Painting the Fence: Social Norms as Incentives To Non-Automotive Travel Behavior

Author:
William Riggs (Corresponding)
Department of City and Regional Planning
College of Architecture and Environmental Design
California Polytechnic State University
1 Grand Ave.
San Luis Obispo, CA 93405
Phone: +1 (805) 756-6317,
Email: wriggs@calpoly.edu

Keywords: travel behavior, social incentives, behavioral psychology, transportation demand management

Words: 4,900
Abstract

Research exploring the behavioral dimensions that drive travel (Carrel, Ekambaram, Gaker, Sengupta, & Walker, 2012; Dugundji & Walker, 2005; Jariyasunant et al., 2015) has shown that social and psychological forces often play a role equal to price and economic levers (Ariely, 2008; Heyman & Ariely, 2004; Lin & Wang, 2014; Riggs, 2014, 2015; William Riggs & Kuo, 2015; Riggs & Kuo, 2014; Sherwin, Chatterjee, & Jain, 2014). Yet, more work is needed to evaluate how market vs. social nudges work together to influence transportation decisions. For this study, roughly 500 participants were offered differing incentives in four identical trials. These randomly assigned incentives included various monetary amounts, a free gift, or a social nudge tapping into altruistic values (in this case, benefits to the environment). After tests for homogeneity, the results showed the social nudge had a high degree of effectiveness, when compared to both the financial incentives and gifts. Furthermore, the results indicated that mixing market and social norms caused both to be less effective. These findings suggest that fiscal incentive programs used to influence travel decisions may be lacking. In fact, this research suggests a focus on social norms and value provides alternative tools to facilitate greater changes in travel behaviors that nudge individuals to more healthy and climate-sensitive modes of travel.

Keywords: travel behavior; social incentives; behavioral psychology; transportation demand management
Introduction

In the classic Mark Twain tale *Tom Sawyer*, Tom convinces his friends to paint his fence for the sheer joy of it, illustrating a key principle of modern behavioral economic theory—that social forces and self-interest also play a role in market decisions. A significant body of work illustrates that traditional market economics often fail to represent the complexity of decisions. As a result, planners who study transportation are trying to understand this complexity (Batty, 2007; Batty & Torrens, 2001). Nevertheless, little work has focused on how markets fail to deal with complex transportation decisions as they relate to demand management (TDM) programs, which work to encourage people to decide to walk, bike or take transit—alternatives sometimes considered more ‘painful’ than driving and parking.

The ability to influence transportation behavior offers an opportunity to address societal issues of inflection, such as congestion and air quality, as well as public health issues like obesity. In response, this study focuses on market or social nudges to influence transportation decisions and behavior.

There is a significant gap in the literature on the interplay between market and social factors in travel behavior. Research suggests that social forces may play an equal or paramount role to price / economic levers (Riggs, 2014, 2015; Riggs & Kuo, 2015; Riggs & Kuo, 2014). Other work suggests that route-related built environment issues may trump many of these factors (Cervero & Duncan, 2003; R. Ewing & Cervero, 2010; Reid Ewing & Cervero, 2001; Forsyth, Hearst, Oakes, & Schmitz, 2008). More work is needed to expand and validate both the understanding of pricing impacts and the potential environmental benefit of behavioral nudge programs, as they relate to documented correlations between the built environment, active travel

This research evaluates the success of various market vs. social incentives on changes in active transportation habits (e.g. those taken via biking, walking and transit). The researcher evaluates the literature spanning the fields of transportation and behavioral economics, then lays out the methodological approach, with a particular interest in the relationship of social norms to market decisions. This is followed by a discussion of results focusing on the behavioral psychology that drives choices when travelers are presented a certain type of randomly assigned incentive. Conclusions and broader implications focus on the theoretical and practical implications for transportation policy and travel behavior research.

