Sandy the Rainmaker: The Electoral Impact of a Superstorm

Yamil R Velez, Stony Brook University
David Martin, Stony Brook University
“Sandy the Rainmaker: The Electoral Impact of a Super Storm”

Yamil Velez, MA

David Martin, MA

Stony Brook University

Abstract:

The arrival of Hurricane Sandy within a week of the 2012 Presidential Election caused unprecedented disruption to the final days of the campaign and Election Day in areas that were affected. The precise impact of the storm on those areas hit hardest was not necessarily clear. Contrary to prior research on the impact of disasters on electoral outcomes, we find that the President’s vote share was ultimately increased in storm-affected areas by about four percentage points, plus or minus two points. While those states most heavily affected were unlikely to give their electoral vote to Romney due to other factors, we present counterfactual analyses that show that such a storm could have had a significant impact on swing states: While the storm only affected some areas, we show that Virginia would likely have turned red were it not hit at all, whereas North Carolina would likely have gone for Obama had it been directly in the storm’s path.
One week away from Election Day 2012, with national polls indicating a closely divided electorate, both Presidential campaigns were forced to suspend public appearances and fund raising efforts in anticipation of a potentially devastating storm. Making landfall in the US on the night of October 28th, Hurricane Sandy left large parts of the northeast with widespread blackouts and flooding. In the end, the storm caused damage estimated to exceed $50 Billion, making it among the largest and most costly hurricanes to hit the United States in a hundred years (Plumer 2012). A disaster of this magnitude, so close to a Presidential election, was unprecedented; no one could be sure what the impact would be on voters’ decision at the polls.

Nevertheless, even before the storm made landfall, political commentators were eager to make a guess. There was no clear consensus. New York Times columnist Frank Bruni ironically summarized the pundits’ conjectures: Sandy could diminish the effect of last-minute advertising because people without power couldn’t see the ads; that is if it didn’t make them more effective because people in disasters tend to consume as much media as they can. The storm could hurt the President’s chances by depressing early voting and election-day turnout; or else it could help him by giving him a chance to ‘look Presidential’ (Bruni 2012). Moreover, it would be difficult to tell if the storm would have any real effect at all: Analyst Nate Silver argued that, with Obama’s fortune having begun to rise prior to the storm, a Romney bounce seen after the first debate fading and elections tending to break toward one candidate at the end of campaigns generally, it was hard to determine how strong an effect the storm would have, if any: the result was ‘overdetermined’ (Silver 2012).

¹For one, the storm was particularly destructive. Adjusting for inflation, population and property values, Sandy was the 6th most costly storm to hit the US since 1900, with 1992’s Andrew being 5th and 2005’s Katrina being second (Plumer 2012). For another, most of the biggest US storms in recent memory were not particularly close to federal general elections. Hurricane Katrina arrived in late August of the first year of George W. Bush’s second term. Mid-term elections were still over a year away. Hurricane Andrew dissipated in late August of 1992, over two months before the general election. It should be noted that 2004 was a busier than normal hurricane season with three major hurricanes (Charley, Ivan and Jeanne) making landfall on the US, but none of these approached the degree of damage as Sandy and they were spread throughout August and September. The total number of fatalities for the 2004 season was significantly lower and the total damage estimate was at or below that for Sandy alone (NOAA 2004). That said, the crucial swing state of Florida was significantly affected in the months prior to the Presidential election.
The existing political science literature is only somewhat helpful in guiding these analyses. While prior work has shown that the electorate tends to punish incumbents who preside over natural disasters (Achen and Bartels 2004a). It has also been suggested that voters reward leaders who intervene in response to disasters (Gasper and Reeves 2011; Reeves 2011). In this particular case, the media and the public appeared to approve of the President, auguring well for him come Election Day. But it was not a foregone conclusion that citizens would blame public utilities or global climate change rather than the incumbent for the extent of the damage and delays in recovery.

We use storm data provided by the Federal Emergency Management Agency (FEMA) to estimate the effect of Hurricane Sandy on President Obama’s share of the popular vote. Comparing affected to unaffected areas, we find that counties affected by the storm voted for the President in greater proportions than those that were not affected. Of course, while storms in themselves do not have preferences for one party or another, some might be more likely to be affected by them than others; for instance, residents of coastal, or low-lying areas that are more prone to flooding. In order to account for these potential biases, we use matching methods to isolate the unique effect of the storm on the 2012 election, net of factors such as median income, prior voting patterns or historical weather damage.

