Systems of difference equations with asymptotically constant solutions

William F. Trench, Trinity University
SYSTEMS OF DIFFERENCE EQUATIONS WITH ASYMPTOTICALLY CONSTANT SOLUTIONS

William F. Trench
Trinity University, San Antonio, Texas, USA

Nonlinear Analysis, Theory, Methods, and Applications 40 (2000) 611–615

Dedicated to Professor V. Lakshmikantham on his 75th birthday

Key words: Difference equations, Asymptotically constant, Conditional convergence, Banach space, Schauder-Tychonoff theorem

We consider the system

\[\Delta x_n = A_n x_n + f(n, x_n), \]

where \(x_n \) and \(f \) are \(k \)-vectors (real or complex) and \(A_n \) is a \(k \times k \) matrix. We give conditions implying that (1) has a solution \(\{ \hat{x}_n \} \) such that \(\lim_{n \to \infty} \hat{x}_n = c \), a given constant vector.

If \(u \) is a \(k \)-vector and \(B \) is a \(k \times k \) matrix, then \(|u| \) and \(|A| \) are the \(\infty \)-norms of \(u \) and \(A \).

Theorem 1 Let \(c \) be a given \(k \)-vector, and suppose there is a constant \(M > 0 \) and an integer \(N \) such that \(f(n, x) \) is continuous with respect to \(x \) and

\[|f(n, x) - f(n, c)| \leq R(n, |x - c|) \]

on the set

\[S = \{(n, x) | n \geq N, |x - c| \leq M\}, \]

where \(R = R(n, \lambda) \) is defined on the set

\[\{(n, x) | n \geq N, 0 \leq \lambda \leq M\} \]

and nondecreasing in \(\lambda \) for each \(n \), and

\[\sum_{n=N}^{\infty} |R(n, M)| < \infty. \]

Suppose that either

\[\sum_{n=N}^{\infty} |A_n| < \infty \]

or there is a positive integer \(q \) such that the sequences

\[A_n^{(r)} = \sum_{m=n}^{\infty} A_{m+1}^{(r-1)} A_m, \quad r = 1, 2, \ldots, q \quad (\text{with } A_n^{(0)} = I) \]
Asymptotically Constant Solutions

are all defined for \(n \geq N \), and

\[
\sum_{n=N}^{\infty} |A_{n+1}^{(q)} A_n| < \infty. \tag{6}
\]

(If (4) holds we let \(q = 0 \) and (5) is vacuous; note that (4) and (6) are equivalent in this case, since \(A_{m+1}^{(0)} = I \).

Define

\[
\Gamma_n = \sum_{r=0}^{m} A_{n+1}^{(r)}, \tag{7}
\]

and suppose that \(\sum_{n=N}^{\infty} \Gamma_n f(n, c) \) converges (perhaps conditionally).

Then, if \(n_0 \) is sufficiently large, there is a solution \(\hat{X} = \{\hat{x}_n\}_{n=n_0}^{\infty} \) of (1) such that

\[
|\hat{x}_n - c| \leq M, \quad n \geq n_0, \tag{8}
\]

and

\[
\lim_{n \to \infty} \hat{x}_n = c. \tag{9}
\]

Proof. Since \(A_n^{(0)} = I \) and \(\lim_{n \to \infty} A_{n+1}^{(r)} = 0 \) if \(r > 0 \), \(\lim_{n \to \infty} \Gamma_n = I \). Therefore \(\Gamma_n \) is invertible for large \(n \). For now, choose \(n_0 \geq N \) so that \(\Gamma_n \) is invertible if \(n \geq n_0 \); we will impose another condition on \(n_0 \) later. Define

\[
h_n = (\Gamma_n^{-1} - I)c - \Gamma_n^{-1} \left(\sum_{m=n}^{\infty} A_{m+1}^{(q)} A_m c + \Gamma_{m+1} f(m, c) \right). \tag{10}
\]

Let \(B \) be the Banach space of bounded sequences \(U = \{u_n\}_{n=n_0}^{\infty} \) of \(k \)-vectors, with norm \(\|U\| = \sup_{n \geq n_0} |u_n| \). Let \(B_M \) be the closed convex subset

\[
B_M = \{ U \in B \mid \|U\| \leq M \}
\]

of \(B \). From (2) and our assumption that \(R(n, \lambda) \) is nondecreasing with respect to \(\lambda \), if \(U \in B_M \) then

\[
|f(m, u_m + c) - f(m, c)| \leq R(m, |u_m|) \leq R(m, M). \tag{11}
\]

Therefore (3) and (6) imply that if \(U \in B_M \) then the sequence \(T U \), with

\[
(TU)_n = h_n - \Gamma_n^{-1} \sum_{m=n}^{\infty} \left[A_{m+1}^{(q)} A_m u_m + \Gamma_{m+1} [f(m, u_m + c) - f(m, c)] \right] \tag{12}
\]

is well defined. We will show that if \(n_0 \) is sufficiently large then \(T \) is a continuous mapping of \(B_M \) into itself and \(T(B_M) \) has compact closure. Given this, the Schauder-Tychonoff theorem [1, p. 405] implies that \(TU = \hat{U} \) for some \(\hat{U} \in B_M \). We will then show that \(\hat{X} = C + \hat{U} \) (with \(C = \{c, c, c, \ldots\}_{n_0}^{\infty} \)) satisfies (1), (8), and (9).