Literature

Research has shown that travel choice is tied to both market and social norms. This relates to active modes like walking and biking, as well as driving and parking a vehicle. Such behavior is personal and relates to personal health, as well as the environmental sustainability and social capital of communities. Studies have shown the health benefits of active transportation for residents of dense, urban and connected environments (Cervero & Duncan, 2003; Cervero & Kockelman, 1997; R. Ewing, 2005; R. Ewing, Schmid, Killingsworth, Zlot, & Raudenbush, 2003; Frank et al., 2004, 2005; Glazier et al., 2014; Handy, Cao, & Mokhtarian, 2005, 2006; Saelens et al., 2003; Sallis & Glanz, 2006; Sturm & Cohen, 2004). Connected environments can also create economically resilient communities (Gilderbloom, Riggs, & Meares, 2014; Glaeser, 2008). However, this type of environment is not the case in many communities across the US (Sallis, Frank, Saelens, & Kraft, 2004), especially in locations that are rural or poor.
Given the fact that rich and poor communities differ in how walkable and bikeable they are, many have suggested ‘complete streets’ policies as a means to reshape urban streetscapes, which includes designs to accommodate and prioritize pedestrians and cyclists (de Zeeuw & Flusche, 2011). Yet, this trend is not pervasive. Larger cities, like San Francisco and New York, have implemented policies that promote active transportation, in contrast to smaller, poorer communities without similar policies (Lillis, 2013; S. Peters, 2012; Seskin & McCann, 2012). California, for example, recently passed California’s Complete Streets Act (2008); however, its implementation is limited to new projects and plans, does not require a baseline Level of Service (LOS) for bicycles and pedestrians in plans and designs, and does not control land use decisions necessary for success.

Integrating facilities for bicycling and walking is not easy or straightforward in smaller and poorer communities, where there is less funding and fewer projects. In some of these locations, installing sidewalks near a local school would do little to promote walking, since there is no housing within the proximity, due to land use and zoning. Schools and businesses are often isolated from residential areas, presenting a structural constraint to environmental and behavioral health interventions. Studies have shown that environmental design alone is not the ‘silver bullet’ in influencing healthy behaviors (Forsyth et al., 2008).

Limited work has studied market and social norms as well as completive interactions, via technology, related to personal travel. Stanford University has a piloted market and social nudge program that uses a prize system, with chances to win a large prize, to encourage off-peak travel and reduce congestion (Green, 2007; Mandayam & Prabhakar, 2014; Merugu, Prabhakar, & Rama, 2009). Preliminary results indicate substantial influence on congestion and parking supply
dynamics (Hu et al., 2014); however it is unclear if any individuals changed to non-automotive or active transportation modes as a result of the program (Zhu et al., 2015).

While built environment factors play a role in active travel behavior, policy and incentives play a key role in transportation decisions. Research has shown that transportation choice is tied to market and social factors, as well as to public policies (Brock & Durlauf, 2003; Dugundji & Walker, 2005; Marchal & Nagel, 2005); yet, the interrelationship between these forces remains under-explored, along with other influencers like competition and gaming, especially in the face of new technology and mobile proliferation. Policies and incentives can encourage or deter driving behaviors and influence auto ownership (Guo, 2013; Shoup, 2005; Weinberger, Seaman, & Johnson, 2008). Some communities use a ‘carrot’ approach, offering incentives such as free transit passes, cash back (‘cash-out’) parking programs or social media nudge tools (Carrel et al., 2012) to reward alternatives to driving (Riggs & Kuo, 2015). Other communities prefer to use the ‘stick’ approach, charging high prices for parking, tolls, or usage fees (sometimes called cordon).

The appropriate balance between ‘carrot’ and ‘stick’ approaches is when the optimal consumption of the resource (e.g. roads, parking, etc.) makes the price equal to the marginal cost (P=MC). Some research suggests that the ‘stick’ approach is economically inefficient (McShane & Meyer, 1982; J. R. Peters & Gordon, 2009). Other work shows that mixing market norms—the ‘stick’ norms (like parking pricing) with social norms (like gifts or asking something to do something out of courtesy for others)—can cause confusion, so that individuals default to market norms and their respective price anchors (Amir et al., 2005; Ariely, 2008; Heyman & Ariely, 2004). This is supported by work in behavioral psychology and Fiske’s relational theory, which establishes four dimensions of social relationships: communal sharing or “we-ness” (CS);
authority ranking (AR); equality matching (EM); and, market pricing (MP) (Aggarwal, 2004; Fiske, 1992).

Many residential and downtown areas, and university and corporate campuses, face exaggerated challenges as employment hubs, because they cannot maintain adequate parking supply. Consequent to their focus on car travel, rather than non-automotive travel, employers cannot meet access demands of their respective communities. The failure to encourage non-automotive or active transportation, while supporting auto-mobility, works in opposition to public health efforts to increase activity through travel and generates high fiscal and environmental costs (Deakin, 2001; Deakin et al., 2004). Expanding urban campuses, in particular, must balance the adequate provision of parking with land constraints and increased vehicle trips to campus (Tudela-Rivadeneyra, Shirgaokar, Deakin, & Riggs, 2015). Major public institutions must find ways to balance parking supply with sustainability goals and rising budget constraints.

