00 +
n� 1
r

u0 +K(r)up + �f(r) = 0; r > 0: (1:2)

For the same reasons, the regular solutions that have �nite limits at r = 0, are particularly interesting,
which lead us to consider the initial value problem8<: u00 + n�1

r u0 +K(r)up + �f(r) = 0 r > 0;

u(0) = � > 0:
(1:3)

�Research Supported by the Natural Science Foundation of China (10631030) and the PHD specialized grant of the Ministry
of Education of China (20060611001).
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We use u� = u(r; �) to denote the solution of Eq. (1.3).

The hypotheses of K(x) are divided into two cases: the fast decay case and the slow decay case. For
the fast decay case, we refer to [13], [18], [20] and [21] for results of Eq. (1:1)0. In this paper, we will focus
on the slow decay case, i.e., K(r) � Crl, for some l > �2 and r large.

First, let us introduce a collection of hypotheses on K(x):

(K.1). K(x) = k1jxjl + O(jxj�d) as jxj ! +1 for some constants k1 > 0, l > �2 and d > n � �2 �
m(p+ 1), where �2 is de�ned by (1.5) and m is de�ned by (1.4).

(K.2). K(x) = O(jxj� ) at jxj = 0 for some � > �2.

(K.3). K(r) is locally Lipschitz continuous and d
dr (r

�lK(r)) � 0 for a.e. r > 0.

Also, we introduce the following notations, which will be used throughout this paper:

m � l + 2

p� 1 ; b0 � n� 2� 2m;

L � [m(n� 2�m)]
1

p�1 ; c0 � (p� 1)Lp�1;
(1:4)

pc =

8<:
(n� 2)2 � 2(l + 2)(n+ l) + 2(l + 2)

p
(n+ l)2 � (n� 2)2

(n� 2)(n� 10� 4l) n > 10 + 4l;

1 3 � n � 10 + 4l :

Particularly, when l = 0 we have ,

pc =

8<:
(n� 2)2 � 4n+ 4

p
n2 � (n� 2)2

(n� 2)(n� 10) n > 10;

1 3 � n � 10;

which was �rst introduced in [17]. Note that we have m > 0 and b0 > 0 when p > n+2l+2
n�2 and l > �2.

Consider the equation
�2 + b0�+ c0 = 0; (1:5)

here b0 and c0 are as in (1.4). When p > pc, (1.5) has two negative roots ��2 < ��1 < 0 and b0 > �2.

Now let us state some hypotheses on f(x):

(f.1). f(x) = O(jxj�) as jxj ! 0 for some � > �2.

(f.2). f(x) = O(jxj�q) as jxj ! 1, for some constant q > n�m� �2.

There are many results about the existence and nonexistence of the positive solutions for problem (1:1)�.
For the homogeneous case, i.e.,

�u+K(jxj)up = 0; x 2 Rn (1:6)

Ni and Yasutani showed that (1:6) has one positive solution u(r) > 0 satisfying u(0) = � for every � > 0

in [21] and later the solutions are proved having slow decay in [19] and [3]. For the inhomogeneous case, G.
Bernard obtained the existence result for 0 � f � p�1

[p(1+jxj2)]
p

p�1
Lp when K(x) � 1 in [8] and Bae and Ni

obtained the nonexistence result (see Theorem 1 in [7]) and the in�nite multiplicity result (see Theorem 2 in
[7]). Other recent results along this line include [1] and [2] etc. Especially, Bae, Chang and Pahk obtained
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the existence of in�nitely many positive solutions for Eq. (1:1)�. The main result of Bae, Chang and Pahk
([6]) can be stated in the following theorem (where f is allowed to change signs):

Theorem A Let p � pc, Assume that K(x) satis�es (K.1), (K.2) and f satis�es (f.1), (f.2) with
�(1 + jxjmp)f(x) � minjzj=jxjK(z). Then there exists �� > 0 such that for every � 2 [0; ��), Eq. (1:1)�
possesses in�nitely many positive entire solutions with the asymptotic behavior

L

k
1

p�1
1

jxj�mat 1.