At this point a skeptic may note that the brunt of the storm only affected a handful of states that were safely within the Obama camp. The odds of Connecticut, New York or New Jersey defecting to Romney were quite slim indeed. And yet, these were not the only states that were affected. In some states where the race was particularly close, the impact of the storm could have had substantive consequences for the Electoral College results. By applying our estimate of the storm’s impact to the electoral outcomes in two swing states, we can investigate counterfactual scenarios that could reasonably have occurred had the storm taken a different path. We are able to show that, while only some Virginia counties were affected, absent the hurricane’s effect Obama would likely have lost the state. In the case of North Carolina, another hotly contested race, we find that if all counties were affected by the storm to some degree, the state would have been won by the President rather than going for Romney. In other words, while the fate of the national
election did not hinge on the direct impact of the storm, we find that the advantage to Obama in affected areas was strong enough that it could have potentially swung closely-divided states. In a broader sense, our results provide further evidence of the degree to which events beyond the immediate control of either candidate can drive an election’s results.

Storm Damage and Vote Share

It is worth first considering why a storm should affect vote choice at all. There is a longstanding finding in the literature that voters will be responsive to the actions of the incumbent and reward or punish him or her accordingly (Key 1966). In particular, a large body of work has shown that voters tend to respond to bad economic times with punishment for the parties and incumbents associated with those bad times (Fiorina 1981). Voters have also been shown to punish incumbents for military deaths in wartime (Karol and Miguel 2007), and to punish school boards for falling test scores (Berry and Howell 2007), all of which the average voter is liable to attribute, to some degree, to the competence of political leaders. But, in the case of the national economy, while executives know they will be punished or rewarded based on economic performance, they have limited control over broader trends. And this logic of reward and punishment follows even in situations where it would be essentially impossible to attribute any responsibility to political authorities: for example, voters have been shown to give incumbents a bump when their local college football team is winning (Healy et al 2010). President Wilson appears to have been taken to task at the polls for a series of highly publicized shark attacks off the New Jersey coast that happened on his watch (Achen and Bartels 2004a). And there is evidence that US governors of oil-producing states are punished by voters for swings in international oil prices (Wolfers 2007). So, while voters may base their decisions in the voting booth on their assessments of their collective welfare, they may attribute responsibility to their elected officials for things well above their pay grade.

2 In the medium and long-term. Of course, Presidents may strategically use government spending to artificially boost economic performance prior to elections, or, where institutions allow, to strategically time elections for better economic times (Kayser, 2005)
3 The effect is apparently the same whether the university in question is state-funded or private.
The weather is one such example of a phenomenon that cannot plausibly be said to be under the control of governments\(^4\), yet voters often appear to take this into their consideration as well. Achen and Bartels (2004a), in a study that spans over a hundred years of data from the 48 contiguous US states, find that incumbent Presidents are punished for extremes of weather, either too much or too little rain. Others find similar results (Gasper and Reeves 2011). Arcenaux and Stein find that Houston residents who were more directly affected by flooding from Tropical Storm Allison were more apt to blame local government (2006).

And yet, while political leaders are not responsible for the weather *per se* they are expected to act in its aftermath. In this light, the response to disaster represents an opportunity for citizens to observe the competence of their elected officials as orchestrators of relief. Gasper and Reeves (2011) find that damage from natural disaster is negatively associated with an incumbent governor’s vote share in a given county, but they also show that the governor is rewarded for granting disaster declarations. Healy and Malhotra (2010) also find that the main effect of tornado damage in a county is to diminish the incumbent party’s vote share in a Presidential election, but the effect is contingent on whether a disaster declaration is made. There is no significant relationship between tornado damage and incumbent vote share in those counties where a disaster declaration was made, but a negative relationship when no declaration is made. The authors take this as an indication that those affected by a storm are willing to accept damage that is beyond officials’ control, provided the government has at least taken some action to intervene. Yet, in a separate study, the same authors find that the reward to incumbents for their intervention may not be strictly related to competent governance: incumbents are rewarded for post-disaster spending but not for preparedness spending (Healy and Malhotra 2009). The authors find, specifically, that preparedness spending does not translate to an incumbent’s vote share, only post-disaster relief that comes in the form of direct transfer payments to the individual affected benefit the incumbent. Clearly, the voters have a preference for a ‘pound of cure’ in lieu of

\(^4\)At least in the United States. Despite some proposed legislation to institute a federal agency to promote and research the manipulation of the weather, none have passed (EG, US Congress, 2007). This does happen elsewhere. Most notably, it was widely reported that China seeded clouds to manipulate rainfall around the 2008 Olympics, though there appears to be some scientific dispute as to the technique’s effectiveness (Wade, 2008).
an ‘ounce of prevention,’ and that only when the check is made out directly to the individual in question. So while there is conflicting evidence about whether voters respond negatively to storm damage per se, they are sensitive to intervention by government following disaster. And yet this may not be strictly because of competent handling of the situation by the authorities, rather because a disaster provides the opportunity for voters to reap immediate, tangible and excludable benefits.

