Trinity University

From the SelectedWorks of William F. Trench

March, 2013

Inverse problems for unilevel block \$\alpha\$circulants

William F. Trench, Trinity University

Available at: https://works.bepress.com/william_trench/122/

Inverse problems for unilevel block α -circulants

William F. Trench

Trinity University, San Antonio, Texas 78212-7200, USA Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

Dedicated to Professor Biswa Nath Datta

Abstract

We consider the following inverse problems for the class C_{α} of unilevel block α -circulants $C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$, where k > 1, C_0 , C_1 , \ldots , $C_{k-1} \in \mathbb{C}^{d_1 \times d_2}$, $\alpha \in \{1, 2, \ldots, k-1\}$, $\operatorname{gcd}(\alpha, k) = 1$, and $\|\cdot\|$ is the Frobenius norm.

Problem 1 Find necessary and sufficient conditions on $Z \in \mathbb{C}^{kd_2 \times h}$ and $W \in \mathbb{C}^{kd_1 \times h}$ for the existence of $C \in \mathcal{C}_{\alpha}$ such that CZ = W, and find all such C if the conditions are satisfied.

Problem 2 For arbitrary $Z \in \mathbb{C}^{kd_2 \times h}$ and $W \in \mathbb{C}^{kd_1 \times h}$, find

$$\sigma_{\alpha}(Z,W) = \min_{C \in \mathcal{C}_{\alpha}} \|CZ - W\|,$$

characterize the class

$$\mathcal{M}_{\alpha}(Z, W) = \left\{ C \in \mathcal{C}_{\alpha} \, \big| \, \|CZ - W\| = \sigma_{\alpha}(Z, W) \right\},\,$$

and find C in this class with minimum norm. **Problem 3** If $A \in C_{\alpha}$ is given, find

$$\sigma_{\alpha}(Z, W, A) = \min_{C \in \mathcal{M}_{\alpha}(Z, W)} \|C - A\|$$

and find $C \in \mathcal{M}_{\alpha}(Z, W)$ such that $||C - A|| = \sigma_{\alpha}(Z, W, A)$.

We also consider slightly modified problems for the case where $gcd(\alpha, k) > 1$.

MSC: 15A09; 15A15; 15A18; 15A99

Keywords: Block circulant; Discrete Fourier transform; Frobenius norm; Inverse problem; Minimum norm; Moore–Penrose inverse

1 Introduction

We consider inverse problems for the class C_{α} of unilevel block α -circulants $C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$, where k > 1, $C_0, C_1, \ldots, C_{k-1} \in \mathbb{C}^{d_1 \times d_2}$, $\alpha \in \{1, 2, \ldots, k-1\}$, $gcd(\alpha, k) = 1$, and all subscripts specifically associated with circulants are to be interpreted modulo k. Throughout the paper $\|\cdot\|$ denotes the Frobenius norm; i.e., if

$$V = [v_{rs}]_{1 \le r \le p, 1 \le s \le q} \in \mathbb{C}^{p \times q}, \quad \text{then} \quad ||V|| = \left(\sum_{r=1}^{p} \sum_{s=1}^{q} |v_{rs}|^2\right)^{1/2}.$$

Problem 1 Find necessary and sufficient conditions on $Z \in \mathbb{C}^{kd_2 \times h}$ and $W \in \mathbb{C}^{kd_1 \times h}$ for the existence of $C \in \mathcal{C}_{\alpha}$ such that CZ = W, and find all such C if the conditions are satisfied.

Problem 2 For arbitrary $Z \in \mathbb{C}^{kd_2 \times h}$ and $W \in \mathbb{C}^{kd_1 \times h}$, find

$$\sigma_{\alpha}(Z, W) = \min_{C \in \mathcal{C}_{\alpha}} \|CZ - W\|,$$

characterize the class

$$\mathcal{M}_{\alpha}(Z,W) = \left\{ C \in \mathcal{C}_{\alpha} \, \middle| \, \|CZ - W\| = \sigma_{\alpha}(Z,W) \right\},\,$$

and find C in this class with minimum norm.

Problem 3 If $A \in C_{\alpha}$ is given, find

$$\sigma_{\alpha}(Z, W, A) = \min_{C \in \mathcal{M}_{\alpha}(Z, W)} \|C - A\|,$$

and find $C \in \mathcal{M}_{\alpha}(Z, W)$ such that $||C - A|| = \sigma_{\alpha}(Z, W, A)$.

If $gcd(\alpha, k) = q > 1$ then the first p = k/q block rows of an α -circulant $C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$ are repeated q times, which obviously restricts the ranges of all such C. Since Problems 1– 3 do not reflect this restriction, it is reasonable to regard them as ill posed in this case. Section 4 is devoted to this question.

These problems and the results contained here are related to previous results and methods developed in [1, 2, 3, 4].

2 Preliminary considerations

Henceforth ζ is a primitive k-th root of unity. If $C_0, C_1, \ldots, C_{k-1} \in \mathbb{C}^{d_1 \times d_2}$, let

$$F_{\ell} = \sum_{m=0}^{k-1} \zeta^{\ell m} C_m, \quad 0 \le \ell \le k-1;$$
(1)

thus $\{F_0, F_1, \ldots, F_{k-1}\}$ is the discrete Fourier transform of $\{C_0, C_1, \ldots, C_{k-1}\}$. Solving (1) for $C_0, C_1, \ldots, C_{k-1}$ yields

$$C_m = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} F_{\ell}, \quad 0 \le m \le k-1.$$
(2)

Conversely, solving (2) for F_0 , F_1 , ..., F_{k-1} yields (1); thus, (1) and (2) are equivalent.

Now let

$$P_{\ell} = \frac{1}{\sqrt{k}} \begin{bmatrix} I_{d_1} \\ \zeta^{\ell} I_{d_1} \\ \vdots \\ \zeta^{(k-1)\ell} I_{d_1} \end{bmatrix} \quad \text{and} \quad Q_{\ell} = \frac{1}{\sqrt{k}} \begin{bmatrix} I_{d_2} \\ \zeta^{\ell} I_{d_2} \\ \vdots \\ \zeta^{(k-1)\ell} I_{d_2} \end{bmatrix}, \quad 0 \le \ell \le k-1,$$

 \mathbf{SO}

$$P_{\ell}^* P_{\ell} = \delta_{\ell m} I_{d_1}$$
 and $Q_{\ell}^* Q_m = \delta_{\ell m} I_{d_2}, \quad 0 \le \ell, m \le k - 1.$ (3)

Note that

$$P_{\alpha\ell}^* P_{\alpha m} = \delta_{\ell m} I_{d_1}, \ 0 \le \ell, m \le p - 1, \ \text{ where } p = k/q \ \text{ and } q = \gcd(\alpha, k).$$
(4)

Lemma 1 If $\{C_0, C_1, \ldots, C_{k-1}\}$ and $\{F_0, F_1, \ldots, F_{k-1}\}$ are related by the equivalent equations (1) and (2), then

(a)
$$C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$$
 if and only if (b) $C = \sum_{\ell=0}^{k-1} P_{\alpha\ell} F_{\ell} Q_{\ell}^*$. (5)

PROOF. Starting from (2) yields

$$[C_{s-\alpha r}]_{r,s=0}^{k-1} = \frac{1}{k} \left[\sum_{\ell=0}^{k-1} F_{\ell} \zeta^{-\ell(s-\alpha r)} \right]_{r,s=0}^{k-1}$$
$$= \frac{1}{k} \sum_{\ell=0}^{k-1} \left[\begin{array}{c} I_{d_1} \\ \zeta^{\ell \alpha} I_{d_1} \\ \vdots \\ \zeta^{(k-1)\ell \alpha} \end{array} \right] F_{\ell} \left[\begin{array}{c} I_{d_2} \\ \zeta^{\ell} I_{d_2} \\ \vdots \\ \zeta^{(k-1)\ell} I_{d_2} \end{array} \right]^{*}$$
$$= \sum_{\ell=0}^{k-1} P_{\alpha \ell} F_{\ell} Q_{\ell}^{*},$$

so (5)(a) implies (5)(b). To see that (5)(b) implies (5)(a), start from (1) and work through these equalities in the opposite direction. \Box

In connection with Problems 1-3, we write

$$Z = \sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell} \quad \text{with} \quad U_{\ell} \in \mathbb{C}^{d_2 \times h}, \quad 0 \le \ell \le k-1,$$

and

$$W = \sum_{\ell=0}^{k-1} P_{\ell} V_{\ell} \quad \text{with} \quad V_{\ell} \in \mathbb{C}^{d_1 \times h}, \quad 0 \le \ell \le k-1.$$
(6)

It is to be understood that Z and W are fixed and $U_0, U_1, \ldots, U_{k-1}$ and $V_0, V_1, \ldots, V_{k-1}$ have these meanings throughout the rest of this paper.

If $gcd(\alpha, k) = 1$ then $\ell \to \alpha \ell \pmod{k}$ is a permutation of $\{0, 1, \dots, k-1\}$, so we can rewrite (6) as $W = \sum_{\ell=0}^{k-1} P_{\alpha\ell} V_{\alpha\ell}$. (Recall that the subscripts here are to be interpreted modulo k.) Therefore

$$CZ - W = \sum_{\ell=0}^{k-1} P_{\alpha\ell} (F_{\ell} U_{\ell} - V_{\alpha\ell}).$$

$$\tag{7}$$

Since $\begin{bmatrix} P_0 & P_\alpha & \cdots & P_{(k-1)\alpha} \end{bmatrix}$ is unitary if $gcd(\alpha, k) = 1$ (see (4)),

$$||CZ - W||^{2} = \sum_{\ell=0}^{k-1} ||F_{\ell}U_{\ell} - V_{\alpha\ell}||^{2}.$$

Hence Problems 1–3 each reduce to k independent analogous inverse problems for $F_0, F_1, \ldots, F_{k-1}$.

As usual, U^{\dagger} denotes the Moore-Penrose inverse of U; i.e., the unique matrix such that

$$UU^{\dagger}U = U, \quad U^{\dagger}UU^{\dagger} = U^{\dagger}, \quad (UU^{\dagger})^* = UU^{\dagger}, \quad (U^{\dagger}U)^* = U^{\dagger}U.$$

We will invoke these properties repeatedly without explicit citation.

The following lemma is from [2]. We include the short proof here for completeness. Parts of the proofs of our main results are also implicit in other lemmas from [2]; however, the self-contained proofs given below require less space than it would take to state the appropriate lemmas from [2] and explain their application here.

Lemma 2 If $H \in \mathbb{C}^{d_1 \times d_2}$ and $U \in \mathbb{C}^{d_2 \times p}$, then HU = 0 if and only if $H = K(I - UU^{\dagger})$ where $K \in \mathbb{C}^{d_1 \times d_2}$ is arbitrary.

PROOF. If $H = K(I - UU^{\dagger})$ then HU = 0. For the converse, suppose HU = 0. If $x \in \mathbb{C}^{d_2}$ then x = v + Uw, where $v \in \mathbb{C}^{d_2}$, $w \in \mathbb{C}^h$, and $v^*U = 0$. Then Hx = Hv + HUw = Hv. Now choose K so that Kv = Hv if $v^*U = 0$. (For example, K = H is acceptable.) Then

$$K(I - UU^{\dagger})x = K(I - UU^{\dagger})(v + Uw) = K(I - UU^{\dagger})v$$
$$= Kv - K(v^*UU^{\dagger})^* = Kv = Hv = Hx.$$

Since we have now shown that $Hx = K(I - UU^{\dagger})x$ for all $x \in \mathbb{C}^{d_2}$, it follows that $H = K(I - UU^{\dagger})$. \square

We remind the reader that

$$||R + S||^{2} = ||R||^{2} + ||S||^{2} \quad \text{if} \quad RS^{*} = 0.$$
(8)

3 Main results for the case where $gcd(\alpha, k) = 1$

Throughout this section we assume that $gcd(\alpha, k) = 1$.

Theorem 1 If $Z = \sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}$ and E is an α -circulant, then EZ = 0 if and only if

$$E = [E_{s-\alpha r}]_{r,s=0}^{k-1} \quad where E_m = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} K_\ell (I - U_\ell U_\ell^{\dagger}), \quad 0 \le m \le k-1, \quad (9)$$

and $K_0, K_1, \ldots, K_{k-1} \in \mathbb{C}^{d_1 \times d_2}$ are arbitrary.

PROOF. From Lemma 1, if $E = [E_{s-\alpha r}]_{r,s=0}^{k-1}$ then there are $H_0, H_1, \ldots, H_{k-1} \in \mathbb{C}^{d_1 \times d_2}$ such that

$$E = \sum_{\ell=0}^{k-1} P_{\alpha\ell} H_{\ell} Q_{\ell}^* \quad \text{and} \quad E_m = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} H_{\ell}, \quad 0 \le m \le k-1.$$

Therefore (3) implies that

$$EZ = \left(\sum_{\ell=0}^{k-1} P_{\alpha\ell} H_{\ell} Q_{\ell}^*\right) \left(\sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}\right) = \sum_{\ell=0}^{k-1} P_{\alpha\ell} H_{\ell} U_{\ell},$$

so (4) with q = 1 and (8) imply that

$$||EZ||^2 = \sum_{\ell=0}^{k-1} ||H_{\ell}U_{\ell}||^2;$$

hence, EZ = 0 if and only if $H_{\ell}U_{\ell} = 0, 0 \le \ell \le k-1$. Now Lemma 2 implies that $H_{\ell} = K_{\ell}(I - U_{\ell}U_{\ell}^{\dagger}), 0 \le \ell \le k-1$, so Lemma 1 (with C = E and $F_{\ell} = H_{\ell}, 0 \le \ell \le k-1$) implies the conclusion. \Box

The following theorem solves Problem 2.

Theorem 2 Let \mathcal{E}_{α} be the set of all α -circulants of the form (9), and let

$$C^{(\alpha)} = [C_{s-\alpha r}^{(\alpha)}]_{r,s=0}^{k-1}, \quad where \quad C_m^{(\alpha)} = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} V_{\alpha \ell} U_{\ell}^{\dagger}, \quad 0 \le m \le k-1.$$
(10)

Then

$$\sigma_{\alpha}(Z,W) =_{\text{def}} \min_{C \in \mathcal{C}_{\alpha}} \|CZ - W\| = \left(\sum_{\ell=0}^{k-1} \|V_{\alpha\ell}(I - U_{\ell}^{\dagger}U_{\ell})\|^2\right)^{1/2}, \quad (11)$$

and this minimum is attained if and only if

$$C = C^{(\alpha)} + E, \quad where \quad E \in \mathcal{E}_{\alpha}.$$
 (12)

Moreover, $C^{(\alpha)}$ is the unique circulant of this form with minimum norm

$$||C^{(\alpha)}|| = \left(\sum_{\ell=0}^{k-1} ||V_{\alpha\ell}U_{\ell}^{\dagger}||^2\right)^{1/2},$$

PROOF. Since (4) with q = 1 implies that $\begin{bmatrix} P_0 & P_{\alpha} & \cdots & P_{(k-1)\alpha} \end{bmatrix}$ is unitary, (7) and (8) imply that

$$||CZ - W||^{2} = \sum_{\ell=0}^{k-1} ||F_{\ell}U_{\ell} - V_{\alpha\ell}||^{2}.$$
 (13)

Now write

$$F_{\ell}U_{\ell} - V_{\alpha\ell} = (F_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})U_{\ell} - V_{\alpha\ell}(I - U_{\ell}^{\dagger}U_{\ell}).$$

Since

$$(F_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})U_{\ell}[V_{\alpha\ell}(I - U_{\ell}^{\dagger}U_{\ell})]^* = (F_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})U_{\ell}(I - U_{\ell}^{\dagger}U_{\ell})V_{\alpha\ell}^* = 0,$$

(8) implies that (13) can be rewritten as

$$||CZ - W||^{2} = \sum_{\ell=0}^{k-1} ||(F_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})U_{\ell}||^{2} + \sum_{\ell=0}^{k-1} ||V_{\alpha\ell}(I - U_{\ell}^{\dagger}U_{\ell})||^{2}.$$

This implies (11), and that the minimum is attained if and only

$$(F_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})U_{\ell} = 0, \quad 0 \le \ell \le k - 1.$$

From Lemma 2, this is equivalent to

$$F_{\ell} = V_{\alpha\ell} U_{\ell}^{\dagger} + K_{\ell} (I - U_{\ell} U_{\ell}^{\dagger}), \quad 0 \le \ell \le k - 1,$$

which is equivalent to (12), by Lemma 1. Moreover, since

$$V_{\alpha\ell}U_{\ell}^{\dagger}[K_{\ell}(I-U_{\ell}U_{\ell}^{\dagger})]^* = V_{\alpha\ell}U_{\ell}^{\dagger}(I-U_{\ell}U_{\ell}^{\dagger})K_{\ell}^* = 0, \quad 0 \le \ell \le k-1,$$

(8) implies that

$$||F_{\ell}||^{2} = ||V_{\alpha\ell}U_{\ell}^{\dagger}||^{2} + ||K_{\ell}(I - U_{\ell}U_{\ell}^{\dagger})||^{2}.$$

This implies the last sentence of Theorem 2. \Box

This implies the following theorem, which solves Problem 1.

Theorem 3 There is an α -circulant C such that CZ = W if and only if

$$V_{\alpha\ell}(I - U_{\ell}^{\dagger}U_{\ell}) = 0, \quad 0 \le \ell \le k - 1,$$

in which case CZ = W if and only if C is as in (12).

Corollary 1 If $Z = \sum_{\ell=0}^{k-1} Q_{\ell} U_{\ell}$ then $\sigma_{\alpha}(Z, W) = 0$ for all $W \in \mathbb{C}^{kd_1 \times h}$ if and only if $\operatorname{rank}(U_{\ell}) = h$, $0 \leq \ell \leq k-1$.

The following theorem solves Problem 3.

Theorem 4 Let

$$A = [A_{s-\alpha r}]_{r,s=0}^{k-1} = \sum_{\ell=0}^{k-1} P_{\alpha\ell} G_{\ell} Q_{\ell}^* \quad with \ G_{\ell} = \sum_{\ell=0}^{k-1} \zeta^{\ell m} A_m, \ 0 \le m \le k-1, \ (14)$$

be a given member of \mathcal{C}_{α} . Then

$$\sigma_{\alpha}(Z, W, A) =_{\text{def}} \min_{C \in \mathcal{M}_{\alpha}(Z, W)} \|C - A\| = \|(V_{\alpha\ell} - G_{\ell}U_{\ell})U_{\ell}^{\dagger}\|^{2}, \quad (15)$$

which is attained if and only if $C = C^{(\alpha)} + [\hat{E}_{s-\alpha r}]_{r,s=0}^{k-1}$, where

$$\widehat{E}_m = \frac{1}{k} \sum_{\ell=0}^{k-1} \zeta^{-\ell m} G_\ell (I - U_\ell U_\ell^{\dagger}), \quad 0 \le m \le k - 1.$$
(16)

PROOF. From Theorem 2, $C \in \mathcal{M}_{\alpha}$ if and only if $C = C^{(\alpha)} + E$, where E is as in (9). For any such C, (9), (10), and (14) imply that

$$C - A = C^{(\alpha)} + E - A = \sum_{\ell=0}^{k-1} P_{\alpha\ell} H_{\ell} Q_{\ell}^*,$$

where

$$H_{\ell} = V_{\alpha\ell}U_{\ell}^{\dagger} + K_{\ell}(I - U_{\ell}U_{\ell}^{\dagger}) - G_{\ell}$$

= $(V_{\alpha\ell}U_{\ell}^{\dagger} + K_{\ell} - G_{\ell})(I - U_{\ell}U_{\ell}^{\dagger}) + (V_{\alpha\ell}U_{\ell}^{\dagger} - G_{\ell})U_{\ell}U_{\ell}^{\dagger}.$

