2002

Asymptotically constant solutions of functional difference systems

William F. Trench, Trinity University
Asymptotically Constant Solutions of Functional Difference Systems

William F. Trench

Dedicated to Allan Peterson on the Occasion of His 60th Birthday.

Abstract

We consider the functional difference system (A) $\Delta x_i(n) = f_i(n;X)$, $1 \leq i \leq k$, where $X = (x_1, \ldots, x_k)$ and $f_1(:, X), \ldots, f_k(:, X)$ are real-valued functionals of X, which may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathbb{Z}$. We give sufficient conditions for (A) to have solutions that approach specified constant vectors as $n \to \infty$. Some of the results guarantee only that the solutions are defined for n sufficiently large, while others are global. The proof of the main theorem is based on the Schauder-Tychonoff theorem. Applications to specific quasi-linear systems are included.

Keywords: Functional difference system; Nonsingular; Quasi-linear; Schauder-Tychonoff theorem; Singular

Mathematics Subject Classification (2000): 39A11

1 Introduction

Throughout this paper \mathbb{Z} is the set of all integers. If m is an integer, then $\mathbb{Z}_m = \{ n \in \mathbb{Z} \mid n \geq m \}$.

We consider the functional difference system

$$\Delta x_i(n) = f_i(n; X), \quad 1 \leq i \leq k,$$

where $X = (x_1, \ldots, x_k) : \mathbb{Z} \to \mathbb{R}^k$ and $f_1(\cdot; X), \ldots, f_k(\cdot; X)$ are real-valued functionals of X. We view $X = \{X(\ell)\}_{\ell \in \mathbb{Z}}$ as a two-way infinite sequence; for a given n, $f_i(n; X)$ may depend quite arbitrarily on values of $X(\ell)$ for multiple values of $\ell \in \mathbb{Z}$. We also write the system as

$$\Delta X(n) = F(n; X). \quad (1)$$
Definition 1 If \(n_0 \) is an integer, then \(C_{n_0} \) is the space of bounded sequences \(X = \{X(n)\}_{n \in \mathbb{Z}} \) that are constant for \(n \leq n_0 \), with norm \(\|X\| = \sup_{n \in \mathbb{Z}} |X(n)| \), where \(|U| = \max\{|u_1|, \ldots, |u_k|\} \) if \(U = (u_1, \ldots, u_k) \). If \(\{X_\nu\} \) is an infinite sequence of elements in \(C_{n_0} \), we say that \(X_\nu \to X \) if \(\lim_{\nu \to \infty} \|X_\nu - X\| = 0 \). We say that \(X \in C_{n_0} \) is a solution of (1) if \(\Delta X(n) = F(n; X) \) for \(n \geq n_0 \).

Note that \(C_{n_0} \) is a Banach space. We make the following standing assumption.

Assumption 1 Let \(m \) and \(r \) be integers, with \(0 \leq r \leq k \), and let \(\rho_1, \ldots, \rho_k \) be arbitrary positive numbers. If \(X \in C_m \) and

\[
|x_i(n)| \leq \rho_i, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq r, \tag{2}
\]

and

\[
|x_i(n)| \geq \rho_i, \quad n \in \mathbb{Z}, \quad r + 1 \leq i \leq k, \tag{3}
\]

then

\[
|f_i(n; X)| \leq w_i(n, \rho_1, \ldots, \rho_k), \quad n \in \mathbb{Z}_m, \quad 1 \leq i \leq k, \tag{4}
\]

where \(w_i : \mathbb{Z}_m \times (0, \infty)^k \to (0, \infty) \) and

\[
\sum_{n=m}^\infty w_i(n, \rho_1, \ldots, \rho_k) < \infty, \quad 1 \leq i \leq k, \tag{5}
\]

for all \(\rho_1, \ldots, \rho_k > 0 \). Finally, if \(\{X_\nu\} \subset C_m \) with

\[
|x_{i\nu}(n)| \leq \rho_i, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq r, \tag{6}
\]

and

\[
|x_{i\nu}(n)| \geq \rho_i, \quad n \in \mathbb{Z}, \quad r + 1 \leq i \leq k, \tag{7}
\]

for all \(\nu \), and \(X_\nu \to X \), then

\[
\lim_{\nu \to \infty} F(n; X_\nu) = F(n; X), \quad n \in \mathbb{Z}_m. \tag{8}
\]

We say that the system (1) is nonsingular in \(x_1, \ldots, x_r \) and singular in \(x_{r+1}, \ldots, x_k \). We also say that (1) is purely singular if \(r = 0 \), purely nonsingular if \(r = k \), or mixed if \(0 < r < k \).