The effect of the storm is difficult to predict in part because such catastrophic storms as Sandy are relatively rare, and in such rare events it can be difficult to distinguish idiosyncratic features from broader trends. As Achen and Bartels (2004a) point out, the prevailing narrative surrounding a given incident matters a great deal for its electoral outcome. This narrative will tend to vary by case. For example, in a study of attributions of blame for Hurricane Katrina, Malhotra and Kuo find that partisans are more inclined to blame officials in the opposite party for disaster, but this is in the context of one of the most catastrophic storms in history, in which aging infrastructure built specifically to mitigate flooding failed, among other salient failure of political leadership. That is to say that, in the case of Katrina, the question was not whether to blame, but who. Arcenaux and Stein (2006) find that residents in the Houston area after Tropical Storm Allison caused widespread flooding largely blamed the local government, and the state or federal officials almost not at all – but this again was due to perceived failures in flood management policy set by the county. In this case, those with more information were more likely to correctly identify the county as the body that was responsible for floodplain management (as opposed to the City of Houston), but in this case as well, it seemed like there was a consensus that someone was responsible.

In the case of Sandy, despite widespread damage to one of the most populous metropolitan areas in the US, the public at large appeared to be satisfied with the federal government’s handling of disaster recovery. By all accounts, the public’s assessment of the disaster response was highly positive at all levels of government. In polls during or directly after the storm, broad majorities gave positive ratings to President Obama, FEMA or ‘the federal government’ in their handling of the crisis (EG, ABC News 2012). In a poll of registered New York State voters roughly a month after the storm, a majority gave a positive rating to the
handling of the disaster by President Obama, Governor Andrew Cuomo, New York City Mayor Michael Bloomberg and FEMA (Siena 2012). In roughly the same period, 85% of New Jersey residents gave Governor Chris Christie an A or B letter grade for his handling of the storm (Monmouth 2012). Practically the only people or institutions to receive criticism were the power utilities. Nearly a third of New Yorkers lost power for over a week. Long Island’s utility in particular received blame, leading to high level resignations shortly afterward (Herbert and Harrington 2012). Though previous research has suggested that natural disasters can often hurt incumbents, we believe that Sandy was different. Due to the positive narrative surrounding Obama’s handling of the storm as well the government’s swiftness in providing assistance for disaster-ravaged areas, we believe that Sandy, as the 2012 election’s October surprise, should have given Obama a greater percent of the vote than he otherwise would not have received. In the following sections, we subject this to empirical examination.

Data and Methods

The main purpose of this study is to examine Sandy’s effect on President Obama’s vote share during the 2012 Presidential election. Specifically, we are interested in the electoral impact of the storm passing through a given area. Using data provided by the Federal Emergency Management Agency (FEMA), we construct a dummy variable that denotes whether a given county was affected by Sandy\(^5\). In this case, an area is affected by Sandy if and only if FEMA documented Sandy’s impact on that area. This allows us to group areas into affected and unaffected areas. Data for the 2012 election are taken from Dave Leip’s Atlas of United States Presidential elections. We measure Obama vote share as the percentage of the total vote President Obama received in a given county.

In this study, we assume that being affected by the storm is “as-if” random and thus, the storm can be viewed as a natural experiment. We assume this for two main reasons. First, since the weather is independent of the political system, we can safely rule out the existence of a third variable that affects both the storm and Obama’s general election vote share. The weather has no preference about the people it affects

\(^5\) Storm data can be obtained from the authors upon request.
and thus, being affected by the storm can be considered as independent of individual and aggregate-level characteristics. Second, it is difficult to imagine how individuals or groups could have self-selected into being a part of the affected group. Many of the areas that Sandy hit had never experienced a storm of such magnitude and so they would not have changed their behavior in anticipation of a storm like this. One can make a credible argument that individuals residing in hurricane-prone areas differ from those that do not and thus, the assumption of randomly being affected by the storm is untenable; however, in our case, many of the areas that were affected were far from hurricane-prone. As a Baltimore Sun reporter remarked, Sandy was a “once-in-a lifetime” storm (Wenger 2012).

