Skip to main content
Article
Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3
Physical Review B
  • Hanzheng Guo, Iowa State University
  • Brian K. Voas, Iowa State University
  • Shujun Zhang, Pennsylvania State University
  • Chao Zhou, Xi'an Jiaotong University
  • Xiaobing Ren, Pennsylvania State University
  • Scott P. Beckman, Iowa State University
  • Xiaoli Tan, Iowa State University
Document Type
Article
Publication Date
7-1-2014
DOI
10.1103/PhysRevB.90.014103
Abstract

The microstructural origin of the exceptionally high piezoelectric response of polycrystalline 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 is investigated using in situ transmission electron microscopy, in addition to a wide variety of bulk measurements and first-principles calculations. A direct correlation is established relating a domain wall-free state to the ultrahigh piezoelectric d33 coefficient in this BaTiO3-based composition. The results suggest that the unique single-domain state formed during electrical poling is a result of a structural transition from coexistent rhombohedral and tetragonal phases to an orthorhombic phase that has an anomalously low elastic modulus. First-principles calculations indicate that incorporating Ca2+ and Zr4+ into BaTiO3 reduces the differences in structure and energy of the variant perovskite phases, and 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3 is identified as unique because the variant phases become almost indistinguishable. The structural instability and elastic softening observed here are responsible for the excellent piezoelectric properties of this lead-free ceramic.

Comments

This article is from Physical Review B 90 (2014): 1, doi:10.1103/PhysRevB.90.014103. Posted with permission.

Copyright Owner
The American Physical Society
Language
en
Date Available
2014-12-04
File Format
application/pdf
Citation Information
Hanzheng Guo, Brian K. Voas, Shujun Zhang, Chao Zhou, et al.. "Polarization alignment, phase transition, and piezoelectricity development in polycrystalline 0.5Ba(Zr0.2Ti0.8)O3−0.5(Ba0.7Ca0.3)TiO3" Physical Review B Vol. 90 (2014) p. 1 - 10
Available at: http://works.bepress.com/xiaoli_tan/42/