2 The Main Theorem

The following theorem is our main result.

Theorem 1 Suppose that \(n_0 \geq m \) and \(\rho_1, \ldots, \rho_k \), and \(\alpha_1, \ldots, \alpha_k \) are positive numbers such that \(\alpha_i < 1 \) if \(1 \leq i \leq r \), and

\[
\sum_{n=n_0}^\infty w_i(n, \rho_1, \ldots, \rho_k) \leq \alpha_i \rho_i, \quad 1 \leq i \leq k. \tag{9}
\]
Let \(c_1, \ldots, c_k \) be constants such that
\[
|c_i| \leq (1 - \alpha_i)\rho_i, \quad 1 \leq i \leq r,
\]
and
\[
|c_i| \geq (1 + \alpha_i)\rho_i, \quad r + 1 \leq i \leq k.
\]
Then there is an \(\hat{X} \) in \(C_{n_0} \) such that
\[
\Delta \hat{X}(n) = F(n; \hat{X}), \quad n \in \mathbb{Z}_{n_0},
\]
\[
|\hat{x}_i(n) - c_i| \leq \alpha_i\rho_i, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq k,
\]
and
\[
\lim_{n \to \infty} \hat{x}_i(n) = c_i, \quad 1 \leq i \leq k.
\]

Proof. We obtain \(\hat{X} \) as a fixed point of the transformation \(Y = TX \) defined by
\[
y_i(n) = \begin{cases}
 c_i - \sum_{\ell=n_0}^{\infty} f_i(\ell; X), & n \geq n_0, \\
 c_i - \sum_{\ell=n_0}^{n-1} f_i(\ell; X), & n < n_0,
\end{cases} \quad 1 \leq i \leq k,
\]
acting on the subset \(S_{n_0} \) of \(C_{n_0} \) such that
\[
|x_i(n) - c_i| \leq \alpha_i\rho_i, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq k.
\]

If \(\hat{X} = TX \) for some \(\hat{X} \in S_{n_0} \), then \(\hat{X} \) satisfies (9), (10), and (11).

Since \(S_{n_0} \) is a closed convex subset of a Banach space, the Schauder-Tychonoff theorem \([1, p. 405]\) asserts that \(\hat{X} = TX \) for some \(\hat{X} \) in \(S_{n_0} \) if
(a) \(T \) is defined on \(S_{n_0} \);
(b) \(T(S_{n_0}) \subset S_{n_0} \);
(c) \(TX_\nu \to TX \) if \(\{X_\nu\} \subset S_{n_0} \) and \(X_\nu \to X \);
(d) \(T(S_{n_0}) \) has compact closure.

For the rest of the proof we assume that \(X \in S_{n_0} \). Then (7) and (13) imply (2), while (8) and (13) imply (3). By Assumption 1, (2) and (3) imply (4); hence, (6) and (12) imply that \(Y = TX \) is defined, and that
\[
|y_i(n) - c_i| \leq \alpha_i\rho_i, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq k.
\]

This establishes hypotheses (a) and (b) of the Schauder-Tychonoff theorem.

Now suppose \(\{X_\nu\} \subset S_{n_0} \) and \(X_\nu \to X \). Let \(Y_\nu = TX_\nu = (y_{1\nu}, \ldots, y_{k\nu}) \) and \(Y = TX = (y_1, \ldots, y_k) \). From (12),
\[
|y_{i\nu}(n) - y_i(n)| \leq \sum_{\ell=n_0}^{\infty} |f_i(\ell; X_\nu) - f_i(\ell; X)|, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq k.
\]
From (6), if \(\epsilon > 0 \), there is an \(N > n_0 \) such that
\[
\sum_{\ell = N + 1}^{\infty} w_i(\ell, \rho_1, \ldots, \rho_k) < \epsilon, \quad 1 \leq i \leq k.
\]

Then (4) and (14) imply that
\[
|y_{i\nu}(n) - y_i(n)| \leq \sum_{\ell = n_0}^{N} |f_i(\ell; X) - f_i(\ell; X)| + 2\epsilon, \quad n \in \mathbb{Z}, \quad 1 \leq i \leq k. \quad (15)
\]

Since
\[
\lim_{\nu \to \infty} |f_i(\ell; X) - f_i(\ell; X)| = 0, \quad \ell \geq n_0,
\]
from (5), (15) implies that \(\lim_{n \to \infty} \|Y_\nu - Y\| = 0 \). This establishes hypothesis (c) of the Schauder-Tychonoff theorem.

