Stability of a class of discrete minimum variance smoothing formulas

William F. Trench, Trinity University

Available at: https://works.bepress.com/william_trench/16/
STABILITY OF A CLASS OF DISCRETE MINIMUM VARIANCE
SMOOTHING FORMULAS

WILLIAM F. TRENCH

Abstract. We study stability of midpoint smoothing formulas matched to discrete data consisting of equally spaced samples of an unknown polynomial of known maximal degree plus a random error with known spectral density. Stability is established for a class of minimum variance smoothing formulas which includes least squares and minimum R_n smoothing formulas, previously shown to be stable by T. N. E. Greville.

1. Introduction. We consider the problem of smoothing a sequence of observations,

\[u_r = f(r) + \varepsilon_r, \]

where f is an unknown polynomial of degree not exceeding $2k$ and $\{\varepsilon_r\}$ is a sample sequence from a real-valued stationary time series with zero mean and continuous spectral density

\[\Phi(\lambda) = \sum_{-\infty}^{\infty} \phi_r \cos r\lambda; \]

that is,

\[E(\varepsilon_r\varepsilon_{r+s}) = \phi_r. \]

We apply to (1) the smoothing formula

\[u_r = \sum_{s=-q}^{q} w_s v_{r-s}, \]

where the weighting coefficients w_{-q}, \ldots, w_q are chosen to minimize

\[Q(w_{-q}, \ldots, w_q) = \sum_{s=-q}^{q} \phi_{r-s} w_s w_s \]

subject to the constraints

\[\sum_{s=-q}^{q} w_s \delta_r = \delta_{0r}, \quad 0 \leq r \leq 2k. \]

If $\{w_{-q}, \ldots, w_q\}$ is any solution of (3) and

\[u_r^* = \sum_{s=-q}^{q} w_s v_{r-s}, \]

* Received by the editors June 1, 1971.
† Mathematics Department, Drexel University, Philadelphia, Pennsylvania 19104. This work was supported in part by the National Science Foundation under Grants GP-9656 and GP-23217.
then

\[E u^*_k = f(r) \]

whenever \(f \) is a polynomial of degree not exceeding \(2k \), and

\[E(u^*_k - f(r))^2 = Q(w_{-q}, \ldots, w_q). \]

For these reasons we shall follow the convention introduced in [11], and refer to (2) as \(\text{MV}(q, k; \Phi) \), which stands for “minimum variance smoothing formula, with respect to \(\Phi \), of span \(2q + 1 \) and degree \(2k + 1 \).”

If \(\Phi \neq 0 \), the constrained minimum problem has a unique solution for every \(q \) and \(k \). Moreover, it happens that

\[w_s = w_{-s}, \]

so that \(\text{MV}(q, k; \Phi) \) is symmetric, and (4) holds even if \(f \) is of degree \(2k + 1 \), rather than \(2k \).

If \(q \leq k \), then (3) has only the uninteresting solution

\[w_0 = 1, \]
\[w_s = 0, \quad s \neq 0; \]

therefore we shall assume that \(q > k \).

The characteristic function of \(\text{MV}(q, k; \Phi) \) is defined to be

\[C(\lambda) = \sum_{-q}^{q} w_s \cos r. \]

It follows [6] from (3) and (5) that

\[C(\lambda) = 1 + O(\lambda^{2k+2}), \quad \lambda \to 0. \]

Schoenberg [5] has shown that a symmetric smoothing formula is stable under repeated application if and only if

\[|C(\lambda)| < 1, \quad 0 < |\lambda| \leq \pi. \]

(For a different interpretation of (7), see [11] and the footnote reference to Lanczos in [6].)

Results on stability of minimum variance smoothing formulas are quite limited. Greville [1] has shown that \(\text{MV}(q, k; \Phi) \) is stable for all \(q \geq k + 1 \geq 1 \) if

\[\Phi(\lambda) = \sin^2(\lambda/2), \]

where \(m \) is a nonnegative integer. If \(m = 0 \), this is equivalent to least-squares smoothing, the stability of which had been conjectured by Schoenberg; if \(m \geq 1 \), it is equivalent to minimum \(R_m \) smoothing, as defined by Wolfenden [13]. Trench [11] has obtained the following result.

