Skip to main content
Article
In situ TEM study on the microstructural evolution during electric fatigue in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic
Journal of Materials Research
  • Hanzheng Guo, Iowa State University
  • Xiaoli Tan, Iowa State University
  • Shujun Zhang, Pennsylvania State University
Document Type
Article
Publication Date
8-28-2014
DOI
10.1557/jmr.2014.228
Abstract

In this work, we report an experimental technique with nanometer resolution to reveal the microstructural mechanism for electric fatigue in ferroelectrics. The electric field in situ transmission electron microscopy (TEM) was used to directly visualize the domain evolution during the fatigue process in a 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic. The structure–property relationship was well demonstrated by combining the microscopic observations with corresponding dielectric, piezoelectric, and ferroelectric properties measured on bulk specimens. It was found that the domain switching capability was substantially suppressed after 103 cycles of bipolar fields, leading to an immobilized domain configuration thereafter. Correspondingly, a pronounced degradation of the functionality of the ceramic was manifested, accompanying with a coercive field bumping and polarization current density peak broadening. The reduction of the polarization, dielectric constant, and piezoelectric coefficient were found to follow a power-law relation. Seed inhibition mechanism was suggested to be responsible for the observed fatigue behaviors.

Comments

This article is from Journal of Materials Research (2014): 1, doi:10.1557/jmr.2014.228. Posted with permission.

Copyright Owner
Materials Research Society
Language
en
Date Available
2015-08-28
File Format
application/pdf
Citation Information
Hanzheng Guo, Xiaoli Tan and Shujun Zhang. "In situ TEM study on the microstructural evolution during electric fatigue in 0.7Pb(Mg1/3Nb2/3)O3–0.3PbTiO3 ceramic" Journal of Materials Research (2014) p. 1 - 9
Available at: http://works.bepress.com/xiaoli_tan/44/