We say the solution u of Eq. (1.2) is a slowly decaying solution if u (r) � cr�m at 1 for some constant
c > 0. (here A(r) � B(r) at 1 means that limr!1

A(r)
B(r) = 1) and fast decaying if u(r) = O(r2�n) at 1. A

natural and interesting question concerning Eq. (1.2) is: do two slow decay solutions with di¤erent initial
values intersect each other, or, in other words, do the slow decay solutions of Eq. (1.2) have monotonicity
property? It is known that the monotone property of the solutions of Eq. (1.2) has important implications,
like stability, etc (see [10, 11, 15, 16, 19]).

For the homogeneous equation, for example (1.6), it is shown by Wang ([22]), Ni and Yosutani ([21])
that for small p, any two positive solutions intersect each other. Wang also showed that for large p, the
solutions of (1.6) posses monotone property for a class of K, and gave explicitly the lower bound of the p
value. Then Gui ([14]) extended the result to a more general class of K(x). Liu, Li and Deng ([19]) studied
the monotonicity of solutions of (1.6) with respect to the initial data � and got a sharp estimate pc on the
exponent p under some general conditions imposed on K(x) (see Theorem 1 in [19]). Later, Bae and Chang
([3] [5]) extended the monotonicity results from C1 condition on K in ([19]) to monotone condition on K
(see Theorem 1.1 in [5] and Theorem 1.2 in [3]).

It was known that, for every � > 0, the solution of (1.3) with f � 0, is positive under the hypotheses
(K.1), (K.2) and (K.3) for p > n+2l+2

n�2 . But when f 6� 0, solutions of (1.3) with su¢ ciently small initial
values will have �nite zeros. In [11], we show that there is a constant ��, such that for any � > ��, the
solution of (1.3) is positive and have the following structures:

Theorem B Suppose that K(r) satis�es (K.1), (K.2) and (K.3), f satis�es (f.1) and (f.2). Let u(r; �)
be the solution of (1.3). Denote A = f� > 0; u(r; �) is a positive solution of (1.3) for all r � 0g and
S = f� > 0; u(r; �) is a positive solution of (1.3) for all r � 0 and is slow decayg: De�ne �� = �(K;�) �
inff� 2 Ag > 0, ��� = inff� 2 Sg, then 0 < �� � ��� and

(i) if p > pc, then ��� < 1 for � 2 [0; ��), and A = [��;1), S = (���;1) and u�(r) and u�(r) can
not intersect each other for any �� � � < �; i.e. 0 < u�(r) < u�(r).

(ii) if
n+ 2 + 2l

n� 2 < p < pc and u�(r) and u�(r) are slow decay solutions of (1.2), then they will intersect

in�nity many times.

Theorem A establishes the existence of the slow decay solutions for problem (1.2) and meanwhile,
Theorem B indicates that there may be a gap between �� and ��� in which the solutions of (1.3) decay
faster than the slow rate m. So there is a natural question for Eq. (1.2): when does �� = ��� hold? The
purpose of this paper is to prove that problem (1.3) has exactly one positive solution which decays faster
than the slow decay solutions under some assumptions on K and f if p > pc.

The following are the main results:

Theorem 1.1. Assume that f satis�es (f.1) andK satisfy (K.1) and (K.2), and also f = �r�q [1 + o(1)]

at 1 for some constant � > 0. Then, there exist a �? > 0 such that

(i) there exists a positive solution to Eq. (1.2) satisfying limr!1 rq�2u(r) = ��=[(n � q)(q � 2)] for all
� 2 (0; �?) if p > (n+ l)=(n� 2) and m+ 2 < q < n.
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(ii) there exists a positive solution to Eq. (1.2) satisfying limr!1
rn�2u(r)
log r = ��=(n� 2) for all � 2 (0; �?)

if p > (n+ 2 + 2l)=(n� 2) and q = n.

(iii) there exists a positive solution to Eq. (1.2) satisfying limr!1 rn�2u(r) = C, where C > 0 is a constant,
for all � 2 (0; �?) if p > (n+ 2 + 2l)=(n� 2) and q > n.

Theorem 1.2. Let p > pc. Then, there exist at most one radial positive solutions of (1.2) satisfying
limr!1 rmu(r) = 0 if f = �r�q [1 + 0 (1)] at 1 for some constants q > n �m � �2 and � > 0, K satis�es
(K.1) ,(K.2) and (K.3) with d > �2 = `.

Combining Theorem 1.1, Theorem 1.2 and theorem B, we easily conclude the following corollary:

Corollary 1.3. Let p > pc, f and K are as in Theorem B with d > �2 � ` and �� and ��� are de�ned
as in Theorem B. Then, �� = ���. Furthermore, u�� decays like r

2�q when m+ 2 < q < n, u�� decays like
r2�q log r when q = n; and u�� decays like r

2�n when q > n if � is small enough and f = �r�q [1 + 0 (1)] at
1.

In this paper, only the regular positive solutions are studied. And for the existence of singular positive
radial solutions for Eq. (1:1)1, we refer the readers to Theorem 1.6 in [4] and Theorem 1.6 and 1.8 in [11]

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section 3, Theorem 1.2 is
proved.

2. Proof of Theorem 1.1.

In this section, some Lemmas are given, based on which, the Theorem 1.1 can be proved. Throughout
this section (f.1) and (K.2) are assumed.

First, we give the following Lemma, which can be found in [4] and [12].

Lemma 2.1 Suppose K(r) = O(rl) for some l > �2, f(r) = �r�q [1 + o(1)] at1, and p > (n+ l)=(n�
2), q > (2p+ l)=(p� 1). Let u be a positive radial solution of (1:1)1 satisfying limr!1 rmu(r) = 0. Then we
have

lim
r!1

rq�2u(r) =
�

(n� q)(q � 2) if m+ 2 < q < n; (2:1)

lim
r!1

rn�2u(r)

log r
=

�

n� 2 if q = n; (2:2)

and
lim
r!1

rn�2u(r) = C for some C > 0 if q > n: (2:3)

Next, we give the following a priori estimate:

Lemma 2.2. Let u be a positive solution of Eq. (1:1)1 with u(1) = 0, the following equality holdsZ
jx�yj>R

(Kup + f)(y)

jx� yjn�2 dy +
1

Rn�2

Z
jx�yj<R

(Kup + f)(y)dy = (n� 2)!n�u(x;R) for R > 0;

where !n is the area of the unit sphere in Rn and �u(x; r) is the spherical mean of u on a ball centered at x
with radius r.
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Proof: Denote �w(r) be the spherical mean of w 2 C(Rn) on a ball centered at x with radius r , i.e.,

�w(r) =
1

!nrn�1

Z
jx�yj=r

w(y)dS for r > 0;

where dS is the surface measure. Then we have �w = � �w.

Let u be a solution of Eq. (1:1)1. Taking the spherical mean on both hand sides of Eq. (1:1)1, we have

�u+ (Kup + f) = 0 for r > 0:

Hence
(rn�1�u0)0 + rn�1(Kup + f) = 0; r > 0:

Integrating this equation from 0 to r yields

�u0(r) +
1

rn�1

Z r

0

sn�1(Kup + f)(s)ds = 0:

Integrating the above equation from r to R, where 0 < r < R, we obtain

�u(R)� �u(r) +
Z R

r

1

rn�1

Z t

0

sn�1(Kup + f)(s)dsdt = 0:

Applying Fubini�s theorem, this equality becomes

�u(R)� �u(r) +
Z r

0

Z R

r

sn�1

tn�1
(Kup + f)(s)dtds

+

Z R

r

Z R

s

sn�1

tn�1
(Kup + f)(s)dtds = 0:

Thus

�u(R)� �u(r) =

Z r

0

sn�1

n� 2(Ku
p + f)(s)

�
1

rn�2
� 1

Rn�2

�
ds

+

Z R

r

sn�1

n� 2(Ku
p + f)(s)

�
1

sn�2
� 1

Rn�2

�
ds:

Taking the limit as R!1 and using the monotone convergence theorem yields that

�u(r) =
1

rn�2

Z r

0

sn�1

(n� 2)(Ku
p + f)(s)ds+

Z 1

r

s

n� 2(Ku
p + f)(s)ds:

This is equivalent to

(n� 2)!n�u(r) =
Z
jx�yj>r

(Kup + f)(y)

jx� yjn�2 dy +
1

rn�2

Z
jx�yj<r

(Kup + f)(y)dy;

which gives the required equality.