We will now show that \(\overline{T(S_{n_0})} \) is compact. Let \(C = (c_1, \ldots, c_k) \) and \(\Gamma = (\gamma_1, \ldots, \gamma_k) \), with
\[
\gamma_i(n) = \sum_{\ell = n}^{\infty} w_i(\ell, \rho_1, \ldots, \rho_k), \quad 1 \leq i \leq k, \quad n \geq n_0.
\]

From (4) and (12),
\[
\overline{T(S_{n_0})} \subset A = \{ V \in C_{n_0} \mid |V(n) - C| \leq |\Gamma(n)| \},
\]
so it suffices to show that \(A \) is compact. From [2, pp. 51-53], this is true if \(A \) is totally bounded; that is, for every \(\epsilon > 0 \) there is a finite subset \(A_\epsilon \) of \(C_{n_0} \) such that for each \(V \in A \) there is a \(\tilde{V} \in A_\epsilon \) that satisfies the inequality \(\|V - \tilde{V}\| < \epsilon \). To establish the existence of \(A_\epsilon \), choose an integer \(n_1 \geq n_0 \) such that \(|\Gamma(n_1)| < \epsilon \). Now let
\[
M = \max \{|\Gamma(n)| \mid n_0 \leq n \leq n_1 - 1 \},
\]
let \(p \) be an integer such that \(p\epsilon > M \), and let \(Q = \{ r\epsilon \mid r = \text{ integer }, -p \leq r \leq p \} \).

Let \(A_\epsilon \) be the finite set of \(k \)-vector functions \(A \) on \(Z \) defined as follows:

(i) If \(n \geq n_1 \), then \(A(n) = C \).

(ii) If \(n \leq n_0 \), then \(A(n) = A(n_0) \).

(iii) If \(n_0 \leq n \leq n_1 - 1 \), then \(A(n) = (c_1 + q_1(n), \ldots, c_k + q_k(n)) \), where \(q_1(n), \ldots, q_k(n) \) are in \(Q \).

Then, since \(|V(n) - C| \leq M \) for \(n_0 \leq n \leq n_1 - 1 \) if \(V \in A \), the set \(A_\epsilon \) has the desired property. Therefore the Schauder-Tychonoff theorem implies that \(T\hat{X} = \hat{X} \) for some \(\hat{X} \) in \(S_{n_0} \).
3 Applications of Theorem 1

Since all our results follow from Theorem 1, we will simply verify (6), (7), and (8) in each case, without specifically citing Theorem 1. We say that the problem $P_{r}(n_{0}; c_{1}, \ldots, c_{k})$ has a solution if there is a sequence \hat{X} in $C_{n_{0}}$ such that $\Delta \hat{X}(n) = F(n; \hat{X})$, $n \geq n_{0}$, and $\lim_{n \to \infty} \hat{x}_{i}(n) = c_{i}$, $1 \leq i \leq k$. Some of our results are local at ∞, in that a solution is shown to exist only if n_{0} is sufficiently large. Others are global, in that a solution is shown to exist for all $n \geq m$.

Theorem 2 If $c_{i} \neq 0$ for $r + 1 \leq i \leq k$, then $P_{r}(n_{0}; c_{1}, \ldots, c_{k})$ has a solution if n_{0} is sufficiently large.

Proof. Let $\alpha_{1}, \ldots, \alpha_{k}$ be positive, with $\alpha_{i} < 1$ for $1 \leq i \leq r$. Choose $\rho_{1}, \ldots, \rho_{k}$ to satisfy (7) and (8). Then choose n_{0} to satisfy (6). □

Theorem 3 If $\sum_{n=n_{0}}^{\infty} w_{i}(n, \rho_{1}, \ldots, \rho_{k}) < \rho_{i}$, $1 \leq i \leq r$, then $P_{r}(n_{0}, c_{1}, \ldots, c_{k})$ has a solution if $|c_{1}|, \ldots, |c_{r}|$ are sufficiently small and $|c_{r+1}|, \ldots, |c_{k}|$ are sufficiently large.

Proof. Choose $\alpha_{1}, \ldots, \alpha_{k}$ sufficiently large to satisfy (6). (Because of (16), this can be achieved with $\alpha_{i} < 1$, $1 \leq i \leq r$.) Then $P(n_{0}, c_{1}, \ldots, c_{k})$ has a solution if (7) and (8) hold. □

Theorem 4 If $|c_{1}|, \ldots, |c_{k}|$ are sufficiently large, then $P_{0}(m; c_{1}, \ldots, c_{k})$ has a solution.

Proof. Let $\rho_{1}, \ldots, \rho_{k}$ be positive. Choose $\alpha_{1}, \ldots, \alpha_{k}$ to satisfy (6) with $n_{0} = m$. Then choose c_{1}, \ldots, c_{k} to satisfy (8) with $r = 0$. □

Theorem 5 Suppose that

$$\lim_{\rho \to 0+} \rho^{-1} \sum_{n=m}^{\infty} w_{i}(n, \rho, \ldots, \rho) = \psi_{i} < 1, \quad 1 \leq i \leq k. \quad (17)$$

Then $P_{k}(m; c_{1}, \ldots, c_{k})$ has a solution if $|c_{1}|, \ldots, |c_{k}|$ are sufficiently small.

Proof. Let $\psi_{i} < \alpha_{i} < 1$, $1 \leq i \leq k$. From (17), we can choose ρ_{0} so small that

$$\sum_{n=m}^{\infty} w_{i}(n, \rho_{0}, \ldots, \rho_{0}) \leq \alpha_{i} \rho_{0}, \quad 1 \leq i \leq k.$$

Now choose c_{1}, \ldots, c_{k} so that $|c_{i}| \leq (1 - \alpha_{i}) \rho_{0}$, $1 \leq i \leq k$. □
THEOREM 6 Suppose that
\[\limsup_{\rho \to \infty} \rho^{-1} \sum_{n=m}^{\infty} w_i(n, \rho, \ldots, \rho) = \eta_i < 1, \quad 1 \leq i \leq k. \] (18)

Let \(c_1, \ldots, c_k \) be arbitrary. Then \(P_k(m; c_1, \ldots, c_k) \) has a solution.

PROOF. Let \(\eta_i < \alpha_i < 1, \ 1 \leq i \leq k. \) From (18), we can choose \(\rho_0 \) so large that
\[\sum_{n=m}^{\infty} w_i(n, \rho_0, \ldots, \rho_0) \leq \alpha_i \rho_0, \quad 1 \leq i \leq k. \]

\(\square \)

ASSUMPTION 2 In addition to Assumption 1, assume that (1) is mixed (that is, \(0 < r < k \)), and
\[w_i(n, \rho_1, \rho_2, \ldots, \rho_k) = u_i(n, \rho_1, \ldots, \rho_r) + v_i(n, \rho_{r+1}, \ldots, \rho_k), \quad 1 \leq i \leq r, \]
where \(u_i \) and \(v_i \) are positive, and
\[\lim_{\rho \to \infty} \sum_{n=m}^{\infty} v_i(n, \rho, \ldots, \rho) = 0, \quad 1 \leq i \leq r. \] (19)

THEOREM 7 If Assumption 2 holds, then \(P_r(n_0, c_1, \ldots, c_k) \) has a solution if \(n_0 \) and \(|c_{r+1}|, \ldots, |c_k| \) are sufficiently large and \(|c_1|, \ldots, |c_r| \) are sufficiently small.

PROOF. Let \(\rho_1 > 0 \) and \(0 < \alpha_1 < 1, \) and choose \(n_0 \geq m \) so that
\[\sum_{n=n_0}^{\infty} u_i(n, \rho_1, \ldots, \rho_1) < \alpha_1 \rho_1, \quad 1 \leq i \leq r. \]

From (19), we can choose \(\rho_2 \) so large that
\[\sum_{n=n_0}^{\infty} (u_i(n, \rho_1, \ldots, \rho_1) + v_i(n, \rho_2, \ldots, \rho_2)) \leq \alpha_1 \rho_1, \quad 1 \leq i \leq r. \]

