Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

Xiao-Jun Yang
H. M. Srivastava, H. M. Srivastava
J. -H. He, J. -H. He
D. Baleanu, D. Baleanu
Cantor-type cylindrical-coordinate method for differential equations with local fractional derivatives

Xiao-Jun Yanga,b,*, H.M. Srivastavac, Ji-Huan Hed, Dumitru Baleanue,f,g

a Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou, Jiangsu, 221008, People’s Republic of China
b Institute of Applied Mathematics, Qing Normal University, Qing 655011, People’s Republic of China
c Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia V8W 3R4, Canada
d National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, 199 Ren-ai Road, Suzhou 215123, People’s Republic of China
e Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah, 21589, Saudi Arabia
f Institute of Space Sciences, Magurele-Bucharest, Romania

\textbf{A R T I C L E I N F O}

Article history:
Received 1 February 2013
Received in revised form 5 April 2013
Accepted 8 April 2013
Available online 9 April 2013
Communicated by R. Wu

Keywords:
Heat-conduction equation
Damped wave equation
Local fractional derivatives
Cantor set

\textbf{A B S T R A C T}

In this Letter, we propose to use the Cantor-type cylindrical-coordinate method in order to investigate a family of local fractional differential operators on Cantor sets. Some testing examples are given to illustrate the capability of the proposed method for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings. It is seen to be a powerful tool to convert differential equations on Cantor sets from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems.

© 2013 Published by Elsevier B.V.

\[K^{2\alpha} \nabla^{2\alpha} T - \rho_c c_0 \frac{\partial^\alpha T}{\partial \tau^\alpha} = 0 \] (1)
or
\[K^{2\alpha} \left(\frac{\partial^{2\alpha} T}{\partial x^{2\alpha}} + \frac{\partial^{2\alpha} T}{\partial y^{2\alpha}} + \frac{\partial^{2\alpha} T}{\partial z^{2\alpha}} \right) - \rho_c c_0 \frac{\partial^\alpha T}{\partial \tau^\alpha} = 0, \] (2)
where
\[\nabla^{2\alpha} = \frac{\partial^{2\alpha}}{\partial x^{2\alpha}} + \frac{\partial^{2\alpha}}{\partial y^{2\alpha}} + \frac{\partial^{2\alpha}}{\partial z^{2\alpha}} \]
is the local fractional Laplace operator [4–6], whose local fractional differential operator is denoted as follows [4–11] (for other definitions, see also [12–25]):
\[f^{(\alpha)}(x_0) = \frac{d^\alpha f(x)}{dx^\alpha} \bigg|_{x=x_0} = \lim_{x \to x_0} \frac{\Delta^\alpha f(x) - f(x_0)}{(x - x_0)^\alpha}, \] (3)
where \(\Delta^\alpha f(x) - f(x_0) \leq \Gamma(1+\alpha) \Delta^\alpha f(x) - f(x_0) \) and \(f(x) \) is satisfied with the following condition [4,15]:
\[|f(x) - f(x_0)| \leq \tau^\alpha |x - x_0|^\alpha, \]
so that (see [4–18]).
\[|f(x) - f(x_0)| < \varepsilon^x \]

with \(|x - x_0| < \delta\), for \(\varepsilon, \delta > 0\) and \(\varepsilon, \delta \in \mathbb{R}\).

In a similar manner, for a given vector function \(F(t) = F_1(t)e_1^R + F_2(t)e_2^R + F_3(t)e_3^R\), the local fractional vector derivative is defined by \(\text{see} \ [4]\):

\[
E^{(a)}(t_0) = \frac{d^a F(t)}{dt^a} \quad \text{at} \quad t = t_0 = \lim_{t \to t_0} \frac{\Delta^n (F(t) - F(t_0))}{(t - t_0)^a}
\]

where \(e_1^R, e_2^R\) and \(e_3^R\) are the directions of the local fractional vector function.

The aim of this Letter is to investigate the Cantor-type cylindrical-coordinate method within the local fractional vector operator. The layout of the Letter is as follows. In Section 2, we propose and describe the Cantor-type cylindrical-coordinate method. In Section 3, we consider the testing examples. Finally, in Section 4, we present our concluding remarks and observations.