Theorem 1. Suppose \(\text{MV}(q, k; \Phi) \) is stable for all \(q \geq k + 1 \geq 1 \), and let

\[Q(x) = \frac{x^k \prod_{j=1}^{r} (1 + \theta_j x)}{\prod_{j=1}^{r} (1 - \gamma_j x)}, \]
where \(t \) is a nonnegative integer, \(\theta_i \geq 0 \), and \(0 \leq \gamma_j < 1 \). Define

\[
\eta(\lambda) = Q(\sin^2(\lambda/2))\Phi(\lambda).
\]

Then \(\text{MV}(q, k; \eta) \) is stable for all \(q \geq k + 1 \geq 1 \).

Wilf [12], Lorch and Szegö [2], [3], Lorch, Muldoon and Szegö [4], and Trench [8], [9], [10] have considered related questions for continuous smoothing formulas.

In this paper we obtain sufficient conditions (Theorem 3) for stability of \(\text{MV}(q, k; \Phi_{\mu}) \), where

\[
\Phi_{\mu}(\lambda) = (\sin^2(\lambda/2))^{\mu}(\cos^2(\lambda/2))^v, \quad \mu, v > -1/2.
\]

These results are extended to more general spectral densities in Theorem 4.

2. Characteristic function of \(\text{MV}(q, k; \Phi_{\mu}) \). Throughout this paper

\[
(u)_k = u(u+1)\cdots(u+k-1)
\]

and

\[
(u)_k^m = u(u-1)\cdots(u-k+1).
\]

The following result reduces to Sheppard's formula for the characteristic function of minimum \(R_m \) smoothing [1], [7] when \(\mu = m \) and \(v = 0 \).

Theorem 2. The characteristic function of \(\text{MV}(q, k; \Phi_{\mu}) \) is

\[
C(\lambda) = 1 + \frac{(-1)^{k+1}}{k!} \sum_{s=k+1}^{q} \frac{(-q)_s(q+\mu+v+1)_s}{s(s-k-1)!k+1_3s} \sin^{2s}(\lambda/2).
\]

Proof. The variance of the output of \(\text{MV}(q, k; \Phi_{\mu}) \) is

\[
\sigma^2 = \sum_{r,s=-q}^{q} \phi_{r,s} w_r w_s,
\]

where \(\phi_{r,s} \) are the Fourier coefficients of \(\Phi_{\mu} \). This can be written as

\[
\sigma^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} |C(\lambda)|^2 \Phi_{\mu}(\lambda) \, d\lambda.
\]

Since \(\cos r\lambda \) is a polynomial of degree \(|r| \) in

\[
x = \sin^2(\lambda/2),
\]

\(C(\lambda) \) is a polynomial of degree \(q \) in \(x \), which, from (6), is of the form

\[
C(\lambda) = P(x) = 1 - \sum_{s=k+1}^{q} b_s x^s.
\]

Substituting this into (9) and taking \(x \) as the new variable of integration yields

\[
\sigma^2 = \frac{1}{\pi} \int_{-1}^{1} \left(1 - \sum_{s=k+1}^{q} b_s x^s \right)^2 x^{s-1/2}(1-x)^{-1/2} \, dx.
\]

Thus, \(P(x) \) (and therefore \(C(\lambda) \)) can be obtained by minimizing (11) with respect to

\[b_{k+1}, \ldots, b_q. \]
We complete the proof of Theorem 2 with the following lemma.

