Trinity University

2005

Characterization and properties of $\$(\mathrm{R}, \mathrm{S}) \$-$

 symmetric, $\$(R, S) \$$-skew symmetric, and $\$(\mathrm{R}, \mathrm{S}) \$$-conjugate matricesWilliam F. Trench, Trinity University

CHARACTERIZATION AND PROPERTIES OF (R, S)-SYMMETRIC, (R, S)-SKEW SYMMETRIC, AND (R, S)-CONJUGATE MATRICES

WILLIAM F. TRENCH ${ }^{\dagger} \ddagger$

SIAM J. Matrix Anal Appl. 26 (2005) 748-757

Abstract

Let $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ be nontrivial involutions; i.e., $R=R^{-1} \neq \pm I_{m}$ and $S=S^{-1} \neq \pm I_{n}$. We say that $A \in \mathbb{C}^{m \times n}$ is (R, S)-symmetric $((R, S)$-skew symmetric) if $R A S=A$ $(R A S=-A)$.

We give an explicit representation of an arbitrary (R, S)-symmetric matrix A in terms of matrices P and Q associated with R and U and V associated with S. If $R=R^{*}$, then the least squares problem for A can be solved by solving the independent least squares problems for $A_{P U}=P^{*} A U \in \mathbb{C}^{r \times k}$ and $A_{Q V}=Q^{*} A V \in \mathbb{C}^{s \times \ell}$, where $r+s=m$ and $k+\ell=n$. If, in addition, either $\operatorname{rank}(A)=n$ or $S^{*}=S$, then A^{\dagger} can be expressed in terms of $A_{P U}^{\dagger}$ and $A_{Q V}^{\dagger}$. If $R=R^{*}$ and $S=S^{*}$, then a singular value decomposition of A can obtained from singular value decompositions of $A_{P U}$ and $A_{Q V}$. Similar results hold for (R, S)-skew symmetric matrices.

We say that $A \in \mathbb{C}^{m \times n}$ is R-conjugate if $R A S=\bar{R}$, where $R \in \mathbb{R}^{m \times m}$ and $S \in \mathbb{R}^{n \times n}$, $R=R^{-1} \neq \pm I_{m}$, and $S=S^{-1} \neq \pm I_{n}$. In this case $\Re(A)$ is (R, S)-symmetric and $\Im(A)$ is (R, S) skew symmetric, so our results provide explicit representations for (R, S)-conjugate matrices. If $R^{T}=R$ the least squares problem for the complex matrix A reduces to two least squares problems for a real matrix K. If, in addition, either $\operatorname{rank}(A)=n$ or $S^{T}=S$, then A^{\dagger} can be obtained from K^{\dagger}. If both $R^{T}=R$ and $S^{T}=S$, a singular value decomposition of A can be obtained from a singular value decomposition of K.

Key words. least squares, Moore-Penrose inverse, optimal solution, (R, S)-conjugate, (R, S) skew symmetric, (R, S)-symmetric

AMS subject classifications. 15A18, 15A57

1. Introduction. In this paper we expand on a problem initiated by Chen [1], who considered matrices $A \in \mathbb{C}^{m \times n}$ such that

$$
\begin{equation*}
R A S=A \quad \text { or } \quad R A S=-A, \tag{1.1}
\end{equation*}
$$

where $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are involutory Hermitian matrices; i.e., $R=R^{*}$, $R^{2}=I_{m}, S=S^{*}$, and $S^{2}=I_{n}$. Chen cited applications involving such matrices, developed some of their theoretical properties, and indicated with numerical examples that the least squares problem for a matrix of rank n with either property reduces to two independent least squares problems for matrices of smaller dimensions. He also considered properties of the Moore-Penrose inverses of such matrices but did not obtain explicit expressions for them in terms of Moore-Penrose inverses of lower order matrices.

