Fast Yang-Fourier Transforms in fractal space

Yang Xiaojun

Available at: https://works.bepress.com/yang_xiaojun/27/
Fast Yang-Fourier Transforms in Fractal Space

Xiao-Jun Yang

Department of Mathematics and Mechanics, China University of Mining and Technology, Xuzhou Campus, Xuzhou, Jiangsu, 221008, P. R. China

Email: dyangxiaojun@163.com

Abstract –The Yang-Fourier transform (YFT) in fractal space is a generation of Fourier transform based on the local fractional calculus. The discrete Yang-Fourier transform (DYFT) is a specific kind of the approximation of discrete transform based on the Yang-Fourier transform in fractal space. In the present letter we point out a new fractal model for the algorithm for fast Yang-Fourier transforms of discrete Yang-Fourier transforms. It is shown that the classical fast Fourier transforms is a special example in fractal dimension \(\alpha = 1 \).

Keywords –Yang-Fourier transforms; Fast Yang-Fourier transforms; Discrete Yang-Fourier transforms; Fractal space; Local fractional calculus

1. Introduction

Local fractional calculus (fractal calculus) has become a hot topic in both mathematics and engineering [14-19]. Here we give the definition of local fractional derivative [14-19]

\[
\Delta^\alpha \left(f(x) - f(x_0) \right) = \frac{d^\alpha f(x)}{d x^\alpha} \bigg|_{x=x_0} = \lim_{x \to x_0} \frac{\Delta^\alpha (f(x) - f(x_0))}{(x-x_0)^\alpha},
\]

(1.1)

with \(\Delta^\alpha (f(x) - f(x_0)) \geq \Gamma(1+\alpha) \Delta f(x) \) and the definition of local fractional integral [14-19, 27]

\[
\frac{1}{\Gamma(1+\alpha)} \int_a^b f(t) (dt)^\alpha = \frac{1}{\Gamma(1+\alpha)} \lim_{\Delta \to 0} \sum_{j=0}^{\max \left\{ \Delta t_1, \Delta t_2, \Delta t_3, \ldots \right\}} f(t)(\Delta t)^\alpha
\]

(1.2)

with \(\Delta t_1 = t_{j+1} - t_j \) and \(\Delta t = \max \left\{ \Delta t_1, \Delta t_2, \Delta t_3, \ldots \right\} \), where for \(j = 0, \ldots, N-1 \), \([t_0, t_1, \ldots, t_N] \) is a partition of the interval \([a,b] \) and \(t_0 = a, t_N = b \).

Recently, both Yang-Fourier transform (also local fractional Laplace transform) was shown by [14-15, 17, 21-22, 24]

\[
F_{a} \left\{ f \left(x \right) \right\} = F_{a}^{F} \left(\omega \right) \equiv \frac{1}{\Gamma(1+\alpha)} \int_{a}^{\infty} E_{\alpha} \left(-i^\alpha \omega^\alpha x^\alpha \right) f \left(x \right) (dx)^\alpha
\]

(1.3)

and the inverse representation was in the form [14-15, 21-22, 24]

\[
f \left(x \right) = F_{a}^{-1} \left(F_{a}^{F} \left(\omega \right) \right) = \frac{1}{\left(2\pi \right)^{\alpha}} \int_{-\infty}^{\infty} E_{\alpha} \left(i^\alpha \omega^\alpha x^\alpha \right) f_{a}^{F} \left(\omega \right) (d\omega)^\alpha
\]

(1.4)

Furthermore, both Yang-Laplace transform (also local fractional Laplace transform), [14-15, 18, 25, 26]

\[
L_{a} \left\{ f \left(x \right) \right\} = f_{a}^{L} \left(s \right) = \frac{1}{\Gamma(1+\alpha)} \int_{0}^{\infty} E_{\alpha} \left(-s^\alpha x^\alpha \right) f \left(x \right) (dx)^\alpha, 0 < \alpha \leq 1
\]