While we assume that being affected by Sandy is “as-if” random, randomization is not sufficient to generate comparable “treatment” and control groups (Sekhon 2009). Even in controlled experiments, imbalances between treatment and control groups on relevant variables can emerge, since randomization only ensures balance on average (Moore 2012). Even though we consider treatment assignment to be “as-if” random, we do find lack of balance in our sample. Specifically, the areas that were affected by Sandy also happened to be areas that supported Obama during the 2008 election. In 2008, then-candidate Obama received roughly forty-eight percent of the vote in Sandy-affected areas, as opposed to forty percent in unaffected areas. This lack of balance poses a threat to inference by making it difficult to separate the actual effect of Sandy from pre-existing differences between those areas that happened to get hit and those that did not.

To address this problem, we use matching methods to ensure that affected and unaffected areas are comparable on a range of relevant variables. Matching is a non-parametric method that improves balance between groups prior to the estimation of treatment effects by minimizing differences between treatment and control groups in terms of pre-treatment variables (see Sekhon 2009 and Ho et al. 2007 for reviews of the method). Essentially, it is a method of holding variables constant – to borrow the language of ordinary least squares (OLS) regression – but unlike OLS, it does not make any assumptions about how variables are distributed. After implementing the matching procedure, the analyst is left with comparable groups that
mostly differ in terms of whether they were treated or not. Provided that all relevant pre-treatment variables are matched upon, one can arrive at unbiased estimates of treatment effects by calculating a simple difference of means\(^6\).

In this study, we use genetic matching to preprocess our data (see Sekhon 2009 for a more detailed description of the estimator and its desirable properties)\(^7\). Genetic matching uses a genetic algorithm to maximize covariate balance as much as possible given one’s data. Its objective is to find the optimal set of matches that minimizes differences between treated (affected counties) and control cases (unaffected counties) in terms of observed pre-treatment variables, thus ensuring that differences between groups are mainly due to the “treatment” (i.e. Sandy). This approach has been applied to a good deal of notable political science research in recent years (Boyd, Epstein, and Martin 2010; Hopkins 2010; Ladd and Lenz 2009). We implement the technique within the R package MatchIt (Ho et al. 2007). As described earlier, affected and unaffected areas are unbalanced with regard to lagged vote share. Therefore, we match on this variable. In addition to lagged vote share, we match on historical weather damage, median income, percent White, percent Black, percent Hispanic, median age, gender, percent with a college degree, population density, median gross rent, unemployment, and lagged turnout. All of these covariates are measured at the county level. Historical weather damage data are taken from the Spatial Hazards Events Losses Database for the United States (SHELDUS 2011). This variable is measured as the logged average level of property damage from 1960 to 2011 as a result of storm surge\(^8\). Unemployment is measured as the county-level civilian unemployment rate during the month preceding the election. These data are obtained from the Bureau of Labor Statistics (BLS). All other data are either taken from the 2010 Decennial Census or 2010 American Community Survey (ACS).

We begin our analyses by examining the unadjusted effect of Sandy on Obama vote share. Then, to achieve greater balance, we preprocess our data using genetic matching and re-estimate the Sandy effect

\(^6\) It is important to note that matching does not get around the problem of omitted variable bias. When possible, relevant pre-treatment covariates should be included in the matching procedure.

\(^7\) In the supplemental appendix, we provide robustness checks using different matching estimators.

\(^8\) These figures are inflation-adjusted and measured in 2011 dollars.
within the matched sample (see the technical appendix for the R code used to implement the matching procedure). To illustrate the importance of the Sandy effect on the election, we simulate outcomes in two swing states – North Carolina and Virginia – and estimate how Sandy’s presence (or absence) in these areas might have possibly altered the electoral map from what was actually observed after Election Day.

Results

Sandy passed through approximately five hundred counties during its nearly week-long course up the East Coast. As can be observed in Figure 1, its reach extended all the way from the North Carolina coast to parts of Michigan and Ohio. According to assessments made by FEMA’s modeling task force (MOTF; a group of modeling and risk analysis experts that produce damage estimates for natural disasters) Sandy had its greatest impact on New York, New Jersey, Pennsylvania, and Connecticut. How did these affected areas, along with others, react to the storm? Did feelings of frustration motivate voters to punish the incumbent, or was he rewarded at the polls for his handling of the situation? The results in Table 1 give us an indication of how affected areas like these reacted to the storm.

Paying no attention to balance, it appears that President Obama did substantially better in affected areas, receiving about nine percentage points more than in unaffected areas. This effect means little however, since many of the affected areas were likely to go to Obama to begin with. As can be observed in Table 2, Sandy produced comparable groups on a range of key variables. This gives our argument that Sandy can be considered “as-if” random additional credence. However, there are noticeable imbalances between affected and unaffected areas in terms of historical weather damage, Hispanic composition, and lagged vote share. Matching addresses this by providing better balance between the affected and unaffected areas. Matching on variables such as lagged vote share, historical weather damage, and several demographics, we find that President Obama received about a four percent increase, plus or minus two percentage points⁹, in vote share from Sandy.