Travel behavior is complex. Knowledge and attitudes toward transit and driving, self-image and travel alternatives play a role in transportation behavior. Prior experience and habit also affect transportation mode choice decisions, and shape the responses to travel alternatives (Akerlof, 1997; Claisse & Rowe, 1993; Helbing & Molnár, 1995; Schlich & Axhausen, 2003). For many travelers, the trip to work is not a straightforward home-work-home round trip, but linked to other activities— running errands, dropping off or picking up household members and shopping.

The complexity of transportation behaviors often makes simple mode choice models misleading. For example, a choice that looks feasible,—the home to work trip,— may be impractical when one considers the overall pattern of behavior. A Trans-Theoretical Model of
behavior recognizes that individual behavior is in a state of change (DiClemente & Prochaska, 1998). In addition, recent work has suggested that market and social incentives, such as those via mobile frameworks, may have greater effects on some individuals. (Carrel et al., 2012; Dugundji & Walker, 2005). One might hypothesize that social incentives providing a ‘carrot,’ rather than a ‘stick,’ might be more effective in encouraging driving alternatives.

The global proliferation of mobile technology has added a tool for influencing behavior.¹ This mobile framework allows for companies and researchers to use location based information about trips, stemming from applications on individual-user iPhone or Android smartphones. The ability to know and disseminate location-based information, including trips, travel time, money spent, activities conducted, etc., has created the idea of the “quantified self” (Carrel et al., 2012). Information collected from mobile technology is now used to influence behavior in other fields,² and has begun to be used in transportation behavioral research.

Using social norms and cues to nudge users is more than a marketing trend. It has been an effective tool for behavior change and social impact. For example, Shape Up, a social exercise game, claims to have helped 700,000 people lose 1 million pounds. PayOff, a debt-management game, claims to have helped players pay off $41 million of debt. OPower, a social energy conservation game, claims to have reduced energy consumption by 1.6 billion kilowatt hours. There are over 34 computer and video games designed to improve health and physical education, each found to have positively influenced young peoples’ knowledge, skills, attitudes, and behaviors in relation to health and physical exercise (Papastergiou, 2009).

¹ In May 2013 the Pew Research Center reported that 91% of American adults had access to a cell phone and 56% had a smartphone.
² Examples of this type of self-tracking of data to influence behavior are found in companies like Mint (personal finance), Nike+ (run calculator & tracker), Zeo (sleep patterns), Calorie Counter (caloric intake), RescueTime (time use), etc.
Methodology

This research operates as a preliminary pilot study of travel behavior, using market vs. social norms. As a part of an incentive pilot, offered as a part of an annual campus transportation survey at CalPoly, San Luis Obispo (CalPoly), a series of incentives were offered based on the following question: How do price and other incentives work together to influence driving/parking behavior? Consistent with experimentation research by Heyman and Ariely (2004), a cohort-based treatment group trial was devised with the hypothesis that, all things being equal, social norms have an equal or greater pull on behavior than market norms, and social incentives better influence individuals to travel via ‘painful’ non-automotive, active travel modes such as walking and biking.

The approach of using a campus travel survey to test pricing and travel habits is well founded in the literature, as many campus environments, especially in the Western United States, have worked with academics in an experimental setting to design programs that influence travel habits, including UCLA, Berkeley, Stanford and University of Washington (Deakin et al., 2004; Riggs, 2014; Riggs, Marthinsen, Mcdougall, & Siegman, 2011; Shoup, 2005; Williams & Petrait, 1993; Zhou & Schweitzer, 2011).

The CalPoly campus has a campus population of roughly 23,000, is the largest employer in its county, and occupies a large share of San Luis Obispo, a small city with a population of 46,400. The campus has ample surface parking that has, until recently, limited the need for more aggressive alternative transportation programs. The current monthly permit system requires payment up-front for ‘all-you-can eat’ monthly parking that is priced below market rates. Based on this, prices are low, demand is high, and the daily decision on commute alternatives is embedded into a single sweeping parking permit decision. Yet, there is a growing recognition
that transportation plays a large role in the campus’ functionality in terms of trips generated and accessibility. At the same time, transportation poses land use, sustainability, and cost challenges. The Calypol campus is an urban environment with constraints on space and budget. It currently does not have a robust, clearly established transportation demand management (TDM) program.

