Skip to main content
Irradiation Response of Delta Ferrite in As-Cast and Thermally Aged Cast Stainless Steel
Journal of Nuclear Materials
  • Zhangbo Li, University of Florida
  • Wei-Yang Lo, University of Florida
  • Yiren Chen, Argonne National Laboratory
  • Janne Pakarinen, Belgian Nuclear Research Center (SCK∙CEN)
  • Yaqiao Wu, Boise State University
  • Todd Allen, University of Wisconsin
  • Yong Yang, University of Florida
Document Type
Publication Date
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 ˚C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 ˚C to 0.08 dpa (5.6 × 1019 n/cm2, E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10-9 dpa/s was found to induce spinodal decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.
Citation Information
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; Pakarinen, Janne; Wu, Yaqiao; Allen, Todd; and Yang, Yong. (2015). "Irradiation Response of Delta Ferrite in As-Cast and Thermally Aged Cast Stainless Steel". Journal of Nuclear Materials, 466, 201-207.