Here we characterize the matrices $A \in \mathbb{C}^{m \times n}$ satisfying (1.1) without assuming that R and S are Hermitian. We obtain general results on the least squares problem for the case where R is Hermitian, without assuming that S is Hermitian or that $\operatorname{rank}(A)=n$. Under the additional assumption that either S is Hermitian or $\operatorname{rank}(A)=n$, we obtain explicit expressions for A^{\dagger} in terms of the Moore-Penrose inverses of two related matrices with smaller dimensions. Finally, under the assumption that $R=R^{*}$ and $S=S^{*}$, we obtain a singular value decomposition of A in terms of singular value decompositions of these related matrices.

[^0]Under the assumption that $R \in \mathbb{R}^{m \times m}$ and $S \in \mathbb{R}^{n \times n}$, we consider the analogous questions for matrices $A \in \mathbb{C}^{m \times n}$ such that $R A S=\bar{A}$, so that $R \Re(A) S=\Re(A)$ and $R \Im(A) S=-\Im(A)$. We say that such matrices are (R, S)-conjugate.

We gave related results for square matrices with $R=S$ in [5] and studied other approximation problems for (R, S)-symmetric and (R, S)-skew symmetric matrices in [6].
2. Preliminary considerations. Let $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ be nontrivial involutions; thus $R=R^{-1} \neq \pm I_{m}$ and $S=S^{-1} \neq \pm I_{n}$. Then the minimal and characteristic polynomials of R are

$$
m_{R}(x)=(x-1)(x+1) \quad \text { and } \quad c_{R}(x)=(x-1)^{r}(x+1)^{s}
$$

where $1 \leq r, s \leq m$ and $r+s=m$. Therefore there are matrices $P \in \mathbb{C}^{m \times r}$ and $Q \in \mathbb{C}^{m \times s}$ such that

$$
\begin{gather*}
P^{*} P=I_{r}, \quad Q^{*} Q=I_{s} \tag{2.1}\\
R P=P, \quad \text { and } \quad R Q=-Q \tag{2.2}
\end{gather*}
$$

Thus, the columns of $P(Q)$ form an orthonormal basis for the eigenspace of R associated with the eigenvalue $\lambda=1(\lambda=-1)$. Although P and Q are not unique, suitable P and Q can be obtained by applying the Gram-Schmidt procedure to the columns of $I+R$ and $I-R$, respectively. If R is a signed permutation matrix, this requires little computation. For example, if J is the flip matrix with ones on the secondary diagonal and zeros elsewhere and $R=J_{2 k}$, we can take

$$
P=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{k} \\
J_{k}
\end{array}\right] \quad \text { and } \quad Q=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
I_{k} \\
-J_{k}
\end{array}\right]
$$

while if $R=J_{2 k+1}$, we can take

$$
P=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
I_{k} & 0_{k \times 1} \\
0_{1 \times k} & \sqrt{2} \\
J_{k} & 0_{k \times 1}
\end{array}\right] \quad \text { and } \quad Q=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{k} \\
0_{1 \times k} \\
-J_{k}
\end{array}\right]
$$

If we define

$$
\begin{equation*}
\widehat{P}=\frac{P^{*}(I+R)}{2} \quad \text { and } \quad \widehat{Q}=\frac{Q^{*}(I-R)}{2} \tag{2.3}
\end{equation*}
$$

then

$$
\widehat{P} P=I_{r}, \quad \widehat{P} Q=0 \quad \widehat{Q} P=0, \quad \text { and } \quad \widehat{Q} Q=I_{s}
$$

so

$$
[P Q]^{-1}=\left[\begin{array}{l}
\widehat{P} \tag{2.4}\\
\widehat{Q}
\end{array}\right]
$$

Similarly, there are integers k and ℓ such that $k+\ell=n$ and matrices $U \in \mathbb{C}^{n \times k}$ and $V \in \mathbb{C}^{n \times \ell}$ such that

$$
U^{*} U=I_{k}, \quad V^{*} V=I_{\ell}
$$

$$
\begin{equation*}
S U=U, \quad \text { and } \quad S V=-V \tag{2.5}
\end{equation*}
$$

Moreover, if we define

$$
\begin{equation*}
\widehat{U}=\frac{U^{*}(I+S)}{2} \quad \text { and } \quad \widehat{V}=\frac{V^{*}(I-S)}{2} \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
\widehat{U} U=I_{k}, \quad \widehat{U} V=0, \quad \widehat{V} U=0, \quad \text { and } \quad \widehat{V} V=I_{\ell} \tag{2.7}
\end{equation*}
$$

so

$$
[U V]^{-1}=\left[\begin{array}{l}
\widehat{U} \tag{2.8}\\
\widehat{V}
\end{array}\right]
$$

It is straightforward to verify that if $R=R^{*}$, then $[P Q]$ and $[P i Q]$ are both unitary. Similarly, if $S=S^{*}$, then $[U V]$ and $[U i V]$ are both unitary. We will use this observation in several places without restating it.

From (2.4) and (2.8), any $A \in \mathbb{C}^{m \times n}$ can be written conformably in block form as

$$
A=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{ll}
A_{P U} & A_{P V} \tag{2.9}\\
A_{Q U} & A_{Q V}
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

We say that $A \in \mathbb{C}^{m \times n}$ is (R, S)-symmetric if $R A S=A$, or (R, S)-skew symmetric if $R A S=-A$. From (2.2), (2.5), and (2.6),

$$
R A S=[P Q]\left[\begin{array}{rr}
A_{P U} & -A_{P V} \tag{2.10}\\
-A_{Q U} & A_{Q V}
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

Henceforth, $z \in \mathbb{C}^{n}, x \in \mathbb{C}^{k}, y \in \mathbb{C}^{\ell}, w \in \mathbb{C}^{m}, \phi \in \mathbb{C}^{r}$, and $\psi \in \mathbb{C}^{s}$. We say that w is R-symmetric (R-skew symmetric) if $R w=w(R w=-w)$. An arbitrary w can be written uniquely as $w=P \phi+Q \psi$ with $\phi=\widehat{P} w$ and $\psi=\widehat{Q} w$. From (2.2), $P \phi$ is R-symmetric and $Q \psi$ is R-skew symmetric. Similarly, we say that z is S-symmetric (S-skew symmetric) if $S z=z(S z=-z)$. An arbitrary z can be written uniquely as $z=U x+V y$ with $x=\widehat{U} z$ and $y=\widehat{V} z$. From (2.5), $U x$ is S-symmetric and $V y$ is S-skew symmetric.
3. Two useful lemmas. Suppose that $B \in \mathbb{C}^{m \times n}$ and consider the least squares problem for B : If $w \in \mathbb{C}^{m}$, find $z \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\|B z-w\|=\min _{\zeta \in \mathbb{C}^{n}}\|B \zeta-w\| \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|$ is the 2 -norm. This problem has a unique solution if and only if $\operatorname{rank}(B)=$ n. In this case, $z=\left(B^{*} B\right)^{-1} B^{*} w$. In any case, the optimal solution of (3.1) is the unique n-vector z_{0} of minimum norm that satisfies (3.1); thus, $z_{0}=B^{\dagger} w$ where B^{\dagger} is the Moore-Penrose inverse of B. The general solution of (3.1) is $z=z_{0}+q$ with q in the null space of B, and

$$
\|B z-w\|=\left\|\left(B B^{\dagger}-I\right) w\right\|
$$

for all such z.
The proof of the next lemma is motivated in part by a theorem of Meyer and Painter [3].

Lemma 3.1. Suppose that

$$
\begin{equation*}
B=C K F \tag{3.2}
\end{equation*}
$$

where $C \in \mathbb{C}^{m \times m}$ is unitary and $F \in \mathbb{C}^{n \times n}$ is invertible. Then the general solution of (3.1) is

$$
\begin{equation*}
z=F^{-1} K^{\dagger} C^{*} w+\left(I-F^{-1} K^{\dagger} K F\right) h, \quad h \in \mathbb{C}^{n} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\|B z-w\|=\left\|\left(K K^{\dagger}-I\right) C^{*} w\right\| \tag{3.4}
\end{equation*}
$$

for all such z. If either $\operatorname{rank}(B)=n$ or F is unitary, then

$$
B^{\dagger}=F^{-1} K^{\dagger} C^{*}
$$

so the optimal solution of (3.1) is

$$
\begin{equation*}
z_{0}=F^{-1} K^{\dagger} C^{*} w \tag{3.5}
\end{equation*}
$$

Moreover, z_{0} is the unique solution of (3.1) if $\operatorname{rank}(B)=n$.
Proof. Recall [4] that $Z=W^{\dagger}$ and $W=Z^{\dagger}$ if and only if Z and W satisfy the Penrose conditions

$$
\begin{equation*}
W Z W=W, \quad Z W Z=Z, \quad(Z W)^{*}=Z W, \quad \text { and } \quad(W Z)^{*}=W Z \tag{3.6}
\end{equation*}
$$

Let

$$
\begin{equation*}
B^{L}=F^{-1} K^{\dagger} C^{*} \tag{3.7}
\end{equation*}
$$

By letting $W=K$ and $Z=K^{\dagger}$ in (3.6), it is straightforward to verify that

$$
\begin{equation*}
B^{L} B B^{L}=B^{L}, B B^{L} B=B,\left(B B^{L}\right)^{*}=B B^{L}, \text { and } B^{L} B=F^{-1} K^{\dagger} K F \tag{3.8}
\end{equation*}
$$

Any $\zeta \in \mathbb{C}^{n \times n}$ can be written as $\zeta=B^{L} w+q$, so

$$
B \zeta-w=\left(B B^{L}-I\right) w+B q
$$

From the second and third equalities in (3.8),

$$
\left[\left(B B^{L}-I\right) w\right]^{*} B q=0
$$

so

$$
\|B \zeta-w\|^{2}=\left\|\left(B B^{L}-I\right) w\right\|^{2}+\|B q\|^{2}
$$

which is a minimum if and only if $B q=0$.
The second equality in (3.8) implies that $\operatorname{rank}\left(B^{L} B\right)=\operatorname{rank}(B)$, so $\operatorname{rank}\left(I-B^{L} B\right)$ equals the dimension of the null space of B. Now the second equality in (3.8) implies
that $B q=0$ if and only if $q=\left(I-B^{L} B\right) h, h \in \mathbb{C}^{n \times n}$. Hence, the general solution of (3.1) is

$$
z=B^{L} w+\left(I-B^{L} B\right) h, \quad h \in \mathbb{C}^{n \times n}
$$

Substituting (3.2) and (3.7) into this yields (3.3). From (3.2) and (3.3),

$$
B z-w=C\left(K K^{\dagger}-I\right) C^{*} w
$$

since C is unitary. This implies (3.4).
If $\operatorname{rank}(B)=n$, then $\operatorname{rank}(K)=n$, so $K^{\dagger} K=I$ and the fourth equality in (3.8) reduces to $B^{L} B=I$. If F is unitary, the fourth equality in (3.8) implies that $\left(B^{L} B\right)^{*}=B^{L} B$. In either case, (3.8) implies that $B^{L}=B^{\dagger}$, so (3.5) is the optimal solution of (3.1). If $\operatorname{rank}(B)=n$, then (3.3) reduces to (3.5).

The following lemma is obvious.
Lemma 3.2. Suppose that $B \in \mathbb{C}^{m \times n}$ and $B=C K F$, where $C \in \mathbb{C}^{m \times m}$ and $F \in \mathbb{C}^{n \times n}$ are unitary and $K=Z D W^{*}$ is a singular value decomposition of K. Then $B=(C Z) D(F W)^{*}$ is a singular value decomposition of B.
4. Characterization and properties of (R, S)-symmetric matrices. The following theorem characterizes (R, S)-symmetric matrices.