Lemma 1. Suppose \(\alpha, \beta > -1, \) \(p \) is a positive integer, and \(n \) is a nonnegative integer. Then the minimum value of

\[
\int_0^1 (F(x))^2 x^\alpha (1-x)^\beta \, dx
\]

for \(F(x) \) of the form

\[
F(x) = 1 - x^n \sum_{s=0}^n a_s x^s,
\]

is attained with

\[
F(x) = 1 - \frac{(-1)^n n! \sum_{s=0}^n (-n-p)(n+p+\alpha+\beta+2)_s}{(p-1)! \sum_{s=0}^n s(s-p)(p+\alpha+1)_s} x^n.
\]

Proof. Differentiating

\[
\int_0^1 \left(1 - x^n \sum_{s=0}^n a_s x^s\right)^2 x^\alpha (1-x)^\beta \, dx
\]

with respect to \(a_0, \ldots, a_n \) and equating the results to zero yields

\[
\int_0^1 x^r x^\alpha (1-x)^\beta \, dx = \sum_{s=0}^n a_s \int_0^1 x^{2r+s+\alpha} (1-x)^\beta \, dx, \quad 0 \leq r \leq n.
\]

From the properties of the beta function,

\[
\int_0^1 x^\alpha (1-x)^\beta \, dx = \frac{\Gamma(\xi + 1)\Gamma(\eta + 1)}{\Gamma(\xi + \eta + 2)}, \quad \xi, \eta > -1.
\]

Applying this to (14) and cancelling common factors yields

\[
\frac{(p+r+\alpha+\beta+2)_p}{(p+r+\alpha+1)_p} = \sum_{s=0}^n \frac{(2p+r+\alpha+1)_s}{(2p+r+\alpha+\beta+2)_s} a_s, \quad 0 \leq r \leq n.
\]

Subtracting the \(r \)th equation from the \((r+1)\)st and using the relationship

\[
\frac{(x+1)_j}{(y+1)_j} - \frac{(x)_j}{(y)_j} = \frac{(x+1)_j}{(y)_j} (y-x)
\]

yields

\[
\frac{(p+r+\alpha+\beta+3)_{p+1}}{(p+r+\alpha+1)_{p+1}} = \sum_{s=0}^{n-1} \frac{(2p+r+\alpha+2)_s}{(2p+r+\alpha+\beta+2)_s} \left[\frac{(s+1)a_{s+1}}{p} \right] - \frac{(s+1)a_{s+1}}{p},\quad 0 \leq r \leq n-1.
\]

Denote the solution of (15) more precisely by \(a_{n, \alpha, \beta, p} \); writing (15) for \(\alpha = 1, \beta + 1, p + 1 \) and \(n - 1, \) and comparing the result with (16) yields

\[
a_{n, \alpha, \beta, p} = \frac{-p}{s} a_{s-1, \alpha-1, \beta+1, p+1}, \quad 1 \leq s \leq n.
\]
Given $a_{0,n-1}, \ldots, a_{n-1}$, for all α, β and p, this yields $a_{1,n}, \ldots, a_{n}$ but not $a_{\alpha\beta}$; hence we need another recursion formula. Multiplying (15) by $(2p + r + \alpha + \beta + 2)_n/(2p + r + \alpha + 1)_n$, yields, after some manipulation,

$$
\frac{(p + r + \alpha + \beta + 2)}{(p + r + \alpha + 1)} a_{n+p} = \sum_{s=0}^{n} \frac{(2p + r + s + \alpha + \beta + 2)}{(2p + r + s + \alpha + 1)} a_{n-s} a_{n}(\alpha, \beta, p), \quad 0 \leq r \leq n.
$$

Subtracting the rth equation from the $(r+1)$st yields

$$
\frac{(p + r + \alpha + \beta + 3)}{(p + r + \alpha + 1)} a_{n+p-1} = \sum_{s=0}^{n-1} \frac{(2p + r + s + \alpha + \beta + 3)}{(2p + r + s + \alpha + 1)} a_{n-s-1} - \frac{n-s}{n-p} a_{n}(\alpha, \beta, p), \quad 0 \leq r \leq n-1.
$$

Comparing this with (18) for $\alpha, \beta + 1, p$ and $n-1$ yields

$$
a_{n}(\alpha, \beta, p) = \frac{n + p}{n} a_{n}(\alpha, \beta + 1, p), \quad 0 \leq s \leq n-1.
$$

Starting from (15) with $n = 0$, induction on n using (17) and (19) implies that

$$
a_{n}(\alpha, \beta, p) = \frac{(n + p + \alpha + \beta + 3)}{(p + 1)(n + p + \alpha + \beta + 2)} a_{n}, \quad 0 \leq s \leq n,
$$

which yields (12).