Let

\[
\mu(n_0) = \sup_{m \geq n_0} |\Gamma_m^{-1}| \quad \text{and} \quad v(n_0) = \sup_{m \geq n_0} |\Gamma_{m+1}|.
\]
Asymptotically Constant Solutions

From (11) and (12), if \(U \in B_M \) then

\[
|\langle T U \rangle_n| \leq |h_n| + \mu(n_0) \sum_{m=n}^{\infty} \left| A_{m+1} A_m^{(q)} |M + v(n_0) R(m, M)| \right|. \tag{13}
\]

Since \(\lim_{n_0 \to \infty} \mu(n_0) = \lim_{n_0 \to \infty} v(n_0) = 1 \), (3) and (6) enable us to choose \(n_0 \) so that the quantity on the right side of (13) is less than \(M \) if \(n \geq n_0 \). Then \(T(B_M) \subset B_M \).

We will now show that \(T \) is continuous on \(B_M \). Suppose that \(U = \lim_{r \to \infty} U^{(r)} \) where \(\{U^{(r)}\} \subset B_M \). Let \(V = TU \) and \(V^{(r)} = TU^{(r)} \). Then

\[
v^{(r)}_m - v_m = \Gamma_m^{-1} \sum_{m=n}^{\infty} \left[A_{m+1} A_m^{(q)} (u_m - u^{(r)}_m) + \Gamma_m^{(r)} \left(f(m, u_m + c) - f(m, u^{(r)}_m + c) \right) \right].
\]

Therefore

\[
\|v^{(r)} - v\| \leq \mu(n_0) \sum_{m=n_0}^{\infty} \sigma^{(r)}_m, \tag{14}
\]

where

\[
\sigma^{(r)}_m = \left| A_{m+1} A_m^{(q)} |u_m - u^{(r)}_m| + v(n_0) \left| f(m, u_m + c) - f(m, u^{(r)}_m + c) \right| \right|.
\]

Note that

\[
\lim_{r \to \infty} \sigma^{(r)}_m = 0, \quad m \geq n_0,
\]

because of the continuity assumption on \(f \), and

\[
\sigma^{(r)}_m \leq \sigma_m = 2 \left(M |A_{m+1} A_m^{(q)}| + |v(n_0)| R(m, M) \right), \tag{15}
\]

(see (11), applied to \(U \) and \(U^{(r)} \)) because \(U \) and \(U^{(r)} \) are in \(B_M \). Because of (3) and (6), \(\sum_{m=n_0}^{\infty} \sigma_m < \infty \). Given \(\epsilon > 0 \), choose \(n_1 \geq n_0 \) so that \(\sum_{m=n_1+1}^{\infty} \sigma_m < \epsilon \). Then (14) and (15) imply that

\[
\|v^{(r)} - v\| \leq \mu(n_0) \left(\sum_{m=n_0}^{n_1} \sigma^{(r)}_m + \epsilon \right). \tag{16}
\]

Now choose \(r_0 \) so that

\[
\sigma^{(r)}_m < \frac{\epsilon}{(n_1 - n_0 + 1)} \text{ for } m = n_0, \ldots, n_1 \text{ if } r \geq r_0.
\]

Then (16) implies that

\[
\|v^{(r)} - v\| < 2\mu(n_0)\epsilon \text{ if } r \geq r_0,
\]

which shows that \(T \) is continuous on \(B_M \).
Asymptotically Constant Solutions