⁹ That is, plus or minus two standard deviations.
While the storm’s effect was limited to only some states, some of these states are elevated to particular importance by their weight in the Electoral College. Our data are at the county level, thus an analysis at the state level is necessary to determine whether this effect would have been consequential. Obama and Romney’s margins of victory in some of these states were well within this range. To examine how Sandy might have affected the ultimate Electoral College outcome, we estimate counterfactuals for two important swing states – North Carolina and Virginia.

Counterfactual Analyses

North Carolina

Although some storm projection maps had Sandy passing through parts of North Carolina, the storm barely grazed the state as it made its way up to New York. North Carolina was considered to be a toss-up state, with pre-election polls suggesting a knife-edge Romney victory. In their pre-election poll conducted on November 3rd, the polling firm Public Policy Polling (PPP) found both candidates to be tied among likely voters (Jensen 2012a). In order to determine what would have happened if Sandy had veered in the direction of North Carolina, we conduct a counterfactual analysis, simulating 10,000 elections in which Sandy passes through the entire state.

For each unaffected county within each simulation, a random draw from a normal distribution with parameters μ equal to .042 and σ equal to .009 is taken and added to the actual vote share. After every trial of the simulation, Obama’s total vote share in the state is computed. At the end of the simulation, the average county and state-level vote share across simulations is taken. As displayed in the bottom portion of Figure 2, the effect of Sandy passing through North Carolina would have given Obama a slight edge over Romney. Across simulations, the mean vote share for President Obama in North Carolina is 52.1% ± .3%. This suggests that if Sandy would have swung in the direction of North Carolina, Obama would have gained 15 Electoral College votes; augmenting Obama’s victory on Election Day.
While most parts of North Carolina escaped Sandy’s impact, the storm plowed through another swing state – Virginia – and devastated some of its coastline. Polls conducted in mid-October by various firms showed a dead heat in the state, with Romney enjoying a slight advantage (Politico 2012). However, the candidate’s fate started changing toward the end of October. In the week of October 31st – the week that Sandy hit the East Coast – several polling firms began showing a noticeable increase in support for Obama (Politico 2012). Interestingly, a PPP poll conducted as the storm made landfall showed Obama with a three percent lead over Romney (Jensen 2012b).

Virginia

To examine what would have happened if Sandy had not hit Virginia, we conduct another counterfactual analysis to estimate the “absence of Sandy” effect. We follow many of the same simulation procedures we used for North Carolina, except in this case, we take a random draw from a normal distribution with parameters μ equal to .042 and σ equal to .009 and subtract this number from affected areas’ vote share. The average outcomes for these simulations are displayed in Figure 4. As can be seen, removing the Sandy effect from affected areas gives Romney a slight edge over Obama. The mean vote share for Obama across simulations is 47.4% ± 0.3%. Thus, without Sandy’s help, our simulation results suggest that Obama might have lost 13 electoral votes in the “Mother of States”.

Taken together, the primary analysis and simulation results suggest that the Sandy effect was consequential, but not enough to have tipped the election in Obama’s favor. Even if Florida had gone to Romney and Sandy happened to miss all of Virginia and North Carolina, Romney would still have had to have won another swing state. Given the trajectory of the storm, we do not know of any conceivable way that Sandy (or its absence) could have reversed the ultimate outcome of the 2012 election.10

Discussion

10 There are, of course, other ways that Sandy could have affected the election other than through its physical effects; namely, the media’s portrayal of Obama’s handling of Sandy. We do not have data to speak to this, however, and thus leave this question to future researchers.
Based on our analyses, we can confidently conclude that Hurricane Sandy had a net positive effect on President Obama’s share of the vote in the 2012 general election, relative to areas that were not affected. In the grand scheme of electoral campaigns, the average effect is sizeable: roughly four percentage points. We illustrate the substantive consequences of this effect with simulations showing that, absent the effect of Sandy, Obama would have lost Virginia to Romney and, had it been affected across its entire area, North Carolina would have gone to Romney. This is surprising in part because existing research suggests that the main effect of a violent storm is expected to be negative (Achen and Bartels 2004a). In light of polling evidence that the American public looked largely favorably on the role various government institutions played in the disaster recovery – both in areas directly affected by the storm and in the US overall – it makes sense that the electoral response itself wouldn’t be overwhelmingly negative. And yet it is not entirely clear, in this case, why the narrative of this storm was so particularly positive.