Figure 1. Balancing Market and Social Norms

There is a significant gap in the literature on the interplay between market and social factors in travel behavior – let alone the effect of new technological tools on transportation, and increasing efforts to ‘gamify’ commuting. Research suggests that social forces may be as important in travel decision-making as price / economic levers (Riggs, 2014, 2015; Riggs & Kuo, 2015; Riggs & Kuo, 2014). Other work suggests that route-related built environment issues may trump many of these factors (Cervero & Duncan, 2003; Ewing & Cervero, 2010; Ewing & Cervero, 2001; Forsyth et al., 2008). More research is needed to expand and validate both the understanding of pricing impacts and the potential environmental benefit of behavioral nudge programs, especially related to documented correlations between the built environment, active travel behavior and health outcomes (Ewing, 2005; Frank et al., 2004, 2005; Saelens et al., 2003).
In this context, this experiment tests various incentives to reduce driving behavior, on roughly 500 randomly selected campus survey respondents, who had indicated that driving was their primary mode of travel.

To evaluate how market vs. social nudges influence transportation decisions, respondents were offered incentives in four identical trials, as a part of a campus travel survey. The survey is outlined in the proceeding section, followed by a description of the trial. The trial was consistent with theory suggesting: that market-based relationships responses are connected to the relationship between level of effort, exertion, and compensation (Fehr & Falk, 2002); that a social market is shaped by altruism irrespective of effort (Cialdini, Brown, Lewis, Luce, & Neuberg, 1997); that including both market and social norms causes individuals to default to market ones (Gneezy & Rustichini, 2000). Consequently, the following hypotheses are assumed:

- **Hypothesis 1** (H_1): The relationship between market and social incentives will be different.
- **Hypothesis 2** (H_2): All things being equal, social norms will have the potential to create an equal or greater pull on willingness to change behavior.
- **Hypothesis 3** (H_3): Including both monetary and social signals will lessen the effect of social / altruistic exchange and cause the incentive to be perceived as a market one.

Campus Travel Survey

The campus travel survey was a stated-preference survey designed to assess how various campus constituencies (students, faculty, staff) traveled to the campus, including their origin / destination information, how many miles traveled and attributes about travel behavior (permit, primary parking lot, etc.). The study used standard survey software during the spring of 2015. The total number of responses were 3,961, roughly 17% of the entire campus population of roughly
23,000, significant at the 99% Confidence Interval with a margin of error of ± 1.68%. As indicated in Figure 2, approximately 38% of those coming to campus drive alone. On average, survey respondents, who reported driving alone or in carpool, traveled 17 vehicle miles (VMT). The distances were averaged.

Figure 2. Modal Split for Entire Campus

The Cal Poly Human Subjects Committee reviewed and approved the survey, finding the project in compliance with Public Health Service guidelines for the use of human subjects in research, and exempt from further review. Participants provided written consent to participate in the survey, which was issued by Cal Poly Information and Technology Services. The confidentiality of participants was protected; the research team had no access to individual contact information in the survey process. Individual respondent data, including location-based information, could not be traced back to the individual unless the respondent elected to provide
this information. Consistent with best practice, all data was reviewed on password-protected and encrypted devices.

Experimental Design

Roughly 500 respondents were randomly chosen to participate in a parallel investigation, and were offered various incentives to change their travel. Respondents could decline the offer and decline participation. Individual trial participants were given the option to forfeit their right to a parking pass for one week, in exchange for the following randomly assigned incentives: A) a $5 monetary incentive; B) a free cup of coffee or juice; C) a free cup of coffee or juice, with a specified value of $2; D) a social request to give up their pass for altruistic reasons; in this case benefit to the environment. Treatment A represented a market norm while treatment B and C represented two variations of social norms. Treatment C represented the mixing of market and social norms, a factor that Heyman and Ariely suggest can cause both to fail. Treatment D represented a plea to serve a greater social good. This structure is similar to behavioral economic work by Heyman and Ariely (2008; 2004) and summarized in Table 1 which includes the connection to the related hypothesis.