Lemma 2.3. Let u be a solution of Eq. (1:1)1. If f(x) � ajxj�q at 1 for some a > 0, then
u(x) � Cjxj2�q for some C > 0.

Proof: Let R! 0 on both hand sides of the equality in Lemma 2.2, we haveZ
Rn

(Kup + f)(y)

jx� yjn�2 dy = (n� 2)!n�u(x; 0):

However, �u(x; 0) = u(x), K � 0 and u > 0 yield that

u(x) � 1

(n� 2)!n

Z
Rn

f(y)

jx� yjn�2 dy:
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Since f(x) � �jxj�q at 1, we have f(x) � "�=jxjq for some small " > 0 at 1. By the similar argument as
the proof of Lemma 2.6 in [18], we conclude that at 1

1

(n� 2)!n

Z
Rn

f(y)

jx� yjn�2dy �

8>>><>>>:
C

jxjq�2 if 2 < q < n;

C log jxj
jxjn�2 if q = n;

C
jxjn�2 if q > n

for some constant C > 0. Hence, at 1

u(x) �

8>>><>>>:
C

jxjq�2 if 2 < q < n;

C log jxj
jxjn�2 if q = n;

C
jxjn�2 if q > n:

�

Now, we are ready to establish the existence of positive solutions of (1:1)� with fast decay. We intend to
apply the well-known super- and sub-solution method, which is based on the following Lemma (see Theorem
2.10 in [20]).

Lemma 2.4. Suppose that �(x) is a super-solution of (1:1)� and  (x) is a sub-solution of (1:1)�, where
K(x) and f(x) are locally Hölder continuous functions in Rnnf0g, and � �  in Rn. Then (1:1)� possesses
a solution u satisfying  � u � � in Rn.

Suppose that f is locally Hölder continuous in Rn=f0g. For convenience, we denote

� � f(x) = 1

(n� 2)!n

Z
Rn

f(y)

jx� yjn�2 dy:

The following Lemma shows the existence of fast decay positive solution of (1:1)� and the positive
solution of (1:1)� decaying between the fast decay and the slow decay.

Lemma 2.5. Let K(r) = O(rl) for some l > �2; p > n+2+2l
n�2 , f satis�es (f.1) and f � �jxj�q at 1 for

some � > 0, where q > m+ 2. Then, Eq. (1:1)� possesses a solution u(x) satisfying the following inequality
if � is small enough:

(I) when m+ 2 < q � n+ 2 + l, 0 < u(x) < 2�� � (K(x)�B0(1) + f);

(II) when q > n+2+ l, 0 < u(x) < 2���
�
K(x)�B0(1) + f +

1
1+jxjn+2+l

�
, where �B0(1) is the characteristic

function of the unit ball B0(1).

Proof: (I) Let w = ��(K(x)�B0(1)+f). It is easy to very that w is a solution of the following equation:

�w +K(x)�B0(1) + f = 0; x 2 Rn:

Denote w1 = 2�w, we have

�w1 +K(x)w
p
1 + �f

= �2�(K(x)�B0(1) + f) +K(x)(2�w)
p + �f

= ��f � 2�K(x)(�B0(1) � 2
p�1�p�1wp)
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Obviously, when � is small enough, �B0(1) � 2
p�1�p�1wp > 0 for jxj � 1. Then, we have

�w1 +K(x)w
p
1 + �f � 0 for jxj � 1 (2:4)

if � > 0 is small enough.

On the other hand, for large jxj, we have f � �jxj�q; K(x) = O(jxjl). To make the proof more clear,
we divide the argument into the following three cases:

Case 10: The case when m+ 2 < q < n. By Lemma 2.3 and Lemma 2.1 in [9], we have w � cjxj2�q at
1. then there exist c1; c2; c3 > 0 such that

�w1 +K(x)w
p
1 + �f

� ��[f � 2p�p�1K(x)wp)]

� ��[c1jxj�q � 2p�p�1c2jxjl(c3jxj2�q)p] for jxj > 1:

Since c1 � 2p�p�1c2cp3 > 0 if � is small enough and �q � l + (2 � q)p , q > m + 2, we conclude that
�w1 +K(x)w

p
1 + �f � 0 for jxj > 1 if � > 0 is small enough.

Case 20: The case when q = n. In this case, w � cjxj2�n ln r, then we have

�w1 +K(x)w
p
1 + �f

� ��[c1jxj�n � 2p�p�1c2jxjl(c3jxj2�n ln r)p] for jxj > 1:

Since �n > l + (2 � n)p , p > n+2+2l
n�2 , we conclude that �w1 +K(x)wp1 + �f � 0 for jxj > 1 if � > 0 is

small enough.

Case 30: The case when n < q < n+ 2 + l. In this case, w � cjxj2�n, then we have

�w1 +K(x)w
p
1 + �f

� ��[c1jxj�q � 2p�p�1c2jxjl(c3jxj2�n)p] for jxj > 1:

Since �(n + 2 + l) > l + (2 � n)p , p > n+2+2l
n�2 , and hence �q > l + (2 � n)p, we conclude that �w1 +

K(x)wp1 + �f � 0 for jxj > 1 if � > 0 is small enough.

Combining (2.4) and the cases 10 � 30, we can choose a � > 0 small enough such that

�w1 +K(x)w
p
1 + �f � 0; x 2 Rn:

Then, w1 = 2�w is a super-solution of Eq. (1:1)�. Obviously v = 0 is a sub-solution of Eq. (1:1)� and
v � w1. By Lemma 2.4, there exists a solution u satisfying

0 � u(x) � w1; x 2 Rn:

The Maximum Principle implies that u > 0.

Now, we are going to prove (II). Similarly, let w = � � (K(x)�B0(1) + f + 1
1+jxjn+2+l ). Then w satis�es

the following equation:

�w +K(x)�B0(1) + f +
1

1 + jxjn+2+l = 0; x 2 Rn:

Let w1 = 2�w, then

�w1 +K(x)w
p
1 + �f

= �2�
�
K(x)�B0(1) + f +

1

1 + jxjn+2+l

�
+K(x)(2�w)p + �f

= ��f � 2�

1 + jxjn+2+l � 2�K(x)(�B0(1) � 2
p�1�p�1wp):
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Since �(n + 2 + l) > l + (2 � n)p , p > n+2+2l
n�2 , by the similar argument as the proof of (I), we can

easily verify that w1 is a super-solution of (1:1)� if � is small enough. It is known that v = 0 is always a
sub-solution of (1:1)� and v � w1. Then the conclusion of (II) follows from Lemma 2.4 and the Maximum
Principle.

Proof of Theorem 1.1: In fact, for every case, in the proof of Lemma 2.5, de�ne

�? = f� j 2�w is a super- solution of Eq. (1.2)g;

where w is de�ned as in the proof of Lemma 2.5. Then, for every � 2 (0; �?), 2�w is a super-solution of
(1.2).

(i): When m + 2 < q < n, by Lemma 2.5(I) and Lemma 2.1 in [9], for every � 2 (0; �?), there ex-
ists a solution u of Eq. (1.2) such that u(r) � C1r

2�q at 1 for some C1 > 0. On the other hand, by
Lemma 2.3, there exist a C2 > 0, C1 > C2 such that u(r) � C2r

2�q. Then, there exists a solution of Eq.
(1.2) decay like r2�q at1. By Lemma 2.1 and q�2 > m, we have that limr!1 rq�2u(r) = �d=[(n�q)(q�2)].

(ii): When q = n, by similar argument as in (i), for every � 2 (0; �?), there exists a solution u of Eq.
(1.2) such that u(r) � C1r

2�n log r at 1 for some C1 > 0. On the other hand, by Lemma 2.3, there exist
a C2 > 0, C1 > C2 such that u(r) � C2r

2�n log r. Then, there exists a solution of Eq. (1.2) decay like

r2�n log r at 1. By Lemma 2.1, limr!1
rn�2u(r)
log r = �d=(n� 2).

(iii): When q > n, by Lemma 2.5 and Lemma 2.1 in [9], for every � 2 (0; �?), there exists a solution u
of Eq. (1.2) such that u(r) � C1r

2�n at 1 for some C1 > 0. On the other hand, by Lemma 2.3, there exist
a C2 > 0, C1 > C2 such that u(r) � C2r

2�n. The conclusion (iii) follows from Lemma 2.1.

3. Proof Theorem 1.2

In this section, we start with two lemmas, based on which our Theorem 1.2 will be proved. For their
proofs, we refer the readers to the proofs of Theorem 5.1 in [19] and Lemma 2.20 in [15].

Lemma 3.1 Suppose (K.1), (K.3) and p > pc, and there exists 
 > �2 such that

(r�lK(r)� k1) = O

�
1

r


�
at r =1 : (3:1)

Let �u be a positive radial slow decay solution of (1.6). Then �u has the following expansion at r =1:

�u(r) =

8>>>>>>>><>>>>>>>>:

L

k
1

p�1
1 rm

+
a1

rm+�1
+

a2
rm+2�1

+ � � �+ b1
rm+�2

+ � � �+O
�

1

rn�2+"

�
if �2 6= ��1;

L

k
1

p�1
1 rm

+
a1

rm+�1
+

a2
rm+2�1

+ � � �+ c1 log r

rm+��1
+

b1
rm+�2

+ � � �+O
�

1
rn�2+"

�
if �2 = ��1;

(3:2)

where ai; bi; i = 1; 2; � � �; are (solution dependent) constants.

Lemma 3.2 Suppose w2 be a positive radial super-solution of �w +K(x)w = 0 in BR and w1 is a
radial sub-solution of the same equation in BR with w1(0) > 0. Then

w1(r) �
w1(0)

w2(0)
w2(r)
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for all 0 � r � R. Moreover

w1(R) >
w1(0)

w2(0)
w2(R)

if one of the functions is not a solution of the equation.

Proof of Theorem 1.2: Let u� and u� be the solutions of (1.3) with the initial value u�(0) = � and
u�(0) = � respectively and � � �, �u� and �u� be the solutions of (1.6) with the initial value �u�(0) = � and
�u�(0) = � respectively and � > �. We are going to prove that � = � if both limr!1 rmu�(r) = 0 and
limr!1 rmu�(r) = 0 hold.

First it can be shown that u� � �u� (see Lemma 2.2 in [11]).

Suppose by contradiction that � > �. Denote w1 = u� � u�, then we have

�w1 +K1w1 = 0; x 2 Rn;

where K1 = K(r)
up� � up�
u� � u�

� pK(r)up�1� � pK(r)�up�1� .

Denote w2 = �u� � �u� . Similarly, we have

�w2 +K2w2 = 0; x 2 Rn;

where K2 = K(r)
�up� � �u

p
�

�u� � �u�
� pK(r)�up�1� . So w1 and w2 are sub and super-solutions of

�w + pK(r)�up�1� w = 0; x 2 Rn:

From Lemma 3.2, we deduce that for any R > 0,

w1(r) �
w1(0)

w2(0)
w2(r) for all 0 � r � R: (3:3)

On the other hand, from Proposition 3.1 in [5], Lemma 4.3 in [10] and Lemma 3.1, we have

w2 � cr�(m+�1) at 1 (3:4)

for some c > 0 since we assume (K:1) with d > �2 � ` and p > pc. Now we are going to estimate w1(r)
as r ! 1 if both limr!1 rmu�(r) = 0 and limr!1 rmu�(r) = 0 hold. In fact, we have q > n �m � �2 =

m + 2 + �1 > m + 2 and hence q > m + 2 = 2p+l
p�1 . Now Lemma 2.1 can be applied to yield the following

three cases for w1 at 1:

Case 1: w1 = u� � u� = o(r2�q) if m+ 2 < q < n.

Case 2: w1 = u� � u� = o(r2�n log r) if q = n.

Case 3: w1(r) = u� � u� = O(r2�n) if q > n.

By using the fact p > pc and (1.5), b0 = n � 2 � 2m = �1 + �2, i.e., n �m � �2 = m + 2 + �1. And
also by (f:2), we have that q > n�m� �2, hence q � 2 > m+ �1. Especially when q = n, n� 2 > m+ �1.
Comparing w1 and w2 at 1 ((3.4) and the three cases above), there exists a constant R1 > 0 large enough
such that w1(r) <

w1(0)
w2(0)

w2(r) for r > R1, which contradicts the inequality (3.3). This completes the proof
of Theorem 1.2.
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