We observed a net positive effect of the storm on Obama’s general election vote share, but there are many possible causal mechanisms for this effect that we cannot address in our data, though some seem more likely than others. For one, it has been shown that bad weather should have a negative impact on turnout on Election Day (Gomez et al 2007). Even though the skies had largely cleared in the northeast by then, insofar as turnout is the result of weighing the benefit of voting against its costs (Downs 1957; Riker and Ordeshook 1968), any additional cost should depress turnout. For many voters in areas hit by the storm, these costs came in the form of large scale failures of transit systems, damage to roads, and personal displacement far from their electoral districts. In many cases, the polling places themselves were unable to be opened, resulting in higher levels of confusion as voters were directed to alternate locations. And yet, if one of the effects of the storm was to decrease turnout, this should have had an asymmetrical impact: Republicans tend to benefit from lower turnout (Gomez et al 2007). If this was the case, then that would suggest – as we observed a net increase in vote share in affected counties – that ours is an underestimate of the causal effect of the storm. This only serves to strengthen our argument that the storm had a significant impact on the incumbent President’s vote share.
Another plausible mediator is the effect of diversion of the public’s attention. As Mississippi Governor Haley Barbour said after Romney’s defeat, “Any day in a campaign that wasn’t about the economy or jobs was a good day for Obama” (Memoli 2012). Certainly shifts in the public’s attention to one issue over another can cause people to judge institutions and leaders in a different light than they otherwise would (Iyengar and Kinder 1987). Attention to the storm seemed to crowd out attention to the campaign, and while news about the campaign and the storm were largely reported separately, President Obama was highly visible and widely mentioned in the press in his role as the head of the federal government’s disaster relief effort, while Romney had no similar role to play (Pew 2012). Given that public opinion about the storm was generally quite positive and prevalent, Obama likely benefited not only from the apparent absence of his opponent and the lack of direct challenges to his record, he also probably benefited from greater attention to an issue that was a net positive for him.

Moreover, as exemplified by the notable response of Republican Governor of New Jersey Chris Christie’s ‘embrace’ of the President, normal politics can sometime be disrupted in a crisis, whereby the exigencies of disaster relief may trump partisanship for the moment. At very least it may be expedient for officials to behave as if this is the case. Christie told Fox News host Steve Doucey in response to whether he would receive Governor Romney to tour disaster sites after he had done so with the President, “If you think right now that I give a damn about Presidential politics then you don’t know me” (Fox News 2012). Comedy news commentary program the Daily Show aired a segment (unironically) titled “A Daily Show Tribute to Institutional Competence” in which the host explicitly credited a lack of “partisan gamesmanship” for the seemingly uncanny ability of government agents at all levels to respond as they should (Daily Show 2012).

The above notwithstanding, media effects such as these likely affected the nation as a whole. In this study, the objective is to estimate the unique causal effect of the storm, comparing those areas where the storm was present with those where it was not. Assuming the media environment was similar in one area compared to another, this diversion likely occurred uniformly across the nation. However, it may be the case that local news outlets in areas more heavily affected by the hurricane covered it more heavily, resulting in a
stronger diversion effect. Also, during times of crisis when they are more anxious or fearful, individuals tend to pay greater attention to relevant political phenomena (Marcus and Mackuen 1993) and so it may have been that those in affected areas not only received different news coverage, but were exposed to more of it. This is not a question that can be addressed by our data and would be a worthwhile avenue for further research.

And while there are many other plausible mediators of the effect we observe, a third major mechanism may simply be the one implied by much of the prior literature: the active intervention of the government. Some of previous work (EG, Healy and Malhotra 2009; Chen 2008) stresses that part of the electoral benefit of a disaster is that it provides an opportunity for governments to dispense pork to their favored constituents. Whether or not citizens otherwise observe the signs of competence from their government in response to a disaster, a check in the mail may go a long way to winning their support. In this particular case though, this was likely not a large factor. Given the short period of time from the hurricane making landfall to Election Day, citizens would have been unable to apply, be approved and receive individual grants from FEMA in any large numbers. Still, this does not mean that individuals did not receive direct services from government agencies of a non-monetary nature.