Table 1. Conceptual Experimental Design

<table>
<thead>
<tr>
<th>Drivers Asked to Give up Parking for:</th>
<th>Group A (N=100)</th>
<th>Group B (N=100)</th>
<th>Group C (N=100)</th>
<th>Group D (N=100)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$5 Gift</td>
<td>$2 Gift</td>
<td>Social / Altruistic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>($Mixing Social / Market Signals)</td>
<td></td>
<td>Reasons</td>
<td></td>
</tr>
<tr>
<td>Hypothesis</td>
<td>H1, H2</td>
<td>H1, H2</td>
<td>H3</td>
<td>H1, H2</td>
</tr>
</tbody>
</table>

Analysis
This experiment utilizes independent identical trials with a constant probability of success; tests for both significance and homogeneity were used to analyze alternatives using a series of planned contrasts. This allowed the researcher to calculate differences in conditional proportions, and critical ranges for each trial and their relative significance level.

Results

Hypothesis 1

The researcher reviewed the number and proportion of responses of treatment groups. From a sample size of 462, 136 individuals accepted some form of incentive, and 326 declined. As shown in Figure 3, 30% of participants were responsive to the market incentive of $5, which was 13% fewer than those who chose a social or altruistic incentive (Treatment D). A nominal gift of coffee fared slightly better than the market incentive, at roughly 35%. The mixed market option had the least amount of participants (N=99) and fared less well, with only 13% electing it as an option.
Figure 3. Percentage of Responses to Varying Incentives

In testing the homogeneity under Hypothesis 1 (H₁), we assume there is variance between the options and at least one trial differs. Under H₀, all four treatment options would be subscribed to equally (Pₐ = Pₐₐ = Pₐ₉ = Pₐₐ) For each hypothesis, the null hypothesis is assumed to be H₀. This yields a χ² of 15.022 and a p-value of 0.002 (where n = 462; α = .05; df = 3; K = 4). With a p-value of 0.002 lying below our significance threshold of α = .05, there is cause to reject the H₀ and conclude that H₁ can be reasonably assumed and that the rate of success in at least one treatment group differs significantly at a significance threshold of α = .05.

Hypothesis 2 and 3

Similarly, with H₂ and H₃, the significance threshold and data characteristics are determined using a Maraascuilo Procedure (α = .05; df = 3; n = 462; K = 4). Conditional proportions are calculated to determine if social norms have an equal or greater pull on willingness to change behavior (H₂) and if monetary signals will lessen the effect of a social / altruistic exchange (H₃). These proportions are indicated as follows, consistent with Figure 4: Pₐ = 34/113 = .3008; Pₐₐ = 39/126 = .3095; Pₐ₉ = 15/99 = .1515; Pₐₐ = 48/124 = .3870.
As shown in Table 2, at significance level $\alpha = .05$ and with a critical range of $\chi^2_{\alpha,df} = 7.81473$, the proportion of people receiving Treatment B was significantly different than the proportion receiving Treatment C. This meant that there was a significant difference between those who agreed to give up their parking pass when offered a free juice or coffee as opposed to those who would do so for the same free gift when it was “valued at 2”—the option that mixed fiscal and social market norms. This would seem to confirm H_3, or the notion that mixing the
norms of behavioral economics causes both to become less effective, and that people default to the monetary norm—in this case $2.

As Table 2 also illustrates, at significance level $\alpha = .05$, the proportion of people who agreed to Treatment C (giving up their parking passes, when offered a free juice or coffee, valued at $2) is also significantly different than the proportion of people who agreed to Treatment D—to give up their parking passes, when encouraged to do so for social reasons (benefit to the environment). Thus, while differences between social norms and a larger market incentive of $5 (Treatment A) may not be significant, we can accept H_2, given the finding from H_3—that there may be merit to using small and non-monetary incentives to in the economics of travel behaviora. There is a significant likelihood that someone would respond to a small gift as long as it does not have a monetary value associated. There is also a significant likelihood that more individuals would respond to a social norm than a small gift norm around $2. This points to the importance of social incentives in the behavioral psychology of travel decision frameworks, and provides a platform for further work in this area.

Discussion

As alluded in the introduction, the classic American story *Tom Sawyer* has been cited by many as a key illustration of the power of social norms to overcome perceived exertion without tapping in to market principles. In the story, Tom chides his friends to paint a fence exclaiming how fun it is to do this work, and before long everyone joins in and does Tom’s work for him, for no compensation other that the altruistic sense of painting a fence together, or ‘we-ness’ as Fiske (year) would describe. While Tom acted in his own mischievous self-interest, a tenant of traditional rational economics, he operated in a young boys world where social rather than financial norms aided transactions. While these informal or social economies have been explored
as a part of many social awareness and global welfare programs, there has been little work that applies these principles of behavioral psychology (and perhaps manipulation in the case of Tom) to travel behavior. The results of this study show that social factors do play a part in nudging travel decisions.