Comparing (11) and (13) shows that $P(x)$ can be obtained by setting

$$
p = k + 1, \quad n = q - k - 1, \quad \alpha = \mu - 1/2, \quad \beta = \nu - 1/2
$$

in (12). This and (10) yield (8), which completes the proof of Theorem 2.

3. Main results. From (10), MV(q, k; Φ_{n}) is stable if and only if

$$|P(x)| < 1, \quad 0 < x \leq 1;
$$

however, it is convenient to consider the polynomial $F(x)$ defined by (12).

Lemma 2. If

$$|F(1)| < 1,
$$

then

$$|F(x)| < 1, \quad 0 < x \leq 1.
$$

Therefore, MV(q, k; Φ_{n}) is stable if and only if (21) holds, with parameters n, p, α and β given by (20).

Proof. From a result of Greville (see the proof of Lemma 2 of [1]), $(F(x))^2$ is interpolated at $x = 0$, at the relative extrema of $F(x)$ in $(0, 1)$, and at $x = 1$ by the polynomial

$$f(x) = 1 + \int_{0}^{1} t^{-p+1} q(t)(F(t))^2 \, dt,
$$
where

\[q(x) = \sum_{s=0}^{p-1} d_s r(s, x)x^s, \]

\[d_s = \frac{-(p-1)\gamma(p+\beta+1)p^{-s-1}}{s!(n+p+s)(n+p+\beta+2)p^{-s}} \]

and

\[r(s, x) = (3p + 2x - 3s)(1 - x) - (2\beta + 1)x, \quad 0 \leq s \leq p - 1. \]

Clearly

\[r(s, 0) > 0, \quad \alpha > -1, \quad 0 \leq s \leq p - 1; \]

consequently, since \(d_s < 0 \), \(q(x) \) is negative near \(x = 0 \). Moreover,

\[r(s, x) < 0, \quad \alpha, \beta > -1, \quad 0 \leq s \leq p - 1, \]

so that \(q(x) \) is monotone increasing. Hence \(q(x) \) either remains negative for all \(x \) on \((0, 1)\) from (23), this is true if and only if \(-1 < \beta \leq -1/2\) or changes sign exactly once, from negative to positive. In either case,

\[f(1) < 1 \]

implies

\[f(x) < 1, \quad 0 < x \leq 1. \]

From the manner in which \(f(x) \) interpolates \((F(x))^2\), it now follows that (21) implies (22), which completes the proof of Lemma 2.

The next theorem is our main result on stability of \(\text{MV}(q, k; \Phi_{\mu}). \)

Theorem 3. (a) \(\text{MV}(q, 0; \Phi_{\mu}) \) is stable if and only if \(-1/2 < \nu < \mu + 1\).

(b) If \(-1/2 < \nu \leq 1/2, \) then \(\text{MV}(q, k; \Phi_{\mu}) \) is stable for all \(q \geq k + 1 \geq 1 \) and \(\mu > -1/2. \)

(c) For each \(k, \mu \) and \(\tau, \) \(\text{MV}(q, k; \Phi_{\mu}) \) is stable for all \(q \) sufficiently large if \(-1/2 < \nu < \mu + 1), \) or unstable for all \(q \) sufficiently large if \(\tau > \mu + 1. \)