(1.5)

and inversion [14-15, 25, 26]

\[
L_{a}^{-1} \left(f_{a}^{L} \left(s \right) \right) = f \left(t \right) = \frac{1}{\left(2\pi \right)^{\alpha}} \int_{-\infty}^{\infty} E_{\alpha} \left(s^\alpha x^\alpha \right) f_{a}^{L} \left(s \right) (ds)^\alpha,
\]

(1.6)

were introduced. Moreover, the discrete Yang-Fourier transform (shortly called DYFT) was given in the form [20, 23]

\[
F \left(k \right) = \sum_{n=0}^{N-1} f \left(n \right) W_{N, \alpha}^{-nk}
\]

(1.7)

and inversion was read as [20, 23]

\[
f \left(n \right) = \frac{1}{\Gamma(1+\alpha)} \frac{1}{N^{\alpha}} \sum_{k=0}^{N-1} F \left(k \right) W_{N, \alpha}^{nk}
\]

(1.8)

with \(W_{N, \alpha}^{nk} = E_{\alpha} \left(i^\alpha n^\alpha k^\alpha \left(2\pi \right)^\alpha \right) \). Here, aim of this letter is to suggest a new model for the fast Yang-Fourier transforms based on the discrete Yang-Fourier transforms.

This letter is organized as follows: In section 2, the fast Yang-Fourier transform of discrete Yang-Fourier transform is given. In section 3, the fast Yang-Fourier transform of inverse discrete Yang-Fourier transform is considered. Conclusions are shown in section 4.

2. Fast Yang-Fourier transform of discrete Yang-Fourier transform

In this section we start with the fast Yang-Fourier transform of Yang-Fourier transform. The relations
\[[F_N]^{\alpha}_{n,k+1} = \frac{1}{N^{\alpha}} W_{N,\alpha}^{-(k+1)n} \]
\[= \frac{1}{N^{\alpha}} W_{N,\alpha}^{-ln} W_{N,\alpha}^{-n} = [F_N]^{\alpha}_{n,k} W_{N,\alpha}^{-n} \quad (2.1) \]
\[
[F_N]^{\alpha}_{n,k+1} = \frac{1}{N^{\alpha}} W_{N,\alpha}^{-n} = [F_N]^{\alpha}_{n,k} W_{N,\alpha}^{-n} \quad (2.2)
\]

are the component formulas for the Yang-Fourier transform.

Suppose that \(\{V_0, V_1, V_2, \ldots, V_{N-1}\} \) is the \(N \)th order discrete Yang-Fourier transforms of \(\{V_0, V_1, V_2, \ldots, V_{N-1}\} \).

Starting with the component formulas for the discrete Yang-Fourier transform, we obtain that, for \(n = 0, 1, 2, \ldots, N-1 \),

\[V_n = \sum_{k=0}^{N-1} W_{N,\alpha}^{-n} v_k \]
\[= \sum_{k=0}^{N-1} W_{N,\alpha}^{-n} v_k + \sum_{k=0}^{N-1} W_{N,\alpha}^{-n} v_k \]
\[= \frac{1}{2^n} \left(\sum_{j=0}^{M-1} W_{2M,\alpha^{-n}} v_{2j} + \sum_{j=0}^{M-1} W_{2M,\alpha^{-n}} v_{2j+1} \right) \]
\[= \frac{1}{2^n} \left(\sum_{j=0}^{M-1} W_{2M,\alpha^{-n}} v_{2j} + \sum_{j=0}^{M-1} W_{2M,\alpha^{-n}} v_{2j+1} \right) \]

and we have the following relation

\[[F_{N,M}]^{\alpha} = \frac{1}{2^n} \left([F_{N,M-1}]^{\alpha} + \sum_{j=0}^{n} [F_{N,M-1}]^{\alpha} \right) \quad (2.3) \]

where \(V \) is the sequence vector corresponding to \(\{V_0, V_1, V_2, \ldots, V_{N-1}\} \), \(V_E \) is the \(M \)th order sequence of even-index \(v_k \)'s \(\{V_0, V_2, \ldots, V_{N-2}\} \) and \(V_O \) is the \(M \)th order sequence of odd-index \(v_k \)'s \(\{V_1, V_3, \ldots, V_{N-1}\} \).