We will now show that \(\overline{T(B_M)} \) (the closure of \(T(B_M) \)) is compact. From (11) and (12), \(\overline{T(B_M)} \) is a subset of \[A = \{ v \in B \mid |v_n| \leq \rho(n), n \geq n_0 \}, \]
where \[\rho(n) = |h_n| + \mu(n_0) \left(M \sum_{m=n}^{\infty} |A_m^{(q)} A_m| + \sum_{m=n}^{\infty} v(n_0) R(m, M) \right). \]
Therefore, it suffices to show that \(A \) is compact. From [2, pp. 51-53], this is true if \(A \) is totally bounded; that is, for every \(\varepsilon > 0 \) there is a finite subset \(A_\varepsilon \) of \(B \) such that for each \(v \in A \) there is a \(\tilde{v} \in A_\varepsilon \) that satisfies the inequality \(\| v - \tilde{v} \| < \varepsilon \). To establish the existence of \(A_\varepsilon \), choose an integer \(n_1 \geq n_0 \) such that \(\rho(n) < \varepsilon \) if \(n > n_1 \), and let \(p \) be an integer such that \(\rho(n) < M \). Then, since \(|v_n| \leq M \) for all \(n \geq n_0 \), the finite set \(A_\varepsilon \) consisting of sequences of the form \[a = (a_{n_0}, \ldots, a_{n_1}, 0, 0, \ldots) \]
where the components of the \(k \)-vectors \(\{a_{n_0}, \ldots, a_{n_1}\} \) are all in the set \[\{-p\varepsilon, -(p-1)\varepsilon, \ldots, 0, (p-1)\varepsilon, p\varepsilon\}, \quad n = n_0, \ldots, n_1, \]
has the desired property.

Now the Schauder-Tychonoff theorem implies that \(T \) has a fixed point \(\hat{U} \). Since \(\hat{U} = T\hat{U} \), (10) and (12) imply that if \(\hat{X} = C + \hat{U} \) then
\[\hat{x}_n = \Gamma_n^{-1} \left(c - \sum_{m=n}^{\infty} \left[A_m^{(q)} A_m \hat{x}_m + \Gamma_m f(m, \hat{x}_m) \right] \right). \] (17)
Therefore, \(\lim_{n \to \infty} \hat{x}_n = c \). If \(q = 0 \) then (17) reduces to
\[\hat{x}_n = c - \sum_{m=n}^{\infty} (A_m \hat{x}_m + f(m, x_m)), \]
so
\[\Delta \hat{x}_n = A_n \hat{x}_n + f(n, \hat{x}_n). \] (18)
If \(q > 0 \) then (17) implies that
\[\Delta \hat{x}_n = \Gamma_n^{-1} A_n^{(q)} A_n \hat{x}_n + f(n, \hat{x}_n) + (\Delta \Gamma_n^{-1}) \Gamma_n \hat{x}_n. \] (19)
Since \(\Delta \Gamma_n^{-1} = -\Gamma_n^{-1} (\Delta \Gamma_n) \Gamma_n^{-1} \), (19) implies that
\[\Delta \hat{x}_n = \Gamma_n^{-1} A_n^{(q)} A_n - \Delta \Gamma_n \hat{x}_n + f(n, \hat{x}_n). \] (20)
However, (5) and (7) imply that
\[\Delta \Gamma_n = -\sum_{r=1}^{q} A_{n+1}^{(r-1)} A_n. \]
so

\[A_{n+1}^{(q)}A_n - \Delta \Gamma_n = \Gamma_{n+1}A_n, \]

and therefore (20) implies (18). ■

The hypotheses of Theorem 1 may hold for some constant vectors \(c \) and fail to hold for others. In the following corollary \(c \) may be chosen arbitrarily.

Corollary 1 Let \(A_n \) satisfy the hypotheses of Theorem 1. Suppose there is an integer \(N \) such that \(f(n, x) \) is continuous with respect to \(x \) for all \(n \geq N \) and all \(x \), and

\[|f(n, x_1) - f(n, x_2)| \leq R(n, |x_1 - x_2|) \]

where \(R = R(n, \lambda) \) is defined on

\[\{(n, x) \mid n \geq N, 0 \leq \lambda \leq \infty\} \]

and nondecreasing in \(\lambda \) for each \(n \), and \(\sum_{n=N}^{\infty} |R(n, M)| < \infty \) for some constant \(M > 0 \). Suppose also that \(\sum_{n=N}^{\infty} \Gamma_{n+1}f(n, c) \) converges (perhaps conditionally) for every constant vector \(c \). Let \(c \) be a given constant vector. Then, if \(n_0 \) is sufficiently large, there is a solution \(\hat{X} = \{\hat{x}_n\}_{n=n_0}^{\infty} \) of (1) that satisfies (8) and (9).

The following corollary applies to the linear system

\[\Delta x_n = (A_n + B_n)x_n + g_n, \tag{21} \]

where \(A_n \) and \(B_n \) are \(k \times k \) matrices and \(g_n \) is a \(k \)-vector.

Corollary 2 Suppose that \(A_n \) satisfies the hypotheses of Theorem 1, while \(\sum_{n=0}^{\infty} |B_n| < \infty \) and \(\sum_{n=0}^{\infty} \Gamma_{n+1}g_n \) converges (perhaps conditionally). Let \(c \) be an arbitrary vector. Then (21) has a solution \(\hat{X} \) such that \(\lim_{n \to \infty} \hat{x}_n = c \).

References