2. Cantor-type cylindrical-coordinate method

For the following Cantor-type cylindrical coordinates \([4]\):

\[
\begin{align*}
x^R &= R^\alpha \cos\theta^\alpha, \\
y^R &= R^\alpha \sin\theta^\alpha, \\
z^R &= z^R,
\end{align*}
\]

with \(R > 0, z \in (-\infty, +\infty), 0 < \theta < 2\pi\) and \(x^2 + y^2 = R^2z^2\), we have the local fractional vector given by

\[
r = R^\alpha \cos\theta^\alpha e_1^R + R^\alpha \sin\theta^\alpha e_2^R + z^R e_3^R,
\]

so that

\[
\begin{align*}
C_1^R &= \frac{1}{\Gamma(1 + \alpha)} \frac{\partial^\alpha r}{\partial R^\alpha} = \cos\theta^\alpha e_1^R + \sin\theta^\alpha e_2^R, \\
C_2^R &= \frac{1}{\Gamma(1 + \alpha)} \frac{\partial^\alpha \mathbf{R}}{\partial R^\alpha} = -\frac{\sin\theta^\alpha e_1^R}{R^\alpha} + \frac{R^\alpha}{\Gamma(1 + \alpha)} \cos\theta^\alpha e_2^R, \\
C_3^R &= \frac{1}{\Gamma(1 + \alpha)} \frac{\partial^\alpha z}{\partial z^R} = e_3^R.
\end{align*}
\]

Therefore, we obtain

\[
\begin{align*}
e_1^R &= \cos\theta^\alpha e_1^R + \sin\theta^\alpha e_2^R, \\
e_2^R &= -\sin\theta^\alpha e_1^R + \cos\theta^\alpha e_2^R, \\
e_3^R &= e_3^R,
\end{align*}
\]

where \(C_1^R = e_1^R, C_2^R = \frac{R^\alpha}{\Gamma(1 + \alpha)} e_2^R, C_3^R = e_3^R\).

Now, by making use of Eq. (9), we can write this last result in matrix form as follows:

\[
\begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix} = \begin{pmatrix}
\cos\theta^\alpha & \sin\theta^\alpha & 0 \\
-\sin\theta^\alpha & \cos\theta^\alpha & 0 \\
0 & 0 & 1
\end{pmatrix} \begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix}.
\]

which leads to

\[
E^{(a)}_i = T^{(a)}_{ij} E^{(a)}_j.
\]

where

\[
E_i^R = \begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix}, \quad T^{(a)}_{ij} = \begin{pmatrix}
\cos\theta^\alpha & \sin\theta^\alpha & 0 \\
-\sin\theta^\alpha & \cos\theta^\alpha & 0 \\
0 & 0 & 1
\end{pmatrix},
\]

\[
E^{(a)}_i = \begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix}.
\]

Here \(T^{(a)}_{ij}\) is fractal matrix, which is defined on the generalized Banach space \([5,6]\). The general basis vectors of two fractal spaces are defined, respectively, from the fractal tangent vectors \([4]\), namely,

\[
E^{(a)}_i = \begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix}, \quad E^{(a)}_j = \begin{pmatrix}
e_1^R \\ e_2^R \\ e_3^R
\end{pmatrix}.
\]

In view of Eqs. (8) and (9), upon differentiating the Cantorian position with respect to the Cantor-type cylindrical coordinates implies that

\[
\begin{align*}
e_1^R &= \frac{1}{\Gamma(1 + \alpha)} \frac{\partial^\alpha \mathbf{r}}{\partial R^\alpha} = \cos\theta^\alpha e_1^R + \sin\theta^\alpha e_2^R, \\
e_2^R &= \frac{1}{R^\alpha \partial \theta^\alpha} = -\sin\theta^\alpha e_1^R + \cos\theta^\alpha e_2^R, \\
e_3^R &= \frac{1}{\Gamma(1 + \alpha)} \frac{\partial^\alpha \mathbf{r}}{\partial z^R} = e_3^R.
\end{align*}
\]

Eq. (14) is orthogonal and normalized everywhere \((\text{see} \ [5,6])\). Hence, we can define a local fractal basis with an orientation, which is derived from one fractal space to another fractal space. Based on this, a local fractional vector field can be defined as follows:

\[
r(R, \theta, z) = r(R, \theta, z) \cdot e_1^R + r_0(R, \theta, z) \cdot e_2^R + r_z(R, \theta, z) \cdot e_3^R
\]

are the projections of \(r\) on the local fractal basis vectors.