Social norms have a significant impact. Treatment D, our social norm to do something good for the environment, was successful 43% of the time in trials. Furthermore, in this case, after tests for homogeneity, social norms provided to be more effective that other options—including, a nominal gift of a cup of copy (Treatment B) and a gift valued at $2 that mixed market and social messages (Treatment C). This mixing is important to emphasize, the results of this study clearly indicate that mixing market and social norms causes both to be less effective. Though this study cannot say with confidence that social norms are more effective than higher financial incentives, such as the Treatment A value of $5, it does suggest, that the behavioral psychology behind many travel or TDM programs might warrant rethinking.

The prevailing practice in TDM and travel incentives has been to focus on market incentives. This includes pricing and programs that provide nominal refunds to commuters when they choose not to travel via auto. Some might argue that this practice has become so common that market incentives have lost their value or become price inelastic. This claim, however, this claim is inconsistent with traditional market economics. While price may be near-elastic to some populations, the results of this study confirm that market norms are effective in nudging travel behavior, but also that social norms are powerful. This is important because they are under-represented in the incentive portfolios of many travel behavior programs. It suggests that modern TDM programs might want refocus on social and cultural values that relate to individual travelers, equalizing options to be more responsive to the consumer.
Gärling and Schuitema (2007) offer a conceptual framework for evaluating the effectiveness of travel behavior change measures, suggesting that non-coercive measures, such as public information campaigns, should be combined with coercive TDM measures—including increasing parking fees, or removing parking entirely. Litman (2010) similarly argues that TDM programs are most cost effective when implemented with other strategies. Furthermore, travel patterns are more likely to change when the objectives of education campaigns and support services complement policy interventions (Riggs & Kuo, 2015), and technological innovations offer opportunities to apply predictive analytics and machine learning methods to travel behavior processes (Schweitzer, 2014). Ultimately, application program interfaces (API)s could be developed to both push and pull information from travelers. Information could be used to quantify travel through the built environment, while offering feedback and incentives that can be optimized by individual behavioral preferences. APIs can also help better quantify and reduce the embedded carbon in automotive travel and built environment resources (land, roads, parking) from travel, and in turn be used influence and justify the design and funding of built environment improvements that help shape active travel (i.e improved sidewalks, bike lanes, and bus services).

Conclusions

Research has shown that transportation mode choice is tied to economic and social factors. Policies can use a ‘carrot’ approach, taking advantage of incentives such as free transit passes, cash back (‘cash-out’) programs on parking, or social media nudge tools (Carrel et al., 2012) to incentivize alternatives to drive. Others use the ‘stick’ approach, where high prices for parking, tolls or usage fees (sometimes called cordon) are common tools used to balance parking
resources; however, research suggests that this approach is economically inefficient (McShane & Meyer, 1982; J. R. Peters & Gordon, 2009).

This research is novel because it examines the effect of social factors. This project evaluates different methods of shifting individuals to non-automotive transportation by using incentives. The study posits that rewards and social ‘nudges’ can encourage walking behavior. The results of this study suggest that the predominant focus on market incentives may not be effective. Further research should expand and validate the understanding of pricing impacts, and the potential benefits (social, environmental, other) of behavioral nudge programs related to active travel behavior outcomes.

The broader impact of this work is aligned with thematic areas of public health, environmental sustainability and economic competitiveness. In public health, this project addresses active forms of transportation – transportation modes important in addressing cultural obesity issues as well as issues of traffic congestion, air quality and GHG emissions. Related to environmental sustainability, this study contributes to the understanding of active travel—about how people make choices to walk, bike or take transit; and that these choices are very complex. The complexity of these choices are wrapped up in both social and market norms, and better understanding how to tap in to these norms can help transportation planners and policy makers improve the livability and accessibility of our travel patterns—attracting people to the fence so they can help paint a brighter future for us all.
References

http://doi.org/10.1016/j.tra.2014.04.011

http://doi.org/10.1145/2591971.2592014

http://164.67.121.27/files/Lewis_Center/CompleteStreetsInitiative/Peters_report.pdf

http://doi.org/10.1016/j.cstp.2014.07.009

http://doi.org/10.1016/j.tra.2015.05.012