Obviously government agencies are highly visible during disasters in a way that they are not at other times. Citizens receive frequent advisories from local authorities; they may seek help from first responders or disaster relief agencies; or they may simply see them in a helping capacity on the news. Salient events can have a profound effect on support for government generally, and specific officials in particular, in part because some aspects of government become more salient than others. During times of international security crisis, individuals will tend to associate ‘government’ and its leaders with the military, whereas at other times the idea of ‘government’ conjures up more divisive social welfare policies, taxation, bureaucracy, partisan gridlock, etcetera and their trust in government will change accordingly (Hetherington and Husser 2012). Indeed, in the aftermath to the storm, candidate Romney found himself needing to backpedal on earlier statement he had made about returning the functions of FEMA to the states (EG, Mehta and Hennessey 2012) while support for the federal government’s emergency response was high (ABC News 2012). In short, by seeing
government agencies in action and otherwise displaying competence, citizens might attribute this competence to the incumbent President’s administration, or at least associate it with his office in a more general sense. Future research should investigate the potential causal mechanisms of this storm to determine the unique contribution of these various factors to the effect that we estimate.

If nothing else, this study serves as a reminder of the degree to which the outcome of electoral contests can be the result of unanticipated events beyond the control of either campaign. In the case of Governor Romney, the storm presented him with a situation in which he had little visibility and was unable to forcefully make his case in the week leading up to the election. As for Obama, it gave him an opportunity to showcase his role as leader of a competent federal administration that was capable of providing crucial services to a public in need. Insofar as voters weigh recent information more heavily than evidence from the past (Achen and Bartels 2004b), this necessarily can alter the result of a close election. While election results are the outcome of any number of factors, and the storm was unlikely to change the ultimate result at the national level, such events do have the power to change voting behavior in meaningful ways.
References

Moore, R.T. 2012. “Multivariate Continuous Blocking to Improve Political Science Experiments.” *Political Analysis (Forthcoming).*

Figure 1. Map of Areas Affected by Sandy. **Note:** Data were obtained from the FEMA Modeling Taskforce (MOTF) and plotted using the ArcGIS Javascript API.

TABLE 1. The Effect of Sandy on County-Level Obama Vote Share

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>95% Confidence Intervals</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy Effect (Not Matched)</td>
<td>.09</td>
<td>.07</td>
<td>.10</td>
<td>.000</td>
</tr>
<tr>
<td>Sandy Effect (Matched)</td>
<td>.04</td>
<td>.02</td>
<td>.06</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: Estimate is the difference in mean Obama vote share for affected versus unaffected areas. Estimate for the matched sample is computed after using Genetic Matching (Sekhon 2009). Confidence intervals are calculated using Hodges-Lehmann interval estimation.
TABLE 2. Balance Before and After Matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Before Matching</th>
<th></th>
<th></th>
<th>After Matching</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Affected</td>
<td>Unaffected</td>
<td>Affected</td>
<td>Unaffected</td>
<td></td>
</tr>
<tr>
<td>Distance</td>
<td>0.44</td>
<td>0.11</td>
<td>0.44</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Historical Weather Damage</td>
<td>5.78</td>
<td>1.7</td>
<td>5.78</td>
<td>6.21</td>
<td></td>
</tr>
<tr>
<td>Obama Vote Share 2008</td>
<td>0.48</td>
<td>0.4</td>
<td>0.48</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Median Income</td>
<td>48997</td>
<td>43097</td>
<td>48997</td>
<td>47475</td>
<td></td>
</tr>
<tr>
<td>Percent White</td>
<td>83.36</td>
<td>77.66</td>
<td>83.36</td>
<td>83.87</td>
<td></td>
</tr>
<tr>
<td>Percent Black</td>
<td>8.85</td>
<td>8.83</td>
<td>8.85</td>
<td>7.98</td>
<td></td>
</tr>
<tr>
<td>Percent Hispanic</td>
<td>4.19</td>
<td>9.16</td>
<td>4.19</td>
<td>4.37</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>41.08</td>
<td>40.22</td>
<td>41.08</td>
<td>40.97</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>50.47</td>
<td>49.97</td>
<td>50.47</td>
<td>50.43</td>
<td></td>
</tr>
<tr>
<td>Pct. College Degree</td>
<td>13.48</td>
<td>12.36</td>
<td>13.49</td>
<td>12.91</td>
<td></td>
</tr>
<tr>
<td>Population Density</td>
<td>0.012</td>
<td>0.002</td>
<td>0.012</td>
<td>0.009</td>
<td></td>
</tr>
<tr>
<td>Median Gross Rent</td>
<td>724</td>
<td>603</td>
<td>724</td>
<td>705</td>
<td></td>
</tr>
<tr>
<td>Unemployment</td>
<td>6.96</td>
<td>7.08</td>
<td>6.96</td>
<td>6.97</td>
<td></td>
</tr>
<tr>
<td>Turnout 2008</td>
<td>0.61</td>
<td>0.57</td>
<td>0.62</td>
<td>0.60</td>
<td></td>
</tr>
</tbody>
</table>