Proof. From (12),

\[F(1) = 1 - \frac{(-1)^p \sum_{s=p}^{n+p} (-n+p)_{s}(n+p+\alpha+\beta+2)_{s}}{(p-1)! s!(n+p+\alpha+1)_{s}}, \]

which can be rewritten (see the Appendix) as

\[F(1) = \frac{(-1)^{n+p}(n+\beta+1)^{n+p+1}}{(n+p+\alpha+1)^{n+p+1}} \sum_{s=0}^{p-1} (-n+p+s)(n+p+\alpha+\beta+2)_{s} \]

If \(p = 1, \) then

\[|F(1)| = \frac{(n+\beta+1)^{n+1}}{(n+\alpha+2)^{n+1}}; \]

hence \(|F(1)| < 1 \) if and only if \(\beta < \alpha + 1, \) and (a) follows from (20) and Lemma 2.
If \(\beta \leq 0 \), then (24) implies
\[
|F(1)| \leq \frac{(n + 1)!}{(n + p + \alpha + 1)^{p-1}} \sum_{s=0}^{p-1} \frac{(n + 1)_s}{s!}
\]
\[
= \frac{(n + 1)(n + 2)^{p-1}}{(n + p + \alpha + 1)^{p-1}(p - 1)!}
\]
\[
= \frac{(n + p)^{(p-1)}}{(n + p + \alpha + 1)^{(p-1)}(p - 1)!} < 1 \text{ if } \alpha > -1;
\]
hence (b) follows from (20) and Lemma 2.

(The first equality in (25) can be obtained from the identity \(\sum_{s=0}^{p-1} (u)_s/r! = (u+1/q)^r \).

To prove (c), we rewrite (24) as
\[
|F(1)| = \frac{(n + \beta + 1)^{(p-2)}}{(n + \alpha + 2)^{(p-2)}} \cdot \left[\frac{(\beta + p - 1)^{(p-1)}}{(n + p + \alpha + 1)^{p-1}} \sum_{s=0}^{p-1} \frac{(n + 1)_s(n + p + \alpha + \beta + 2)_s}{s!(n + p + \alpha + 2)_s} \right].
\]
The expression in brackets approaches \((\beta + p - 1)^{(p-1)}(p - 1)!\) as \(n\) approaches infinity, and
\[
\lim_{n \to \infty} \frac{(n + \beta + 1)^{(p-2)}}{(n + \alpha + 2)^{(p-2)}} \cdot \left[\frac{(\beta + p - 1)^{(p-1)}}{(n + p + \alpha + 1)^{p-1}} \sum_{s=0}^{p-1} \frac{(n + 1)_s(n + p + \alpha + \beta + 2)_s}{s!(n + p + \alpha + 2)_s} \right] = \begin{cases} 0 & \text{if } \beta < \alpha + 1, \\ \infty & \text{if } \beta > \alpha + 1; \end{cases}
\]
hence (c) follows from (20) and Lemma 2.

Parts (a) and (b) of the next theorem follow from Theorems 1 and 3. Part (c) requires a minor modification of Theorem 1: namely, replacement of the phrase “for all \(q \geq k + 1 \geq 1 \)” by “for each fixed \(k \) and sufficiently large \(q \).” This modified version of Theorem 1 also follows from the proof given in [11].

Theorem 4.

Let
\[
Q(x) = \frac{x^\mu(1 - x)^\nu \prod_{i=1}^{r} (1 + \theta_i x)}{\prod_{j=1}^{s} (1 - \gamma_j x)},
\]
where \(\mu, \nu > -1/2, \theta_i \geq 0 \) and \(0 \leq \gamma_j < 1 \). Define
\[
\Phi(\lambda) = Q(\sin^2(\lambda/2)).
\]

Then
(a) \(MV(q, 0; \Phi) \) is stable if \(\nu < \mu + 1 \).

(b) If \(-1/2 < \nu \leq 1/2\), then \(MV(q, k; \Phi) \) is stable for all \(k \geq k + 1 \geq 1 \) and \(\mu > -1/2 \).

(c) For each \(k \), \(\mu \) and \(\nu \), \(MV(q, k; \Phi) \) is stable for all \(q \) sufficiently large if \(-1/2 < \nu \leq \mu + 1 \).
Appendix. The purpose of this Appendix is to verify (24).

