Skip to main content
Mechanical confinement: An effective way of tuning properties of piezoelectric crystals
Advanced Functional Materials
  • Mie Marsilius, Technische Universität Darmstadt
  • Josh Frederick, Iowa State University
  • Wei Hu, Iowa State University
  • Xiaoli Tan, Iowa State University
  • Tosten Granzow, Technische Universität Darmstadt
  • Pengdi Han, H.C. Materials Corporation
Document Type
Publication Date
Using <001>-oriented Pb(Mg1/3Nb2/3)O3–PbTiO3 ferroelectric single crystals as a model material, the impact of mechanical confinements on polarization hysteresis, coercive field, and remanent polarization of relaxor-based piezocrystals is investigated. Comparative studies are made among rhombohedral and tetragonal single crystals, as well as a polycrystalline ceramic, under uniaxial and radial compressive pre-stresses. The dramatic changes observed are interpreted in terms of the piezoelectric effect and possible phase transitions for rhombohedral crystals, and ferroelastic domain switching and the piezoelectric effect for tetragonal crystals. Under radial compressive stresses, the coercive field for the rhombohedral crystal is observed to increase to 0.67 kV/mm and that for the tetragonal crystal is increased to 0.78 kV/mm. This is a 200% increase relative to the unstressed condition. The results demonstrate a general and effective approach to overcome the drawback of low coercive fields in these relaxor-based ferroelectric crystals, which could help facilitate widespread implementation of these piezocrystals in engineering devices.

This is the accepted version of the following article: Advanced Functional Materials 22, 797-802 (2012). DOI: 10.1002/adfm.201101301, which has been published in final form at

Copyright Owner
Marsilius, et al.
File Format
Citation Information
Mie Marsilius, Josh Frederick, Wei Hu, Xiaoli Tan, et al.. "Mechanical confinement: An effective way of tuning properties of piezoelectric crystals" Advanced Functional Materials Vol. 22 Iss. 4 (2012) p. 797 - 802
Available at: