Trinity University

From the SelectedWorks of William F. Trench

March, 2013

Inverse problems for unilevel block $\$ \backslash$ alpha\$circulants

William F. Trench, Trinity University

Inverse problems for unilevel block α-circulants

William F. Trench

Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA
Dedicated to Professor Biswa Nath Datta

Abstract

We consider the following inverse problems for the class \mathcal{C}_{α} of unilevel block α-circulants $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where $k>1, C_{0}, C_{1}$, $\ldots, C_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}, \alpha \in\{1,2, \ldots, k-1\}, \operatorname{gcd}(\alpha, k)=1$, and $\|\cdot\|$ is the Frobenius norm. Problem 1 Find necessary and sufficient conditions on $Z \in \mathbb{C}^{k d_{2} \times h}$ and $W \in \mathbb{C}^{k d_{1} \times h}$ for the existence of $C \in \mathcal{C}_{\alpha}$ such that $C Z=W$, and find all such C if the conditions are satisfied.

Problem 2 For arbitrary $Z \in \mathbb{C}^{k d_{2} \times h}$ and $W \in \mathbb{C}^{k d_{1} \times h}$, find

$$
\sigma_{\alpha}(Z, W)=\min _{C \in \mathcal{C}_{\alpha}}\|C Z-W\|
$$

characterize the class

$$
\mathcal{M}_{\alpha}(Z, W)=\left\{C \in \mathcal{C}_{\alpha} \mid\|C Z-W\|=\sigma_{\alpha}(Z, W)\right\}
$$

and find C in this class with minimum norm.
Problem 3 If $A \in \mathcal{C}_{\alpha}$ is given, find

$$
\sigma_{\alpha}(Z, W, A)=\min _{C \in \mathcal{M}_{\alpha}(Z, W)}\|C-A\|
$$

and find $C \in \mathcal{M}_{\alpha}(Z, W)$ such that $\|C-A\|=\sigma_{\alpha}(Z, W, A)$.
We also consider slightly modified problems for the case where $\operatorname{gcd}(\alpha, k)>1$.

MSC: 15A09; 15A15; 15A18; 15A99
Keywords: Block circulant; Discrete Fourier transform; Frobenius norm; Inverse problem; Minimum norm; Moore-Penrose inverse

1 Introduction

We consider inverse problems for the class \mathcal{C}_{α} of unilevel block α-circulants $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where $k>1, C_{0}, C_{1}, \ldots, C_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}, \alpha \in\{1,2, \ldots, k-$ $1\}, \operatorname{gcd}(\alpha, k)=1$, and all subscripts specifically associated with circulants are to be interpreted modulo k. Throughout the paper $\|\cdot\|$ denotes the Frobenius norm; i.e., if

$$
V=\left[v_{r s}\right]_{1 \leq r \leq p, 1 \leq s \leq q} \in \mathbb{C}^{p \times q}, \quad \text { then } \quad\|V\|=\left(\sum_{r=1}^{p} \sum_{s=1}^{q}\left|v_{r s}\right|^{2}\right)^{1 / 2} .
$$

Problem 1 Find necessary and sufficient conditions on $Z \in \mathbb{C}^{k d_{2} \times h}$ and $W \in \mathbb{C}^{k d_{1} \times h}$ for the existence of $C \in \mathcal{C}_{\alpha}$ such that $C Z=W$, and find all such C if the conditions are satisfied.

Problem 2 For arbitrary $Z \in \mathbb{C}^{k d_{2} \times h}$ and $W \in \mathbb{C}^{k d_{1} \times h}$, find

$$
\sigma_{\alpha}(Z, W)=\min _{C \in \mathcal{C}_{\alpha}}\|C Z-W\|,
$$

characterize the class

$$
\mathcal{M}_{\alpha}(Z, W)=\left\{C \in \mathcal{C}_{\alpha} \mid\|C Z-W\|=\sigma_{\alpha}(Z, W)\right\}
$$

and find C in this class with minimum norm.
Problem 3 If $A \in \mathcal{C}_{\alpha}$ is given, find

$$
\sigma_{\alpha}(Z, W, A)=\min _{C \in \mathcal{M}_{\alpha}(Z, W)}\|C-A\|
$$

and find $C \in \mathcal{M}_{\alpha}(Z, W)$ such that $\|C-A\|=\sigma_{\alpha}(Z, W, A)$.
If $\operatorname{gcd}(\alpha, k)=q>1$ then the first $p=k / q$ block rows of an α-circulant $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$ are repeated q times, which obviously restricts the ranges of all such C. Since Problems $1-3$ do not reflect this restriction, it is reasonable to regard them as ill posed in this case. Section 4 is devoted to this question.

These problems and the results contained here are related to previous results and methods developed in $[1,2,3,4]$.

2 Preliminary considerations

Henceforth ζ is a primitive k-th root of unity. If $C_{0}, C_{1}, \ldots, C_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$, let

$$
\begin{equation*}
F_{\ell}=\sum_{m=0}^{k-1} \zeta^{\ell m} C_{m}, \quad 0 \leq \ell \leq k-1 \tag{1}
\end{equation*}
$$

thus $\left\{F_{0}, F_{1}, \ldots, F_{k-1}\right\}$ is the discrete Fourier transform of $\left\{C_{0}, C_{1}, \ldots, C_{k-1}\right\}$. Solving (1) for $C_{0}, C_{1}, \ldots, C_{k-1}$ yields

$$
\begin{equation*}
C_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} F_{\ell}, \quad 0 \leq m \leq k-1 \tag{2}
\end{equation*}
$$

Conversely, solving (2) for $F_{0}, F_{1}, \ldots, F_{k-1}$ yields (1); thus, (1) and (2) are equivalent.

Now let

$$
P_{\ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
I_{d_{1}} \\
\zeta^{\ell} I_{d_{1}} \\
\vdots \\
\zeta^{(k-1) \ell} I_{d_{1}}
\end{array}\right] \quad \text { and } \quad Q_{\ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
I_{d_{2}} \\
\zeta^{\ell} I_{d_{2}} \\
\vdots \\
\zeta^{(k-1) \ell} I_{d_{2}}
\end{array}\right], \quad 0 \leq \ell \leq k-1,
$$

so

$$
\begin{equation*}
P_{\ell}^{*} P_{\ell}=\delta_{\ell m} I_{d_{1}} \quad \text { and } \quad Q_{\ell}^{*} Q_{m}=\delta_{\ell m} I_{d_{2}}, \quad 0 \leq \ell, m \leq k-1 . \tag{3}
\end{equation*}
$$

Note that

$$
\begin{equation*}
P_{\alpha \ell}^{*} P_{\alpha m}=\delta_{\ell m} I_{d_{1}}, 0 \leq \ell, m \leq p-1, \text { where } p=k / q \text { and } q=\operatorname{gcd}(\alpha, k) . \tag{4}
\end{equation*}
$$

Lemma 1 If $\left\{C_{0}, C_{1}, \ldots, C_{k-1}\right\}$ and $\left\{F_{0}, F_{1}, \ldots, F_{k-1}\right\}$ are related by the equivalent equations (1) and (2), then
(a) $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$ if and only if
(b) $C=\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}$.

Proof. Starting from (2) yields

$$
\begin{aligned}
{\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1} } & =\frac{1}{k}\left[\sum_{\ell=0}^{k-1} F_{\ell} \zeta^{\ell(s-\alpha r)}\right]_{r, s=0}^{k-1} \\
& =\frac{1}{k} \sum_{\ell=0}^{k-1}\left[\begin{array}{c}
I_{d_{1}} \\
\zeta^{\ell \alpha} I_{d_{1}} \\
\vdots \\
\zeta^{(k-1) \ell \alpha}
\end{array}\right] F_{\ell}\left[\begin{array}{c}
I_{d_{2}} \\
\zeta^{\ell} I_{d_{2}} \\
\vdots \\
\zeta^{(k-1) \ell} I_{d_{2}}
\end{array}\right]^{*} \\
& =\sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*}
\end{aligned}
$$

so (5)(a) implies (5)(b). To see that (5)(b) implies (5)(a), start from (1) and work through these equalities in the opposite direction.

In connection with Problems 1-3, we write

$$
Z=\sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell} \quad \text { with } \quad U_{\ell} \in \mathbb{C}^{d_{2} \times h}, \quad 0 \leq \ell \leq k-1
$$

and

$$
\begin{equation*}
W=\sum_{\ell=0}^{k-1} P_{\ell} V_{\ell} \quad \text { with } \quad V_{\ell} \in \mathbb{C}^{d_{1} \times h}, \quad 0 \leq \ell \leq k-1 \tag{6}
\end{equation*}
$$

It is to be understood that Z and W are fixed and $U_{0}, U_{1}, \ldots, U_{k-1}$ and V_{0}, V_{1}, \ldots, V_{k-1} have these meanings throughout the rest of this paper.

If $\operatorname{gcd}(\alpha, k)=1$ then $\ell \rightarrow \alpha \ell(\bmod k)$ is a permutation of $\{0,1, \ldots, k-1\}$, so we can rewrite (6) as $W=\sum_{\ell=0}^{k-1} P_{\alpha \ell} V_{\alpha \ell}$. (Recall that the subscripts here are to be interpreted modulo k.) Therefore

$$
\begin{equation*}
C Z-W=\sum_{\ell=0}^{k-1} P_{\alpha \ell}\left(F_{\ell} U_{\ell}-V_{\alpha \ell}\right) \tag{7}
\end{equation*}
$$

Since $\left[\begin{array}{llll}P_{0} & P_{\alpha} & \cdots & P_{(k-1) \alpha}\end{array}\right]$ is unitary if $\operatorname{gcd}(\alpha, k)=1$ (see (4)),

$$
\|C Z-W\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell} U_{\ell}-V_{\alpha \ell}\right\|^{2} .
$$

Hence Problems 1-3 each reduce to k independent analogous inverse problems for $F_{0}, F_{1}, \ldots, F_{k-1}$.

As usual, U^{\dagger} denotes the Moore-Penrose inverse of U; i.e., the unique matrix such that

$$
U U^{\dagger} U=U, \quad U^{\dagger} U U^{\dagger}=U^{\dagger}, \quad\left(U U^{\dagger}\right)^{*}=U U^{\dagger}, \quad\left(U^{\dagger} U\right)^{*}=U^{\dagger} U
$$

We will invoke these properties repeatedly without explicit citation.
The following lemma is from [2]. We include the short proof here for completeness. Parts of the proofs of our main results are also implicit in other lemmas from [2]; however, the self-contained proofs given below require less space than it would take to state the appropriate lemmas from [2] and explain their application here.

Lemma 2 If $H \in \mathbb{C}^{d_{1} \times d_{2}}$ and $U \in \mathbb{C}^{d_{2} \times p}$, then $H U=0$ if and only if $H=K\left(I-U U^{\dagger}\right)$ where $K \in \mathbb{C}^{d_{1} \times d_{2}}$ is arbitrary.

Proof. If $H=K\left(I-U U^{\dagger}\right)$ then $H U=0$. For the converse, suppose $H U=0$. If $x \in \mathbb{C}^{d_{2}}$ then $x=v+U w$, where $v \in \mathbb{C}^{d_{2}}, w \in \mathbb{C}^{h}$, and $v^{*} U=0$. Then $H x=H v+H U w=H v$. Now choose K so that $K v=H v$ if $v^{*} U=0$. (For example, $K=H$ is acceptable.) Then

$$
\begin{aligned}
K\left(I-U U^{\dagger}\right) x & =K\left(I-U U^{\dagger}\right)(v+U w)=K\left(I-U U^{\dagger}\right) v \\
& =K v-K\left(v^{*} U U^{\dagger}\right)^{*}=K v=H v=H x
\end{aligned}
$$

Since we have now shown that $H x=K\left(I-U U^{\dagger}\right) x$ for all $x \in \mathbb{C}^{d_{2}}$, it follows that $H=K\left(I-U U^{\dagger}\right)$.

We remind the reader that

$$
\begin{equation*}
\|R+S\|^{2}=\|R\|^{2}+\|S\|^{2} \quad \text { if } \quad R S^{*}=0 \tag{8}
\end{equation*}
$$

3 Main results for the case where $\operatorname{gcd}(\alpha, k)=1$

Throughout this section we assume that $\operatorname{gcd}(\alpha, k)=1$.
Theorem 1 If $Z=\sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}$ and E is an α-circulant, then $E Z=0$ if and only if

$$
\begin{equation*}
E=\left[E_{s-\alpha r}\right]_{r, s=0}^{k-1} \text { where } E_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right), \quad 0 \leq m \leq k-1 \tag{9}
\end{equation*}
$$

and $K_{0}, K_{1}, \ldots, K_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$ are arbitrary.

Proof. From Lemma 1, if $E=\left[E_{s-\alpha r}\right]_{r, s=0}^{k-1}$ then there are H_{0}, H_{1}, \ldots, $H_{k-1} \in \mathbb{C}^{d_{1} \times d_{2}}$ such that

$$
E=\sum_{\ell=0}^{k-1} P_{\alpha \ell} H_{\ell} Q_{\ell}^{*} \quad \text { and } \quad E_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} H_{\ell}, \quad 0 \leq m \leq k-1
$$

Therefore (3) implies that

$$
E Z=\left(\sum_{\ell=0}^{k-1} P_{\alpha \ell} H_{\ell} Q_{\ell}^{*}\right)\left(\sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}\right)=\sum_{\ell=0}^{k-1} P_{\alpha \ell} H_{\ell} U_{\ell}
$$

so (4) with $q=1$ and (8) imply that

$$
\|E Z\|^{2}=\sum_{\ell=0}^{k-1}\left\|H_{\ell} U_{\ell}\right\|^{2}
$$

hence, $E Z=0$ if and only if $H_{\ell} U_{\ell}=0,0 \leq \ell \leq k-1$. Now Lemma 2 implies that $H_{\ell}=K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right), 0 \leq \ell \leq k-1$, so Lemma 1 (with $C=E$ and $\left.F_{\ell}=H_{\ell}, 0 \leq \ell \leq k-1\right)$ implies the conclusion.

The following theorem solves Problem 2.
Theorem 2 Let \mathcal{E}_{α} be the set of all α-circulants of the form (9), and let

$$
\begin{equation*}
C^{(\alpha)}=\left[C_{s-\alpha r}^{(\alpha)}\right]_{r, s=0}^{k-1}, \quad \text { where } \quad C_{m}^{(\alpha)}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} V_{\alpha \ell} U_{\ell}^{\dagger}, \quad 0 \leq m \leq k-1 \tag{10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sigma_{\alpha}(Z, W)={ }_{\operatorname{def}} \min _{C \in \mathcal{C}_{\alpha}}\|C Z-W\|=\left(\sum_{\ell=0}^{k-1}\left\|V_{\alpha \ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right)\right\|^{2}\right)^{1 / 2} \tag{11}
\end{equation*}
$$

and this minimum is attained if and only if

$$
\begin{equation*}
C=C^{(\alpha)}+E, \quad \text { where } \quad E \in \mathcal{E}_{\alpha} . \tag{12}
\end{equation*}
$$

Moreover, $C^{(\alpha)}$ is the unique circulant of this form with minimum norm

$$
\left\|C^{(\alpha)}\right\|=\left(\sum_{\ell=0}^{k-1}\left\|V_{\alpha \ell} U_{\ell}^{\dagger}\right\|^{2}\right)^{1 / 2}
$$

Proof. Since (4) with $q=1$ implies that $\left[\begin{array}{llll}P_{0} & P_{\alpha} & \cdots & P_{(k-1) \alpha}\end{array}\right]$ is unitary, (7) and (8) imply that

$$
\begin{equation*}
\|C Z-W\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell} U_{\ell}-V_{\alpha \ell}\right\|^{2} \tag{13}
\end{equation*}
$$

Now write

$$
F_{\ell} U_{\ell}-V_{\alpha \ell}=\left(F_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right) U_{\ell}-V_{\alpha \ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right)
$$

Since

$$
\left(F_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right) U_{\ell}\left[V_{\alpha \ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right)\right]^{*}=\left(F_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right) U_{\ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right) V_{\alpha \ell}^{*}=0
$$

(8) implies that (13) can be rewritten as

$$
\|C Z-W\|^{2}=\sum_{\ell=0}^{k-1}\left\|\left(F_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right) U_{\ell}\right\|^{2}+\sum_{\ell=0}^{k-1}\left\|V_{\alpha \ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right)\right\|^{2}
$$

This implies (11), and that the minimum is attained if and only

$$
\left(F_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right) U_{\ell}=0, \quad 0 \leq \ell \leq k-1 .
$$

From Lemma 2, this is equivalent to

$$
F_{\ell}=V_{\alpha \ell} U_{\ell}^{\dagger}+K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right), \quad 0 \leq \ell \leq k-1
$$

which is equivalent to (12), by Lemma 1. Moreover, since

$$
V_{\alpha \ell} U_{\ell}^{\dagger}\left[K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right)\right]^{*}=V_{\alpha \ell} U_{\ell}^{\dagger}\left(I-U_{\ell} U_{\ell}^{\dagger}\right) K_{\ell}^{*}=0, \quad 0 \leq \ell \leq k-1
$$

(8) implies that

$$
\left\|F_{\ell}\right\|^{2}=\left\|V_{\alpha \ell} U_{\ell}^{\dagger}\right\|^{2}+\left\|K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right)\right\|^{2}
$$

This implies the last sentence of Theorem 2.
This implies the following theorem, which solves Problem 1.
Theorem 3 There is an α-circulant C such that $C Z=W$ if and only if

$$
V_{\alpha \ell}\left(I-U_{\ell}^{\dagger} U_{\ell}\right)=0, \quad 0 \leq \ell \leq k-1
$$

in which case $C Z=W$ if and only if C is as in (12).

Corollary 1 If $Z=\sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}$ then $\sigma_{\alpha}(Z, W)=0$ for all $W \in \mathbb{C}^{k d_{1} \times h}$ if and only if $\operatorname{rank}\left(U_{\ell}\right)=h, 0 \leq \ell \leq k-1$.

The following theorem solves Problem 3.
Theorem 4 Let

$$
\begin{equation*}
A=\left[A_{s-\alpha r}\right]_{r, s=0}^{k-1}=\sum_{\ell=0}^{k-1} P_{\alpha \ell} G_{\ell} Q_{\ell}^{*} \text { with } G_{\ell}=\sum_{\ell=0}^{k-1} \zeta^{\ell m} A_{m}, 0 \leq m \leq k-1, \tag{14}
\end{equation*}
$$

be a given member of \mathcal{C}_{α}. Then

$$
\begin{equation*}
\sigma_{\alpha}(Z, W, A)==_{\operatorname{def}} \min _{C \in \mathcal{M}_{\alpha}(Z, W)}\|C-A\|=\left\|\left(V_{\alpha \ell}-G_{\ell} U_{\ell}\right) U_{\ell}^{\dagger}\right\|^{2}, \tag{15}
\end{equation*}
$$

which is attained if and only if $C=C^{(\alpha)}+\left[\widehat{E}_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where

$$
\begin{equation*}
\widehat{E}_{m}=\frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} G_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right), \quad 0 \leq m \leq k-1 . \tag{16}
\end{equation*}
$$

Proof. From Theorem 2, $C \in \mathcal{M}_{\alpha}$ if and only if $C=C^{(\alpha)}+E$, where E is as in (9). For any such $C,(9),(10)$, and (14) imply that

$$
C-A=C^{(\alpha)}+E-A=\sum_{\ell=0}^{k-1} P_{\alpha \ell} H_{\ell} Q_{\ell}^{*},
$$

where

$$
\begin{aligned}
H_{\ell} & =V_{\alpha \ell} U_{\ell}^{\dagger}+K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right)-G_{\ell} \\
& =\left(V_{\alpha \ell} U_{\ell}^{\dagger}+K_{\ell}-G_{\ell}\right)\left(I-U_{\ell} U_{\ell}^{\dagger}\right)+\left(V_{\alpha \ell} U_{\ell}^{\dagger}-G_{\ell}\right) U_{\ell} U_{\ell}^{\dagger} .
\end{aligned}
$$

Since $\left(I-U_{\ell} U_{\ell}^{\dagger}\right)\left(U_{\ell} U_{\ell}^{\dagger}\right)^{*}=0$, (8) implies that

$$
\left\|H_{\ell}\right\|^{2}=\left\|V_{\alpha \ell} U_{\ell}^{\dagger}+K_{\ell}-G_{\ell}\right\|^{2}+\left\|\left(V_{\alpha \ell}-G_{\ell} U_{\ell}\right) U_{\ell}^{\dagger}\right\|^{2}
$$

This verifies (15) and implies that the minimum is attained if and only if

$$
K_{\ell}=G_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}, \quad 0 \leq \ell \leq k-1 .
$$

Then

$$
K_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right)=\left(G_{\ell}-V_{\alpha \ell} U_{\ell}^{\dagger}\right)\left(I-U_{\ell} U_{\ell}^{\dagger}\right)=G_{\ell}\left(I-U_{\ell} U_{\ell}^{\dagger}\right)
$$

which implies (16).

4 The case where $\operatorname{gcd}(\alpha, k)>1$

Throughout this section,

$$
\begin{equation*}
\operatorname{gcd}(\alpha, k)=q \quad \text { and } \quad p=k / q . \tag{17}
\end{equation*}
$$

In this case every integer in $\{0,1, \ldots, k-1\}$ can be written uniquely as $\ell+\nu p$ with $0 \leq \ell \leq p-1$ and $0 \leq \nu \leq q-1$. Therefore the second equality in (5) can be rewritten as

$$
\begin{equation*}
C=\sum_{\ell=0}^{p-1} \sum_{\nu=0}^{q-1} P_{\alpha(\ell+\nu p)} F_{\ell+\nu p} Q_{\ell+\nu p}^{*}=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \sum_{\nu=0}^{q-1} F_{\ell+\nu p} Q_{\ell+\nu p}^{*} \tag{18}
\end{equation*}
$$

since $\alpha p=(\alpha / q) k \equiv 0(\bmod k)$. Now define

$$
\mathbf{F}_{\ell}=\left[\begin{array}{llll}
F_{\ell} & F_{\ell+p} & \cdots & F_{\ell+(q-1) p} \tag{19}
\end{array}\right] \in \mathbb{C}^{d_{1} \times q d_{2}}, \quad 0 \leq \ell \leq p-1
$$

and

$$
\mathbf{Q}_{\ell}=\left[\begin{array}{llll}
Q_{\ell} & Q_{\ell+p} & \cdots & Q_{\ell+(q-1) p}
\end{array}\right] \in \mathbb{C}^{d_{1} \times q d_{2}}, \quad 0 \leq \ell \leq p-1
$$

so (18) becomes

$$
\begin{equation*}
C=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \mathbf{F}_{\ell} \mathbf{Q}_{\ell}^{*} . \tag{20}
\end{equation*}
$$

To be more specific: (17) implies that $\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$ can be written as (20). On the other hand, if C is presented in the form (20), then $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$, where $C_{0}, C_{1}, \ldots, C_{k-1}$ can be computed from (2) after determining F_{0}, F_{1}, \ldots, F_{k-1} by partitioning $\mathbf{F}_{0}, \mathbf{F}_{1}, \ldots, \mathbf{F}_{p-1}$ as in (19). For brevity, we omit this step in the theorems stated in this section.

| Since |
| :--- | :--- | :--- |$\left[\begin{array}{llll}\mathbf{Q}_{0} & \mathbf{Q}_{1} & \cdots & \mathbf{Q}_{p-1}\end{array}\right]$ is unitary, we can write an arbitrary $Z \in$

$$
\begin{equation*}
Z=\sum_{\ell=0}^{p-1} \mathbf{Q}_{\ell} \mathbf{U}_{\ell} \quad \text { with } \quad \mathbf{U}_{\ell} \in \mathbb{C}^{q d_{2} \times h}, \quad 0 \leq \ell \leq p-1 \tag{21}
\end{equation*}
$$

This and (20) imply that

$$
C Z=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \mathbf{F}_{\ell} \mathbf{U}_{\ell}
$$

so every W in the range of any $C=\left[C_{s-\alpha r}\right]_{r, s=0}^{k-1}$ is necessarily of the form

$$
\begin{equation*}
W=\sum_{\ell=0}^{p-1} P_{\alpha \ell} V_{\alpha \ell} \quad \text { with } \quad V_{\alpha \ell} \in \mathbb{C}^{d_{1} \times p} \tag{22}
\end{equation*}
$$