Since $(I - U_{\ell}U_{\ell}^{\dagger})(U_{\ell}U_{\ell}^{\dagger})^* = 0$, (8) implies that

$$||H_{\ell}||^{2} = ||V_{\alpha\ell}U_{\ell}^{\dagger} + K_{\ell} - G_{\ell}||^{2} + ||(V_{\alpha\ell} - G_{\ell}U_{\ell})U_{\ell}^{\dagger}||^{2}.$$

This verifies (15) and implies that the minimum is attained if and only if

$$K_{\ell} = G_{\ell} - V_{\alpha\ell} U_{\ell}^{\dagger}, \quad 0 \le \ell \le k - 1.$$

Then

$$K_{\ell}(I - U_{\ell}U_{\ell}^{\dagger}) = (G_{\ell} - V_{\alpha\ell}U_{\ell}^{\dagger})(I - U_{\ell}U_{\ell}^{\dagger}) = G_{\ell}(I - U_{\ell}U_{\ell}^{\dagger}),$$

which implies (16).

4 The case where $gcd(\alpha, k) > 1$

Throughout this section,

$$gcd(\alpha, k) = q$$
 and $p = k/q$. (17)

In this case every integer in $\{0, 1, ..., k-1\}$ can be written uniquely as $\ell + \nu p$ with $0 \leq \ell \leq p-1$ and $0 \leq \nu \leq q-1$. Therefore the second equality in (5) can be rewritten as

$$C = \sum_{\ell=0}^{p-1} \sum_{\nu=0}^{q-1} P_{\alpha(\ell+\nu p)} F_{\ell+\nu p} Q_{\ell+\nu p}^* = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \sum_{\nu=0}^{q-1} F_{\ell+\nu p} Q_{\ell+\nu p}^*,$$
(18)

since $\alpha p = (\alpha/q)k \equiv 0 \pmod{k}$. Now define

$$\mathbf{F}_{\ell} = \begin{bmatrix} F_{\ell} & F_{\ell+p} & \cdots & F_{\ell+(q-1)p} \end{bmatrix} \in \mathbb{C}^{d_1 \times qd_2}, \quad 0 \le \ell \le p-1, \tag{19}$$

and

$$\mathbf{Q}_{\ell} = \left[\begin{array}{ccc} Q_{\ell} & Q_{\ell+p} & \cdots & Q_{\ell+(q-1)p} \end{array} \right] \in \mathbb{C}^{d_1 \times qd_2}, \quad 0 \le \ell \le p-1,$$

so (18) becomes

$$C = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \mathbf{F}_{\ell} \mathbf{Q}_{\ell}^*.$$
(20)

To be more specific: (17) implies that $[C_{s-\alpha r}]_{r,s=0}^{k-1}$ can be written as (20). On the other hand, if C is presented in the form (20), then $C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$, where $C_0, C_1, \ldots, C_{k-1}$ can be computed from (2) after determining $F_0, F_1, \ldots, F_{k-1}$ by partitioning $\mathbf{F}_0, \mathbf{F}_1, \ldots, \mathbf{F}_{p-1}$ as in (19). For brevity, we omit this step in the theorems stated in this section.

Since $\begin{bmatrix} \mathbf{Q}_0 & \mathbf{Q}_1 & \cdots & \mathbf{Q}_{p-1} \end{bmatrix}$ is unitary, we can write an arbitrary $Z \in \mathbb{C}^{kd_2 \times h}$ as

$$Z = \sum_{\ell=0}^{p-1} \mathbf{Q}_{\ell} \mathbf{U}_{\ell} \quad \text{with} \quad \mathbf{U}_{\ell} \in \mathbb{C}^{qd_2 \times h}, \quad 0 \le \ell \le p-1.$$
(21)

This and (20) imply that

$$CZ = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \mathbf{F}_{\ell} \mathbf{U}_{\ell},$$

so every W in the range of any $C = [C_{s-\alpha r}]_{r,s=0}^{k-1}$ is necessarily of the form

$$W = \sum_{\ell=0}^{p-1} P_{\alpha\ell} V_{\alpha\ell} \quad \text{with} \quad V_{\alpha\ell} \in \mathbb{C}^{d_1 \times p}.$$
 (22)

Therefore, if (17) holds, we can repair Problems 1-3 by simply replacing " $W \in \mathbb{C}^{kd_1 \times h}$ " in all of its occurrences by "W of the form (22)." Then

$$CZ - W = \sum_{\ell=0}^{p-1} P_{\alpha\ell} (\mathbf{F}_{\ell} \mathbf{U}_{\ell} - V_{\alpha\ell}).$$

Now (4) and (8) imply that

$$||CZ - W||^2 = \sum_{\ell=0}^{p-1} ||\mathbf{F}_{\ell} \mathbf{U}_{\ell} - V_{\alpha \ell}||^2,$$

and the proofs of the following four theorems are analogous to the proofs of Theorems 1-4.

Theorem 5 If E is an α -circulant and Z is as in (21), then EZ = 0 if and only if

$$E = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \mathbf{K}_{\ell} (I - \mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\dagger}) \mathbf{Q}_{\ell}^{*} \quad with \quad \mathbf{K}_{\ell} \in \mathbb{C}^{d_{1} \times qd_{2}}, \quad 0 \le \ell \le p-1.$$
(23)

Theorem 6 Let \mathcal{E}_{α} be the set of all α -circulants of the form (23), and let

$$C^{(\alpha)} = \sum_{\ell=0}^{p-1} P_{\alpha\ell} V_{\alpha\ell} \mathbf{U}_{\ell}^{\dagger} \mathbf{Q}_{\ell}^{*}.$$

Then

$$\sigma_{\alpha}(Z,W) =_{\operatorname{def}} \min_{C \in \mathcal{C}_{\alpha}} \|CZ - W\| = \left(\sum_{\ell=0}^{p-1} \|V_{\alpha\ell}(I - \mathbf{U}_{\ell}^{\dagger}\mathbf{U}_{\ell})\|^{2}\right)^{1/2},$$

and this minimum is attained if and only if

$$C = C^{(\alpha)} + E \quad where \quad E \in \mathcal{E}_{\alpha}.$$
⁽²⁴⁾

Moreover, $C^{(\alpha)}$ is the unique circulant of this form with minimum norm, which is

$$||C^{(\alpha)}|| = \left(\sum_{\ell=0}^{p-1} ||V_{\alpha\ell} \mathbf{U}_{\ell}^{\dagger}||^2\right)^{1/2},$$

Theorem 7 There is an α -circulant C such that CZ = W if and only if

$$V_{\alpha\ell}(I - \mathbf{U}_{\ell}^{\dagger}\mathbf{U}_{\ell}) = 0, \quad 0 \le \ell \le p - 1,$$

in which case CZ = W if and only if C is as in (24).

Theorem 8 Let $A = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \mathbf{G}_{\ell} \mathbf{Q}_{\ell}^*$ be a given member of \mathcal{C}_{α} . Then

$$\sigma_{\alpha}(Z, W, A) =_{\operatorname{def}} \min_{C \in \mathcal{M}_{\alpha}(Z, W)} \|C - A\| = \left(\sum_{\ell=0}^{p-1} \|(V_{\alpha\ell} - \mathbf{G}_{\ell}\mathbf{U}_{\ell})\mathbf{U}_{\ell}^{\dagger}\|^{2}\right)^{1/2},$$

which is attained if and only if

$$C = C^{(\alpha)} + \hat{E} \quad where \quad \hat{E} = \sum_{\ell=0}^{p-1} P_{\alpha\ell} \mathbf{G}_{\ell} (I - \mathbf{U}_{\ell} \mathbf{U}_{\ell}^{\dagger}) \mathbf{Q}_{\ell}^{*}.$$

References

- Jiao-fen Li and Xi-yan Hu, Procrustes problems and associated approximation problems for matrices with k-involutory symmetries, Linear Algebra Appl. 434 (2011), 820-829.
- [2] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23–31.
- [3] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012-2025.
- [4] W. F. Trench, Characterization and properties of matrices with kinvolutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797.