The local fractional derivatives with respect to the Cantor-type cylindrical coordinates are given by the local fractional differentiation through the Cantor coordinates as follows:

\[
\frac{\partial^\alpha}{\partial R^\alpha} = \left(\frac{\partial x}{\partial R}\right)^\alpha \frac{\partial}{\partial x^\alpha} + \left(\frac{\partial y}{\partial R}\right)^\alpha \frac{\partial}{\partial y^\alpha} + \left(\frac{\partial z}{\partial R}\right)^\alpha \frac{\partial}{\partial z^\alpha},
\]

\[
\frac{\partial^\alpha}{\partial \theta^\alpha} = R^\alpha \left(\frac{\partial x}{\partial \theta}\right)^\alpha \frac{\partial}{\partial x^\alpha} + \left(\frac{\partial y}{\partial \theta}\right)^\alpha \frac{\partial}{\partial y^\alpha} + \left(\frac{\partial z}{\partial \theta}\right)^\alpha \frac{\partial}{\partial z^\alpha},
\]

and

\[
\frac{\partial^\alpha}{\partial z^R} = R^\alpha \left(\frac{\partial x}{\partial z}\right)^\alpha \frac{\partial}{\partial x^\alpha} + \left(\frac{\partial y}{\partial z}\right)^\alpha \frac{\partial}{\partial y^\alpha} + \left(\frac{\partial z}{\partial z}\right)^\alpha \frac{\partial}{\partial z^\alpha}.
\]

where

\[
\nabla^R = e_1^R \cdot \nabla = \frac{\partial^\alpha}{\partial R^\alpha}, \quad \nabla^\alpha = R^\alpha e_1^R \cdot \nabla = \frac{\partial^\alpha}{\partial R^\alpha},
\]

\[
\frac{\partial^\alpha}{\partial z^R} = e_3^R \cdot \nabla = \frac{\partial^\alpha}{\partial z^R}.
\]

In light of Eq. (20), the local fractional gradient operator is described as follows:

\[
\nabla^R = e_1^R \nabla^R + e_2^R \nabla^\alpha + e_3^R \nabla^z = e_1^R \frac{\partial^\alpha}{\partial R^\alpha} + e_2^R \frac{\partial^\alpha}{\partial \theta^\alpha} + e_3^R \frac{\partial^\alpha}{\partial z^R}.
\]
A local fractional gradient operator in Cantor-type cylindrical-coordinate systems is expressed as follows:

$$
\nabla^\alpha u = e^\alpha_0 \frac{\partial u}{\partial \alpha} + e^\alpha_1 \frac{1}{R^\alpha} \frac{\partial u}{\partial \theta} + e^\alpha_2 \frac{\partial u}{\partial z},
$$

where

$$
\nabla^\alpha u = e^\alpha_0 \Delta^\alpha u(\alpha, \theta, z) + e^\alpha_1 \Delta^\alpha u(\alpha, \theta, z) + e^\alpha_2 \Delta^\alpha u(\alpha, \theta, z).
$$

The local fractional divergence operator of

$$
\mathbf{r} = e^\alpha_0 \mathbf{r}_R + e^\alpha_1 \mathbf{r}_\theta + e^\alpha_2 \mathbf{r}_z
$$
in Cantor-type cylindrical-coordinate systems has the form given by

$$
\nabla^\alpha \cdot \mathbf{r} = \left(e^\alpha_0 \frac{\partial \mathbf{r}_R}{\partial \alpha} + e^\alpha_1 \frac{\partial \mathbf{r}_\theta}{\partial \alpha} + e^\alpha_2 \frac{\partial \mathbf{r}_z}{\partial \alpha} \right) \cdot \left(e^\alpha_0 \mathbf{r}_R + e^\alpha_1 \mathbf{r}_\theta + e^\alpha_2 \mathbf{r}_z \right)
$$

The first term of Eq. (24) becomes

$$
e^\alpha_0 \frac{\partial \mathbf{r}_R}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_R}{\partial \alpha^2} + \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \frac{\partial \mathbf{r}_R}{\partial \theta} + \frac{\partial \mathbf{r}_z}{\partial \alpha} \frac{\partial \mathbf{r}_R}{\partial z} + \frac{\partial \mathbf{r}_z}{\partial \alpha} \right)
$$

The second term of Eq. (24) is given by

$$
e^\alpha_0 \frac{1}{R^\alpha} \frac{\partial \mathbf{r}_\theta}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_\theta}{\partial \alpha^2} + \frac{\partial \mathbf{r}_R}{\partial \alpha} \frac{\partial \mathbf{r}_\theta}{\partial R} + \frac{\partial \mathbf{r}_z}{\partial \alpha} \frac{\partial \mathbf{r}_\theta}{\partial z} - \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \right)
$$

