Local Fractional Functional Analysis and Its Applications

Yang Xiao-Jun
Local fractional functional analysis is a totally new area of mathematics, and a totally new mathematical world view as well. In this book, a new approach to functional analysis on fractal spaces, which can be used to interpret fractal mathematics and fractal engineering, is presented. From Cantor sets to fractional sets, real line number and the spaces of local fractional functions are derived. Local fractional calculus of real and complex variables is systematically elucidated. Some generalized spaces, such as generalized metric spaces, generalized normed linear spaces, generalized Banach's spaces, generalized inner product spaces and generalized Hilbert spaces, are introduced. Elemental introduction to the Yang-Fourier transform, the Yang-Laplace transform, the local fractional short time transform and the local fractional continuous wavelet transform is presented based on the generalized fractal spaces.
Nonlinear Science Series
非线性科学系列
Nonlinear Science Series

Nonlinear Science Series focuses on recent advances of fundamental theories and principles, analytical and numerical methods in nonlinear science with engineering applications.

Series Editor

Ji-Huan He

National Engineering Laboratory for Modern Silk
College of Textile and Clothing Engineering
Soochow University
P.O. Box 52,199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, China
Emails: hejihuan@suda.edu.cn and jhhe@dhu.edu.cn

To contact the Publisher

The publisher welcomes proposals on books, journals, conference proceedings, journal special issues, etc. Should you have a publishing proposal, please contact, without obligation, the series editor or the publisher.

Asian Academic Publisher Limited 亞洲學術出版社有限公司
Room 3208, Central Plaza, 18 Harbour Road, Wanchai, Hongkong, China
香港灣仔港灣道 18 號中環廣場 32 樓 3208 室
www.nonlinearscience.com AsianAcademicPublisher@gmail.com
This Book is dedicated to my parents, my wife Yu-Min Jin and my son Bo-Yuan Yang for supporting me in all my endeavors.
Acknowledgement

I would like to thank Prof. Ji-Huan He (Editor-in-chief, Nonlinear Science Letters A) and Prof. Feng Gao for proofreading of the manuscript and for their many helpful suggestions. The publication of *Local Fractional Functional Analysis and Its Applications* would not be possible without the decisive supports from Prof. Ji-Huan He. Finally, I should also thank A. M. A. El-Sayed, A. Steve, D.F. M. Torres, F. Mainardi, F. Michal, G. Jumaria, H. Jafari, H. Nasrolahpour, J. A. Tenreiro Machado, M. Bohner, N. Alam Khan, R. Hilfer, R. M. Aron, S. Momani, T. Ratiu, W. Chen for helpful suggestions and continuous support.
Xiao-Jun Yang

Local Fractional Functional Analysis & Its Applications

Asian Academic Publisher Limited
亞洲學術出版社有限公司
Author
Xiao-Jun Yang
Department of Mathematics and Mechanics
China University of Mining & Technology
Xuzhou, Jiangsu, 221008, China
Email: dyangxiaojun@hotmail.com

First Edition: July 25, 2011

ISBN: 978-988-19132-1-0

Copyright © 2011 Asian Academic Publisher Ltd., Room 3208, Central Plaza, 18 Harbour Road, Wanchai, Hongkong, China

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

Printed in Hongkong, China
Preface

This book briefly introduces local fractional functional analysis and its applications to fractal integral transforms and fractal wavelets. It is a good tool for us to do fractal mathematics and engineering with the operators of local fractional derivatives and local fractional integrals. This book attempts to apply knowledge on this topic in the field of fractal mathematics science and fractal engineering and gives a new and mathematically rigorous account of the integral transforms containing Yang-Fourier transforms, Yang-Laplace transforms, local fractional short-time continuous transforms and local fractional wavelets transforms. This book is divided into a number of parts.

Chapter 1 provides basic theory of real line number on fractional sets and proposes the local fractional continuity of non-differentiable functions. The real and complex spaces on fractional sets, the complex conjugation, absolute value, and polar form of a fractional complex numbers are proposed and geometric representation of real line number on fractional sets is discussed. Furthermore, generalized Lebesgue measure, point sets, intervals, countability, neighborhood, limit point, limit of a fractional sequence, bounds, generalized Hausdorff measure and functions on fractional sets are derived. Finally, the theory of local fractional continuity of non-differential functions is discussed and some basic functions on fractional sets are discussed.