Here we can deduce that

\[W_{M,\alpha}^{-M} = E_{\alpha} \left(-i \left(\frac{2\pi}{M} \right)^{\alpha} (M+1)^{\alpha} \right) \]
\[= E_{\alpha} \left(-i \left(\frac{2\pi}{M} \right)^{\alpha} M^{\alpha} \right) \]
\[= W_{M,\alpha}^{-1} \quad (2.4) \]

and

\[W_{M,\alpha}^{\frac{M+l}{2}} = E_{\alpha} \left(-i \left(\frac{\pi}{M} \right)^{\alpha} (M+1)^{\alpha} \right) \]
\[= E_{\alpha} \left(-i \left(\frac{\pi}{M} \right)^{\alpha} l^{\alpha} \right) \]
\[= W_{M,\alpha}^{-\frac{l}{2}} \quad (2.5) \]

Hence for \(l = 0, 1, 2, \ldots, m-1 \),

\[V_l = \frac{1}{2^n} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{-\theta} v_{2j} - \sum_{j=0}^{M-1} W_{M,\alpha}^{-\theta} v_{2j+1} \right) \quad (2.6) \]
\[= \frac{1}{2^n} \left([F_{M\alpha}]^{\alpha} - W_{M,\alpha}^{-\theta} \right) \quad (2.7) \]

Here, formulas (2.6) and (2.7) contain common elements that can be computed once for each \(l \) and then used to compute both \(V_l \) and \(V_{M+l} \). Hence we can obtain the total number of computations to find all the \(V_l \)'s.

That is to say, this process of increasing levels to our algorithm can be continued to the \(K \)th level provided to \(N = 2^k N_0 \) for some integer \(N_0 \). Moreover, that integer, \(N_0 = 2^{-K} N \) will also be the order of the discrete Yang-Fourier transforms and inverse discrete Yang-Fourier transforms. If \(N = 2^k \), it is this final \(K \)th level algorithm, fully implemented and refined, that is called a fast Yang-Fourier transform of the discrete Yang-Fourier transforms.

3. Fast Yang-Fourier transform of inverse discrete Yang-Fourier transform

In this section we start with the fast Yang-Fourier transform of inverse Yang-Fourier transform. Similarly, suppose that \(\{V_0^{-1}, V_1^{-1}, \ldots, V_{N-1}^{-1}\} \) is the \(N \)th order discrete Yang-Fourier transforms of \(\{V_0^{-1}, V_1^{-1}, \ldots, V_{N-1}^{-1}\} \), starting with the component formulas for the inverse discrete
Yang-Fourier transform, we obtain that, for
\(n=0,1,2,\ldots,N-1 \),
\[
V_n^{-1} = \frac{1}{\Gamma(1+\alpha) N^\alpha} \sum_{k=0}^{N-1} W_{N,\alpha}^{[k]} V_k^{-1}
\]
\[
= \frac{1}{\Gamma(1+\alpha) N^\alpha} \sum_{k=0}^{N-1} W_{N,\alpha}^{[k]} V_k^{-1} + \sum_{k=0}^{N-1} W_{N,\alpha}^{[k]} V_k^{-1}
\]
\[
= \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j}^{-1} + \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
\[
= \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j}^{-1} + \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
and we have the following relation
\[
[F_N^V]_{\alpha} = \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j}^{-1} + \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
where \(V^{-1} \) is the sequence vector corresponding to \(\{ V_0^{-1}, V_1^{-1}, V_2^{-1}, \ldots, V_{N-1}^{-1} \} \), \(V_E^{-1} \) is the \(M - th \) order sequence of even-index \(v_k^{-1} \), \(V_O^{-1} \) is the \(M - th \) order sequence of odd-index \(v_k^{-1} \).