Therefore, if (17) holds, we can repair Problems 1-3 by simply replacing " $W \in \mathbb{C}^{k d_{1} \times h "}$ in all of its occurences by " W of the form (22)." Then

$$
C Z-W=\sum_{\ell=0}^{p-1} P_{\alpha \ell}\left(\mathbf{F}_{\ell} \mathbf{U}_{\ell}-V_{\alpha \ell}\right)
$$

Now (4) and (8) imply that

$$
\|C Z-W\|^{2}=\sum_{\ell=0}^{p-1}\left\|\mathbf{F}_{\ell} \mathbf{U}_{\ell}-V_{\alpha \ell}\right\|^{2}
$$

and the proofs of the following four theorems are analogous to the proofs of Theorems 1-4.

Theorem 5 If E is an α-circulant and Z is as in (21), then $E Z=0$ if and only if

$$
\begin{equation*}
E=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \mathbf{K}_{\ell}\left(I-\mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\dagger}\right) \mathbf{Q}_{\ell}^{*} \quad \text { with } \quad \mathbf{K}_{\ell} \in \mathbb{C}^{d_{1} \times q d_{2}}, \quad 0 \leq \ell \leq p-1 \tag{23}
\end{equation*}
$$

Theorem 6 Let \mathcal{E}_{α} be the set of all α-circulants of the form (23), and let

$$
C^{(\alpha)}=\sum_{\ell=0}^{p-1} P_{\alpha \ell} V_{\alpha \ell} \mathbf{U}_{\ell}^{\dagger} \mathbf{Q}_{\ell}^{*}
$$

Then

$$
\sigma_{\alpha}(Z, W)={ }_{\operatorname{def}} \min _{C \in \mathcal{C}_{\alpha}}\|C Z-W\|=\left(\sum_{\ell=0}^{p-1}\left\|V_{\alpha \ell}\left(I-\mathbf{U}_{\ell}^{\dagger} \mathbf{U}_{\ell}\right)\right\|^{2}\right)^{1 / 2}
$$

and this minimum is attained if and only if

$$
\begin{equation*}
C=C^{(\alpha)}+E \quad \text { where } \quad E \in \mathcal{E}_{\alpha} . \tag{24}
\end{equation*}
$$

Moreover, $C^{(\alpha)}$ is the unique circulant of this form with minimum norm, which is

$$
\left\|C^{(\alpha)}\right\|=\left(\sum_{\ell=0}^{p-1}\left\|V_{\alpha \ell} \mathbf{U}_{\ell}^{\dagger}\right\|^{2} .\right)^{1 / 2}
$$

Theorem 7 There is an α-circulant C such that $C Z=W$ if and only if

$$
V_{\alpha \ell}\left(I-\mathbf{U}_{\ell}^{\dagger} \mathbf{U}_{\ell}\right)=0, \quad 0 \leq \ell \leq p-1
$$

in which case $C Z=W$ if and only if C is as in (24).
Theorem 8 Let $A=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \mathbf{G}_{\ell} \mathbf{Q}_{\ell}^{*}$ be a given member of \mathcal{C}_{α}. Then

$$
\sigma_{\alpha}(Z, W, A)={ }_{\operatorname{def}} \min _{C \in \mathcal{M}_{\alpha}(Z, W)}\|C-A\|=\left(\sum_{\ell=0}^{p-1}\left\|\left(V_{\alpha \ell}-\mathbf{G}_{\ell} \mathbf{U}_{\ell}\right) \mathbf{U}_{\ell}^{\dagger}\right\|^{2}\right)^{1 / 2}
$$

which is attained if and only if

$$
C=C^{(\alpha)}+\widehat{E} \quad \text { where } \quad \widehat{E}=\sum_{\ell=0}^{p-1} P_{\alpha \ell} \mathbf{G}_{\ell}\left(I-\mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\dagger}\right) \mathbf{Q}_{\ell}^{*} .
$$

References

[1] Jiao-fen Li and Xi-yan Hu, Procrustes problems and associated approximation problems for matrices with k-involutory symmetries, Linear Algebra Appl. 434 (2011), 820-829.
[2] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S) skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23-31.
[3] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012-2025.
[4] W. F. Trench, Characterization and properties of matrices with k involutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797.