Now choose \(\alpha_2 \) so that
\[\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \ldots, \rho_k) \leq \alpha_2 \rho_2, \quad r + 1 \leq i \leq k, \]
if \(\rho_1 = \rho_1, \ 1 \leq i \leq r, \) and \(\rho_1 = \rho_2, \ r + 1 \leq i \leq k. \) Then choose \(|c_i| \leq (1 - \alpha_1) \rho_1, \ 1 \leq i \leq r, \) and \(|c_i| \geq (1 + \alpha_2) \rho_2, \ r + 1 \leq i \leq k. \) \(\square \)
Theorem 8 In addition to Assumption 2, suppose that
\[\limsup_{\rho \to 0^+} \sum_{n=m}^{\infty} u_i(n, \rho, \ldots, \rho) = \psi_i < 1, \quad 1 \leq i \leq r. \]
Then \(P_r(m, c_1, \ldots, c_k) \) has a solution if \(|c_1|, \ldots, |c_r| \) are sufficiently small and \(|c_{r+1}|, \ldots, |c_k| \) are sufficiently large.

Proof. Let \(\psi_i < \alpha_i < 1, 1 \leq i \leq r \). Choose \(\rho_1 \) so small that
\[\sum_{n=m}^{\infty} u_i(n, \rho_1, \ldots, \rho_1) < \alpha_i \rho_1, \quad 1 \leq i \leq r. \]
Now apply the argument used in the proof of Theorem 7, with \(n_0 = m \).

Theorem 9 In addition to Assumption 2, suppose that
\[\limsup_{\rho \to \infty} \sum_{n=m}^{\infty} u_i(n, \rho, \ldots, \rho) = \eta_i < 1, \quad 1 \leq i \leq r. \]
Then \(P_r(m, c_1, \ldots, c_k) \) has a solution if \(|c_{r+1}|, \ldots, |c_k| \) are sufficiently large.

Proof. Let \(\eta_i < \alpha_i < 1, 1 \leq i \leq r \). Choose \(\rho_1 \) so large that \(\rho_1 \geq |c_i|/(1-\alpha_i) \), \(1 \leq i \leq r \), and
\[\sum_{n=m}^{\infty} u_i(n, \rho_1, \ldots, \rho_1) < \alpha_i \rho_1, \quad 1 \leq i \leq r. \]
Now apply the argument used in the proof of Theorem 7, with \(n_0 = m \).

4 Quasi-linear Systems: I

Consider the system
\[\Delta x_i(n) = \sum_{j=1}^{k} a_{ij}(n) g_{ij}(x_j(\phi_{ij}(n))), \quad 1 \leq i \leq k, \quad (20) \]
assuming throughout that, for some integer \(m \) and \(1 \leq i \leq j \leq k \), \(\phi_{ij} : \mathbb{Z}_m \to \mathbb{Z} \), \(g_{ij} : \mathbb{Z} \to \mathcal{R} \), \(a_{ij} : \mathbb{Z}_m \to \mathcal{R} \),
\[|g_{ij}(u)| = |u|^\gamma_{ij} \quad \text{and} \quad \sum_{n=m}^{\infty} |a_{ij}(n)| < \infty. \]
We assume that for some \(r \) in \(\{0, 1, \ldots, k\} \), \(\gamma_{ij} > 0 \) if \(1 \leq i \leq r \) and \(\gamma_{ij} < 0 \) if \(r + 1 \leq i \leq k \), for \(1 \leq j \leq k \). Then Assumption 1 holds, with
\[w_i(n, \rho_1, \rho_2, \ldots, \rho_k) = \sum_{j=1}^{k} |a_{ij}(n)| \rho_j^{\gamma_{ij}}. \]
It is to be understood throughout this section that this is the definition of w_i.

If $0 < r < k$, then (20) satisfies Assumption 2 with

$$u_i(n, \rho_1, \ldots, \rho_r) = \sum_{j=1}^{r} |a_{ij}(n)| \rho_j^{\gamma_{ij}}$$

and

$$v_i(n, \rho_{r+1}, \ldots, \rho_k) = \sum_{j=r+1}^{k} |a_{ij}(n)| \rho_j^{\gamma_{ij}}.$$

Theorem 10 If $\gamma_{ij} > 0$, $1 \leq i, j \leq k$, there is an $n_0 \geq m$, which depends upon c_1, \ldots, c_k, such that $P_k(n_0; c_1, \ldots, c_k)$ has a solution.