Here we can deduce that
\[
W_{M,\alpha}^{[n]} = E_{\alpha} \left(i^\alpha \left(\frac{2\pi}{M} \right)^\alpha (M+l)^\alpha \right)
\]
\[
= E_{\alpha} \left(i^\alpha \left(\frac{2\pi}{M} \right)^\alpha \right)
\]
\[
= W_{M,\alpha}^{[l/2]}
\]
Hence for \(l = 0,1,2,\ldots,m-1 \),
\[
V_L^{-1} = \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j}^{-1} + \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
\[
= \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(F_{M,\alpha}^{-1} + \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
and
\[
V_{M+l}^{-1} = \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(\sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j}^{-1} - \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
\[
= \frac{1}{\Gamma(1+\alpha) (2M)^\alpha} \left(F_{M,\alpha}^{-1} - \sum_{j=0}^{M-1} W_{M,\alpha}^{[n]} V_{j+l}^{-1} \right)
\]
It is shown that, formulas (2.12) and (2.13) contain common elements that can also be computed once for each \(l \) and then used to compute both \(V_L^{-1} \) and \(V_{M+l}^{-1} \). These can also yield the total number of computations to find all the \(V_n^{-1} \)'s. That is to say, this process of increasing levels to our algorithm of inverse discrete Yang-Fourier transforms is similar to that of the discrete Yang-Fourier transforms. Taking into account the relation \(N = 2^K \), it is also this final \(K^{th} \) level algorithm, fully implemented and refined, that is called a fast Yang-Fourier transform of the inverse discrete Yang-Fourier transforms.

3. Conclusions

In the present letter we suggest the fast algorithm for the discrete Yang-Fourier transform (DYFT), which is a specific kind of the approximation of discrete transform based on the Yang-Fourier transform in fractal space[20, 23]. Here, we call the fast Yang-Fourier transform. Moreover, it is shown that the classical fast Fourier transforms is a special example in fractal dimension \(\alpha = 1 \). Based on the fast Yang-Fourier transform, we may structure a new algorithm for the generalized Fourier transforms in fractal space.

References

[6] A. Carpinteri, B. Chiaia, P. Cornetti, Static-kinematic duality and
the principle of virtual work in the mechanics of fractal media.

[7] A. Carpinteri, B. Chiaia, P. Cornetti, On the mechanics of quasi-
brITTLE materials with a fractal microstructure. Eng. Fract. Mech.,

[8] A. Carpinteri, B. Chiaia, P. Cornetti, A fractal theory for the
235-240.

[14] X. Yang, Local fractional integral transforms. Progress in

Applications, Asian Academic Publisher Limited, Hongkong,
2011.

[16] F. Gao, X.J. Yang, Z. Kang, Local fractional Newton’s method
derived from modified local fractional calculus. In: The 2th
Scientific and Engineering Computing Symposium on

transform based on the local fractional calculus. In: The 2010
International Conference on Electrical and Control Engineering,

[18] X.J. Yang, Local fractional Laplace’s transform based on the local
fractional calculus. Communications in Computer and Information

[19] X.J. Yang, F. Gao, Fundamentals of local fractional iteration of
the continuously non-differentiable functions derived from local
fractional calculus. Communications in Computer and Information

Yang-Fourier transforms of discrete-time fractal signal. [math-
ph]1107.1126v1.

Transform to Local Fractional Equations with Local Fractional
Derivative and Local Fractional Integral, Advanced Materials

[22] X.J. Yang, Local fractional partial differential equations with
fractal boundary problems, Advances in Computational

[23] X.J. Yang, The discrete Yang-Fourier transforms in fractal space,

[24] X.J. Yang, Local fractional partial differential equations with
fractal boundary problems, Advances in Computational

to solution to nonlinear fractional wave equation with fractional
derivative. In: Proc. of the 2011 3rd International Conference on
Computer Technology and Development, ASME, 2011, pp.209-
213.

[26] X.J. Yang, A short introduction to Yang-Laplace Transforms in
fractal space, Advances in Information Technology and

[27] G.S. Chen, Mean value theorems for local fractional integrals on
fractal Space, Advances in Mechanical Engineering and its