Finally, the third term of Eq. (24) has the following form:

$$
e^\alpha_0 \frac{\partial \mathbf{r}_z}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_z}{\partial \alpha^2} + \frac{\partial \mathbf{r}_R}{\partial \alpha} \frac{\partial \mathbf{r}_z}{\partial R} + \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \frac{\partial \mathbf{r}_z}{\partial \theta} \right)
$$

By combining Eqs. (25) to (27), Eq. (24) can be reformulated as follows:

$$
\nabla^\alpha \cdot \mathbf{r} = e^\alpha_0 \frac{\partial \mathbf{r}_R}{\partial \alpha} + e^\alpha_1 \frac{\partial \mathbf{r}_\theta}{\partial \alpha} + e^\alpha_2 \frac{\partial \mathbf{r}_z}{\partial \alpha}.
$$

We notice that the local fractional curl operator of

$$
\mathbf{r} = e^\alpha_0 \mathbf{r}_R + e^\alpha_1 \mathbf{r}_\theta + e^\alpha_2 \mathbf{r}_z
$$
in Cantor-type cylindrical-coordinate systems can be computed by

$$
\nabla^\alpha \times \mathbf{r} = \left(e^\alpha_0 \frac{\partial \mathbf{r}_R}{\partial \alpha} + e^\alpha_1 \frac{\partial \mathbf{r}_\theta}{\partial \alpha} + e^\alpha_2 \frac{\partial \mathbf{r}_z}{\partial \alpha} \right) \times \left(e^\alpha_0 \mathbf{r}_R + e^\alpha_1 \mathbf{r}_\theta + e^\alpha_2 \mathbf{r}_z \right)
$$

The first term of Eq. (29) is determined by

$$
e^\alpha_0 \times \frac{\partial \mathbf{r}_R}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_R}{\partial \alpha^2} + \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \frac{\partial \mathbf{r}_R}{\partial \theta} + \frac{\partial \mathbf{r}_z}{\partial \alpha} \frac{\partial \mathbf{r}_R}{\partial z} \right)
$$

The second term of Eq. (29) is represented as follows:

$$
e^\alpha_0 \frac{1}{R^\alpha} \frac{\partial \mathbf{r}_\theta}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_\theta}{\partial \alpha^2} + \frac{\partial \mathbf{r}_R}{\partial \alpha} \frac{\partial \mathbf{r}_\theta}{\partial R} + \frac{\partial \mathbf{r}_z}{\partial \alpha} \frac{\partial \mathbf{r}_\theta}{\partial z} - \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \right)
$$

Finally, the third term of Eq. (24) has the following form:

$$
e^\alpha_0 \frac{\partial \mathbf{r}_z}{\partial \alpha} = e^\alpha_0 \left(\frac{\partial^2 \mathbf{r}_z}{\partial \alpha^2} + \frac{\partial \mathbf{r}_R}{\partial \alpha} \frac{\partial \mathbf{r}_z}{\partial R} + \frac{\partial \mathbf{r}_\theta}{\partial \alpha} \frac{\partial \mathbf{r}_z}{\partial \theta} \right)
$$

Substituting Eqs. (30) to (32) into Eq. (29), it follows that
\[\nabla^\alpha \times \mathbf{r} = \left(\frac{\partial^\alpha \mathbf{r}_0}{\partial R^\alpha} e_0^\alpha - \frac{\partial^\alpha \mathbf{r}_0}{\partial R^\alpha} e_0^\alpha \right) + \left(- \frac{\partial^\alpha \mathbf{r}_R}{\partial R^\alpha} + \frac{\partial^\alpha \mathbf{r}_R}{\partial R^\alpha} \right) + \left(\frac{\partial^\alpha \mathbf{r}_0}{\partial R^\alpha} \right) \]

Consequently, the form of the local fractional Laplace operator is given by

\[\nabla^{2\alpha} \phi = \left(e_k^{\alpha} e_0^{\alpha} + e_k^{\alpha} \right) \left(\frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} + e_0^{\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \right) \]

The first term of Eq. (34) is rewritten as follows:

\[e_k^{\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} e_0^{\alpha} \left(e_k^{\alpha} + e_0^{\alpha} \right) \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \]

\[= e_k^{\alpha} \left(e_k^{\alpha} + e_0^{\alpha} \right) \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \]

\[= \frac{\partial^2 \alpha \phi}{\partial R^2} \frac{\partial^2 \alpha \phi}{\partial R^2} \]

