Skip to main content
Presentation
Ranking social emotions by learning listwise preference
Faculty of Informatics - Papers (Archive)
  • Qishen Wang
  • Ou Wu
  • Weiming Hu, Institute of Automation, Beijing, China
  • Jinfeng Yang
  • Wanqing Li, University of Wollongong
RIS ID
54651
Publication Date
1-1-2011
Publication Details
Wang, Q., Wu, O., Hu, W., Yang, J. & Li, W. (2011). Ranking social emotions by learning listwise preference. First Asian Conference on Digital Object Identifier (pp. 164-168). USA: IEEE.
Abstract

Abstract-Emotion modeling has received a great attention in recent years. This paper models the online social emotions that are the online users' emotional responds when they are exposed to news articles. Specifically, we rank social emotion labels for online documents. Unlike the existing method, referred to as Pair-LR, which learns pairwise preference and adopts binary classification, we address the problem of ranking social emotions by learning listwise preference. In particular, a novel approach, referred to as List-LR, is proposed to learn a ranking model for social emotion labels of online documents by minimizing the listwise loss defined on instances. Empirical experiments show that the proposed approach outperforms Pair-LR and is also competitive to other two start-of-the-art approaches for label ranking.

Citation Information
Qishen Wang, Ou Wu, Weiming Hu, Jinfeng Yang, et al.. "Ranking social emotions by learning listwise preference" (2011) p. 164 - 168
Available at: http://works.bepress.com/wli/20/