In Chapter 2 the fundamentals of the local fractional calculus of real variables are outlined. The chapter begins with the definition of local fractional derivatives and the elementary theory of local fractional derivatives of non-differential functions. Existence of the local fractional integrals is proved and the basic properties and theorems of the local fractional integrals are discussed. To study local fractional differential equations, the concept of the local fractional indefinite integrals is derived. To investigate the total local fractional differentials, local fractional partial derivative, local fractional derivative of high order, and local fractional Jacobian determinant are introduced. Finally, Yang-Taylor series for two-variable functions is obtained.

Chapter 3 introduces the fundamentals of the local fractional calculus of complex variables. With the chapter starts by deriving limit and local fractional continuity of complex functions on fractional sets, the local fractional derivatives, local fractional Cauchy-Riemann equations and local fractional integrals of complex functions. The local fractional Cauchy integrals of complex functions and local fractional Taylor’s series (also called Yang-Taylor series) and local fractional Laurent’s series are also discussed. Lastly, the generalized residue theorems are mentioned. A short outline of local fractional complex analysis is proposed in this chapter.

Chapter 4 derives generalized fractal spaces, such as generalized metric spaces, generalized normed linear spaces, generalized Banach spaces, generalized inner product spaces, and generalized Hilbert spaces. Based on above definitions, we present the completeness of generalized fractal spaces,
and extend contracting mapping theorem and generalized contracting mapping theorem, existence and unique of local fractional differential equation, Banach algebra, Pythagorean theorem and the basic criterion for generalized Hilbert spaces to fractional spaces. We obtain the generalized Holder inequality, the generalized Cauchy-schwarz inequality and the generalized Minkowski inequality and some spaces are discussed.

Chapter 5 derives the local fractional series containing fractional trigonometric and Mattag-Leffter forms. Meanwhile, the properties and theorems of the local fractional series are discussed. Finally, a typical application of local fractional Fourier series to local fractional partial differential equation is discussed.

Chapter 6 introduces the Yang-Fourier transforms derive from local fractional series based on the local fractional calculus. Meanwhile, the properties and theorems for Yang-Fourier transforms are discussed. In addition, Heisenberg uncertainty principles in fractal spaces are investigated. Applications of the Yang-Fourier transforms to local fractional ordinary differential equations and local fractional ordinary differential systems are taken into account. Finally, generalized Yang-Fourier transforms are derived from local fractional calculus and special applications of Yang-Fourier transforms are discussed.

Chapter 7 introduces the Yang-Laplace transforms derived from Yang-Fourier transforms. We derive the properties and theorems for the Yang-Laplace transforms and take into account its applications to local fractional ordinary differential equations, local fractional ordinary differential systems and local fractional partial differential equations.

Chapter 8 studies the local fractional short time transforms, and properties and examples of possible applications.

Chapter 9 derives local fractional continuous wavelet transforms based on Yang-Fourier transforms and theorems for the local fractional continuous wavelet transforms.

This book keeps structure of the journal-like book Local Fractional Integral Transforms, and we add some recent results.

In this book the various transformations are derived step by step in great detail. We hope this book will be a useful tool for all those who use local fractional integral transforms and local fractional continuous wavelet transform in their work whether they are engineers, financial planners, mathematicians and scientists. The book can also provide a first course on an introduction to local fractional functional analysis and its applications to fractal integral transforms and fractal wavelets. Several mistakes and misprints were pointed out to us by a number of people and had been corrected. We want to thank those people for their helpful comments. We welcome comments from our readers.
Contents

Preface..ix

Chapter 1 Preliminaries...1
1.1 Sets..1
1.2 Real line number system...2
1.3 Point sets and intervals on a fractional set..7
1.4 Countability...8
1.5 Neighborhood on a fractional set..8
1.6 Limit point of fractional set..8
1.7 Bounds on the fractional set..9
1.8 Generalized Lebesgue measure on fractional sets..12
1.9 Generalized Hausdorff measure on fractional sets..13
1.10 Functions on fractional sets..15
1.11 Hausdorff Dimension on fractional sets..16
1.12 Limit of functions..17
1.13 Local fractional continuity of functions...18
1.14 Elementary functions on a fractal set..23
1.15 Special functions on a fractal set..26
1.16 Summary...29

Chapter 2 Fundamentals of local fractional calculus of real variables——30
2.1 Introduction to local fractional calculus...30
2.1.1 Introduction ..30
2.1.2 Birth of local fractional calculus...30
2.1.3 Historical development of local fractional calculus...31
2.2 Local fractional derivative..33
2.3 Application of local fractional derivative..40
2.4 Local fractional integral..44
2.5 Local fractional Taylor’s theorem...56
2.5.1 Local fractional Taylor’s theorem..56
2.5.2 Yang-Taylor’s series...58
Chapter 3 Fundamentals of local fractional calculus of complex variables