Proof. If $0 < \alpha < 1$, choose $\rho_1, \rho_2, \ldots, \rho_k$ so that $|c_i| \leq (1 - \alpha)\rho_i$, $1 \leq i \leq k$. Then choose n_0 so that

$$\sum_{n=n_0}^{\infty} w_i(n, \rho_1, \rho_2, \ldots, \rho_k) \leq \alpha \rho_i, \quad 1 \leq i \leq k.$$

\Box

Theorem 11 If $\gamma_{ij} = 1$, $1 \leq i, j \leq k$, there is an $n_0 \geq m$, independent of c_1, \ldots, c_k, such that $P_k(n_0; c_1, \ldots, c_k)$ has a solution.

Proof. If $0 < \alpha < 1$, choose n_0 so that

$$\sum_{n=n_0}^{\infty} w_i(n, 1, \ldots, 1) < \alpha, \quad 1 \leq i \leq k.$$

Then

$$\sum_{n=n_0}^{\infty} w_i(n, \rho, \ldots, \rho) < \alpha \rho, \quad 1 \leq i \leq k,$$

for any $\rho > 0$. For arbitrary c_1, \ldots, c_k choose ρ so that $|c_i| \leq (1 - \alpha)\rho$, $1 \leq i \leq k$. \Box

Theorems 5-9 imply the following theorems.

Theorem 12 If $\gamma_{ij} > 1$, $1 \leq i, j \leq k$, then $P_k(m; c_1, \ldots, c_k)$ has a solution if $|c_1|, \ldots, |c_k|$ are sufficiently small.

Theorem 13 If $0 < \gamma_{ij} < 1$, $1 \leq i, j \leq k$, and c_1, \ldots, c_k are arbitrary, then $P_k(m; c_1, \ldots, c_k)$ has a solution.

Theorem 14 If $0 < r < k$, then $P_r(n_0; c_1, \ldots, c_k)$ has a solution if n_0 and $|c_r|$, $|c_{r+1}|$, $\ldots, |c_k|$ are sufficiently large.

Theorem 15 If $0 < r < k$ and $\gamma_{ij} > 1$, $1 \leq i \leq r, 1 \leq j \leq k$, then $P_r(m; c_1, \ldots, c_k)$ has a solution if $|c_1|, \ldots, |c_r|$ are sufficiently small and $|c_{r+1}|$, $\ldots, |c_k|$ are sufficiently large.

Theorem 16 If $0 < r < k$ and $0 < \gamma_{ij} < 1$, $1 \leq i \leq r, 1 \leq j \leq k$, then $P_r(m; c_1, \ldots, c_k)$ has a solution if $|c_{r+1}|, \ldots, |c_k|$ are sufficiently large.

8
5 Quasi-linear Systems: II

In this section we consider

\[\Delta x_i(n) = \sum_{j=1}^{k} \beta_{ij}^{n} \sum_{\ell=0}^{n} p_{ij}(n-\ell) g_{ij}(x_{j}(\phi_{ij}(n))), \quad 1 \leq i \leq k, \quad n \geq 0, \quad (21) \]

where \(g_{ij} \) and \(\phi_{ij} \) are as in the previous section, \(|\beta_{ij}| < 1 \), and

\[\sum_{n=0}^{\infty} |\beta_{ij}^{n} p_{ij}(n)| < \infty, \quad 1 \leq i, j \leq n. \]

Here we can take

\[w_i(n, \rho_1, \ldots, \rho_k) = \sum_{j=1}^{k} \rho_j^{\gamma_{ij}} \sum_{\ell=0}^{n} |\beta_{ij}^{n} p_{ij}(n-\ell)|. \]

Therefore Assumption 1 holds with

\[\sum_{n=0}^{\infty} w_i(n, \rho_1, \ldots, \rho_k) = \sum_{j=1}^{k} \sigma_{ij} \rho_j^{\gamma_{ij}}, \]

where

\[\sigma_{ij} = \sum_{n=0}^{\infty} \sum_{\ell=0}^{n} |\beta_{ij}^{n} p_{ij}(n-\ell)| = \sum_{\ell=0}^{\infty} \sum_{n=\ell}^{\infty} |\beta_{ij}^{n} p_{ij}(n-\ell)| \]

\[= \frac{1}{1-|\beta_{ij}|} \sum_{n=0}^{\infty} |\beta_{ij}^{n} p_{ij}(n)|. \]

All the arguments used in the previous section can now be used with \(|a_{ij}| \) replaced by \(\sigma_{ij} \); therefore, Theorems 10-16 all hold (with \(m = 0 \)) for (21).

References
