Skip to main content
Article
Predicting the Hydrogen Pressure to Achieve Ultralow Friction and Diamondlike Carbon Surfaces from First Principles
Applied Physics Letters
  • Haibo Guo
  • Yue Qi
  • Xiaodong Li, University of South Carolina - Columbia
Publication Date
6-16-2008
Document Type
Article
Abstract

Hydrogen atmosphere can significantly change the tribological behavior at diamond and diamondlike carbon (DLC) surfaces and the friction-reducing effect depends on the partial pressure of hydrogen. We combined density functional theory modeling and thermodynamic quantities to predict the equilibrium partial pressures of hydrogen at temperature T, PH2 (T), for a fully atomic hydrogen passivated diamondsurface. Above the equilibrium PH2 (T), ultralow friction can be achieved at diamond and DLC surfaces. The calculation agrees well with friction tests at various testing conditions. We also show that PH2 (T) increases with temperature; therefore, the temperature effect observed in friction tests should first be treated as an equilibrium factor rather than a kinetic factor.

Citation Information
Haibo Guo, Yue Qi and Xiaodong Li. "Predicting the Hydrogen Pressure to Achieve Ultralow Friction and Diamondlike Carbon Surfaces from First Principles" Applied Physics Letters Vol. 92 Iss. 24 (2008) p. #241921
Available at: http://works.bepress.com/xiaodong_li/27/