Note: Entries are means for each group.
Figure 2. Top panel shows the actual 2012 election results for each county in North Carolina. Counties depicted in red were won by Mitt Romney, those depicted in blue were won by Barack Obama. The bottom panel displays the simulation results. Light blue counties are those counties that would have gone to Barack Obama had Sandy affected them. The two bar plots below each map depict the total state-level vote share for each candidate. Error bars are 95% CI. Quantum GIS 7.0 was used to produce the maps, while Excel 2010 was used to produce the accompanying bar plots.
Figure 3. Top panel shows the actual 2012 election results for each county in Virginia. Counties depicted in red were won by Mitt Romney, those depicted in blue were won by Barack Obama. The bottom panel displays the simulation results. Light red counties are those counties that would have gone to Mitt Romney had Sandy affected them. The two bar plots below each map depict the total state-level vote share for each candidate. Error bars are 95% CI. Quantum GIS 7.0 was used to produce the maps, while Excel 2010 was used to produce the accompanying bar plots.
Appendix

TABLE 1. R Code for Main Analyses

```r
library(MatchIt)
library(exactRankTests)

load("~/Data.RData")

# Difference in means for unadjusted sample
diff.1 <- mean(all.data$dv[all.data$t == 1]) - mean(all.data$dv[all.data$t == 0])
se.1 <- wilcox.exact(all.data$dv[all.data$t == 0], all.data$dv[all.data$t == 1], conf.int = TRUE)

m.out <- matchit(t ~ log.damage + obama2008 + income + white + black + hispanic + age +
female + petcollege + popdensity + rent + unemp + turnout2008, method = "genetic", data =
all.data, pop.size = 1000)

m.data <- match.data(m.out)

# Difference in means for adjusted sample
diff.2 <- mean(m.data$dv[m.data$t == 1]) - mean(m.data$dv[m.data$t == 0])
se.2 <- wilcox.exact(main.data$dv[main.data$t == 0], main.data$dv[main.data$t == 1], conf.int =
TRUE)
```

TABLE 2. R Code for Simulations

```r
# Load the data
load("~/Data.RData")

actual.vote.share.NC <- defactor(all.data$dv[all.data$V2 == "26"])
total.votes.NC <- defactor(all.data$totalvote2012[all.data$V2 == "26"])
t.NC <- all.data$t[all.data$V2 == "26"]
t.VA <- all.data$t[all.data$V2 == "44"]
sim.vote.share.NC <- actual.vote.share.NC
sim.vote.share.VA <- actual.vote.share.VA
state.vote.share.NC <- NA
state.vote.share.VA <- NA
trials <- 10000

for (i in 1:trials) {
  sim.vote.share.NC[i] <- actual.vote.share.NC[i] + rnorm(length(actual.vote.share.NC[i]), .0421, .009)
  state.vote.share.NC[i] <- sum(sim.vote.share.NC[i] * total.votes.NC[i]) / sum(total.votes.NC[i])
  counties.vote.share.NC[,i] <- sim.vote.share.NC[i]

  sim.vote.share.VA[i] <- actual.vote.share.VA[i] - rnorm(length(actual.vote.share.VA[i]), .0421, .009)
  state.vote.share.VA[i] <- sum(sim.vote.share.VA[i] * total.votes.VA[i]) / sum(total.votes.VA[i])
  counties.vote.share.VA[,i] <- sim.vote.share.VA[i]
}
```
<table>
<thead>
<tr>
<th>Sandy Effect (Nearest Neigh.)</th>
<th>Estimate</th>
<th>95% Confidence Intervals</th>
<th>p</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandy Effect (Optimal)</td>
<td>.03</td>
<td>.01</td>
<td>.04</td>
<td>.000</td>
</tr>
<tr>
<td>Sandy Effect (Full)</td>
<td>.09</td>
<td>.07</td>
<td>.10</td>
<td>.000</td>
</tr>
<tr>
<td>Sandy Effect (CEM)</td>
<td>.02</td>
<td>.001</td>
<td>.040</td>
<td>.026</td>
</tr>
</tbody>
</table>

Note: Estimate is the difference in mean Obama vote share for affected versus unaffected areas. Estimates for matched samples are computed using MatchIt. See Ho et al. 2007 for information on each estimator. Confidence intervals are calculated using Hodges-Lehmann interval estimation. Main results for the counterfactuals hold for each of these estimates.