3.1 Motivation of local fractional calculus of complex variable
3.2 Complex functions on a fractal set
3.3 Limit of complex functions
3.4 Local fractional continuity
3.5 Elementary complex functions
3.6 Local fractional derivatives of complex functions
3.7 Local fractional Cauchy-Riemann equations
3.8 Local fractional integral of complex functions
3.9 Theorems for local fractional integral of complex functions
3.10 Yang-Taylor’s series of complex functions
3.11 Singular point and Poles
3.12 Local fractional Laurent’s series
3.13 Generalized residue Theorems
3.14 Chapter Summary

Chapter 4 Generalized fractal spaces

4.1 Generalized metric spaces
4.2 Generalized normed linear spaces
4.2.1 Generalized linear spaces
4.2.2 Generalized normed linear spaces
4.2.3 Generalized linear operators
4.3 Generalized Banach spaces
4.4 Generalized Banach algebra
4.5 Generalized inner product spaces
4.5.1 Generalized inner product spaces
4.5.2 Some examples for generalized inner product spaces
4.6 Generalized Hilbert spaces
4.7 Fractal orthogonal system .. 138
4.8 Chapter Summary ... 139

Chapter 5 Local fractional Fourier series .. 141
5.1 Motivation of local fractional Fourier series ... 141
5.2 Local fractional Fourier series .. 142
5.3 Properties of local fractional Fourier series .. 144
5.4 Theorems for local fractional Fourier series .. 145
5.5 Expression of local fractional Fourier series .. 155
5.6 Application of local fractional series to local fractional partial equations 157
5.7 Chapter Summary ... 159

Chapter 6 Yang-Fourier transforms .. 160
6.1 Motivation of the Yang-Fourier transforms .. 160
6.2 Yang-Fourier transforms ... 161
6.3 The convolution .. 162
6.4 Theorems for Yang-Fourier transforms ... 163
6.5 The Dirac’s distribution .. 171
6.6 Special functions and their Yang-Fourier transforms .. 174
6.7 Table of local fractional Fourier transforms .. 176
6.8 Heisenberg uncertainty principle for the Yang-Fourier analysis ... 177
6.9 Applications of the Yang-Fourier transforms ... 180
6.9.1 Solution to local fractional ordinary differential equations ... 180
6.9.2 Solution to local fractional ordinary differential equation systems 181
6.10 First generalized Yang-Fourier transforms ... 182
6.11 Second generalized Yang-Fourier transforms ... 187
6.12 Special applications of Yang-Fourier transforms .. 192
6.12.1 Application of Yang-Fourier transforms to local fractional Laplace equation 192
6.12.2 Application of Yang-Fourier transforms to local fractional heat equation 193
6.12.3 Application to Yang-Fourier transform to the sampling theorem 194
6.13 Chapter Summary ... 196

Chapter 7 Yang-Laplace Transforms .. 197
7.1 Motivation of the Yang-Laplace transforms ... 197
7.2 Yang-Laplace transforms ... 198
7·2·1 Yang-Laplace transforms .. 198
7·2·2 Inverse formula of the Yang-Laplace transforms...................................... 198
7·3 Theorems for Yang-Laplace transforms ... 198
7·4 Convolutions .. 203
7·5 The Dirac’s distributions .. 207
7·6 Table of the Yang-Laplace transform of elementary functions 208
7·7 Applications of the Yang-Laplace transforms .. 209
7·7·1 Solution to local fractional ordinary differential equations 209
7·7·2 Solution to local fractional ordinary differential equation systems 210
7·7·3 Solution to local fractional partial differential equations 211
7·8 Chapter Summary .. 213

Chapter 8 Local fractional short time transforms ... 214
8·1 Motivation of local fractional short time transforms 214
8·2 Local fractional short time transforms ... 215
8·2·1 Local fractional short time transforms ... 216
8·2·2 Inverse formula of local fractional short time transforms 216
8·3 Theorems for local fractional short time transforms 216
8·4 Examples for local fractional short time transforms 221
8·5 Chapter Summary .. 221

Chapter 9 Local fractional continuous wavelet transforms 222
9·1 Motivation of local fractional continuous wavelet transforms 222
9·2 Local fractional continuous wavelet transforms .. 224
9·2·1 Local fractional wavelet ... 224
9·2·2 Local fractional continuous wavelet transforms 224
9·2·3 Inverse formula of local fractional continuous wavelet transforms 224
9·3 Theorems for local fractional continuous wavelet transforms 225
9·4 Chapter Summary .. 233
References .. 234