Lemma A.1. The following is an identity in \(u \) and \(v \):

\[
\sum_{s=0}^{m} (-1)^{s} \binom{m}{s} \frac{(u + v)_s}{(v)_s} = \frac{(u)^m}{(-v)^m};
\]

(A.1)

Proof. If \(v \neq -m + 1, \ldots, -1, 0 \), the left side of (A.1) is a polynomial of degree \(m \) in \(u \). Call it \(Q(u) \). If \(r = 0, 1, \ldots, m - 1 \), then

\[
Q(r) = \sum_{s=0}^{m} (-1)^{s} \binom{m}{s} \frac{(v + r)_s}{(v)_s} = \frac{(v + r)_m}{(v)_m} \sum_{s=0}^{m} (-1)^{s} \binom{m}{s} (v + s)_r = 0,
\]

since the last sum is the \(m \)th difference of a polynomial of degree less than \(m \). As a polynomial in \(u \), the right side of (A.1) has the same zeros as the left; moreover, both sides equal 1 when \(u = -v \). Hence (A.1) is an identity.

Lemma A.2. The following is an identity in \(x \) and \(y \):

\[
1 - \frac{(-1)^{p} \binom{n+p}{p} \binom{n-p}{(x+y)}_x}{(p-1)! \binom{n+p}{n-p} \binom{n-p}{y+y}} = \frac{(x)^{n+1} \sum_{s=0}^{p-1} (n+1)_s (x+y)_s}{(-y)^{n+1} \sum_{s=0}^{p-1} (n+1)_s (y+n+1)_s}.
\]

(A.2)

Proof. For a fixed \(y \neq -n - p + 1, \ldots, -1, 0 \), the left side of (A.2) is a polynomial of degree \(n + p \) in \(x \). Call it \(P(x) \). Then

\[
P(-y - r) = 1, \quad 0 \leq r \leq p - 1.
\]

(A.3)

Also, \(P(x) \) can be rewritten as

\[
P(x) = \frac{(-1)^{p-1} \binom{n+p}{n-p} \binom{n-p}{x+y} (x+y)_x}{(y)^{n+1} \sum_{s=0}^{p-1} (n+1)_s (x+y)_s}.
\]

If \(r = 0, 1, \ldots, n \), then

\[
P(r) = \frac{(-1)^{p-1} \binom{n+p}{n-p} \binom{n-p}{r+y} \sum_{s=0}^{p-1} (-1)^{s} \binom{n+p}{s} \binom{s-1}{r}}{(y)^{n+1} \sum_{s=0}^{p-1} (n+1)_s (r+y)_s},
\]

which is the \((n + p) \)th difference of a polynomial of degree less than \(n + p \); hence

\[
P(r) = 0, \quad r = 0, 1, \ldots, n.
\]

The right side of (A.2) also vanishes at \(x = 0, 1, \ldots, n \). Because of (A.3), the proof will be complete if we show that the right side of (A.2) equals 1 when \(x = -y - r, r = 0, 1, \ldots, p - 1 \); that is, we must show that

\[
\frac{(-y)^{n+1}}{(-y)^{n+1}} \sum_{s=0}^{r} \frac{(n+1)_s (-r)_s}{s!(y+n+1)_s} = 1.
\]

(A.4)
This is accomplished by rewriting the left side of (A.4) as
\[
\frac{(-y-r)^{(n+1)}}{(-y)^{(n+1)}} \sum_{k=0}^r (-1)^k \binom{r}{k} \frac{y^{(n+1)}}{(y+n+1)^k},
\]
and invoking (A.1) with \(m = r, u = -y, \) and \(v = y+n+1. \)

Now (24) can be obtained by setting \(x = n+\beta+1 \) and \(y = p+\alpha+1 \) in (A.2).

Acknowledgment. I wish to thank one of the referees for bringing Lemma 2 to my attention.

REFERENCES