The second term of Eq. (34) is represented by

\[e_0^{\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \]

\[= \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \]

\[= \frac{\partial^2 \alpha \phi}{\partial R^2} \frac{\partial^2 \alpha \phi}{\partial R^2} \]

The third term of Eq. (34) is computed by means of the following formula:

\[e_0^{\alpha} \frac{\partial^\alpha e_0^{\alpha}}{\partial R^\alpha} \]

\[= \frac{\partial^2 \alpha \phi}{\partial R^2} \frac{\partial^2 \alpha \phi}{\partial R^2} \]

As a result of our computations, the expression for the local fractional Laplace operator assumes the following form:

\[\nabla^{2\alpha} \phi = \frac{\partial^2 \alpha \phi}{\partial R^2} + \frac{\partial^2 \alpha \phi}{\partial y^2} + \frac{\partial^2 \alpha \phi}{\partial z^2} \]

(38)

3. Testing examples

In order to demonstrate the effectiveness of the proposed method, we have chosen several differential equations on Cantor sets.

Example 1. Let us consider the heat-conduction equation on Cantor sets without heat generation in fractal media, namely,

\[K^{2\alpha} \left(\left(\frac{\partial^2 \alpha \phi}{\partial x^2} + \frac{\partial^2 \alpha \phi}{\partial y^2} + \frac{\partial^2 \alpha \phi}{\partial z^2} \right) \frac{\partial^2 \alpha \phi}{\partial x^2} \frac{\partial^2 \alpha \phi}{\partial y^2} \frac{\partial^2 \alpha \phi}{\partial z^2} \right) \]

\[- \rho c \frac{\partial \alpha \phi}{\partial x^2} = 0. \]

By using Eq. (38), we find from Eq. (39) that

\[K^{2\alpha} \left(\left(\frac{\partial^2 \alpha \phi}{\partial x^2} + \frac{\partial^2 \alpha \phi}{\partial y^2} + \frac{\partial^2 \alpha \phi}{\partial z^2} \right) \frac{\partial^2 \alpha \phi}{\partial x^2} \frac{\partial^2 \alpha \phi}{\partial y^2} \frac{\partial^2 \alpha \phi}{\partial z^2} \right) \]

\[- \rho c \frac{\partial \alpha \phi}{\partial x^2} = 0, \]

which is the form of the heat-conduction equation on Cantor sets in Cantor-type cylindrical-coordinate systems.

Example 2. Consider the damped wave equation in fractal strings as given below:

\[\frac{\partial^2 \alpha u(x, y, z, t)}{\partial t^2} - \left. \left(\frac{\partial \alpha u(x, y, z, t)}{\partial x^2} + \frac{\partial \alpha u(x, y, z, t)}{\partial y^2} + \frac{\partial \alpha u(x, y, z, t)}{\partial z^2} \right) \right) = 0. \]

Applying Eq. (38) to Eq. (41), we get

\[\frac{\partial^2 \alpha u(R, \theta, Z, t)}{\partial t^2} - \left. \left(\frac{\partial \alpha u(R, \theta, Z, t)}{\partial R^2} + \frac{\partial \alpha u(R, \theta, Z, t)}{\partial \theta^2} \right) \right) = 0, \]

which is the form of the damped wave equation in fractal strings in Cantor-type cylindrical-coordinate systems.

4. Concluding remarks and observations

In our present investigation, we have proposed and developed a new Cantor-type cylindrical-coordinate method. The equivalent forms of differential equations on Cantor sets are then investigated within the proposed method. We notice that this method is different from the fractional complex-transform method on the fractional differential operator (see, for details, [8,26–28]). The former is an equivalent form of differential equations on Cantor sets converting from Cantorian-coordinate systems to Cantor-type cylindrical-coordinate systems, while the latter is one form
from Cantorian-coordinate systems to Cartesian-coordinate systems, because it is always most convenient to view curvilinear coordinate systems through the “eyes” of particular global Cartesian-coordinate systems in a flat Euclidean space. However, the Cantor-type cylindrical-coordinate method is used to view fractal curvilinear coordinate systems through the “eyes” of particular global Cantorian-coordinate systems in a flat fractal space. Several examples for the heat-conduction equation on a Cantor set and the damped wave equation in fractal strings were tested by applying the Cantor-type cylindrical-coordinate method. It is similar to the method based upon conversion from the Cartesian-coordinate systems to the cylindrical-coordinate systems.

Acknowledgements

The work is supported by PAPD (A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions) and Project for Six Kinds of Top Talents in Jiangsu Province, China (Grant No. ZBZZ-035).

References