Theorem 4.1. A is (R, S)-symmetric if and only if

$$
A=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
A_{P U} & 0 \tag{4.1}\\
0 & A_{Q V}
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{P U}=P^{*} A U \quad \text { and } \quad A_{Q V}=Q^{*} A V \tag{4.2}
\end{equation*}
$$

Proof. From (2.9) and (2.10), $R A S=A$ if and only if (4.1) holds. If (4.1) holds, then (2.8) implies that

$$
A\left[\begin{array}{ll}
U & V
\end{array}\right]=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
A_{P U} & 0 \\
0 & A_{Q V}
\end{array}\right]
$$

so $A U=P A_{P U}$ and $A V=Q A_{Q V}$. Therefore (2.1) implies (4.2).
The verification of the converse is straightforward.
The following theorem reduces the least squares problem

$$
\begin{equation*}
\|A z-w\|=\min _{\zeta \in \mathbb{C}^{n}}\|A \zeta-w\| \tag{4.3}
\end{equation*}
$$

to the independent $r \times k$ and $s \times \ell$ least squares problems

$$
\left\|A_{P U} x-\phi\right\|=\min _{\xi \in \mathbb{C}^{k}}\left\|A_{P U} \xi-\phi\right\|
$$

and

$$
\left\|A_{Q V} y-\psi\right\|=\min _{\eta \in \mathbb{C}^{\ell}}\left\|A_{Q V} \eta-\psi\right\|
$$

Theorem 4.2. Suppose that A is (R, S)-symmetric, $R=R^{*}$, and $w=P \phi+Q \psi$. Then the general solution of (4.3) is

$$
z=U\left[A_{P U}^{\dagger} \phi+\left(I_{k}-A_{P U}^{\dagger} A_{P U}\right) \xi\right]+V\left[A_{Q V}^{\dagger} \psi+\left(I_{\ell}-A_{Q V}^{\dagger} A_{Q V}\right) \eta\right], \quad \xi \in \mathbb{C}^{k}, \eta \in \mathbb{C}^{\ell}
$$

and

$$
\|A z-w\|^{2}=\left\|\left(A_{P U} A_{P U}^{\dagger}-I_{r}\right) \phi\right\|^{2}+\left\|\left(A_{Q V} A_{Q V}^{\dagger}-I_{s}\right) \psi\right\|^{2}
$$

for all such z. If either $\operatorname{rank}(A)=n$ or $S=S^{*}$, then

$$
A^{\dagger}=\left[\begin{array}{ll}
U & V
\end{array}\right]\left[\begin{array}{cc}
A_{P U}^{\dagger} & 0 \\
0 & A_{Q V}^{\dagger}
\end{array}\right]\left[\begin{array}{l}
P^{*} \\
Q^{*}
\end{array}\right]
$$

and $z_{0}=U A_{P U}^{\dagger} \phi+V A_{Q V}^{\dagger} \psi$ is the optimal solution of (4.3). Moreover, z_{0} is the unique solution of (4.3) if $\operatorname{rank}(A)=n$.

Proof. Starting from Theorem 4.1, we apply Lemma 3.1 with

$$
\begin{gathered}
C=\left[\begin{array}{ll}
P & Q
\end{array}\right], \quad K=\left[\begin{array}{cc}
A_{P U} & 0 \\
0 & A_{Q V}
\end{array}\right], \quad F=\left[\begin{array}{c}
\widehat{U} \\
\widehat{V}
\end{array}\right] \\
z=U x+V y, \quad w=P \phi+Q \psi \quad \text { and } \quad h=U \xi+V \eta .
\end{gathered}
$$

It is straightforward to verify that

$$
K^{\dagger}=\left[\begin{array}{cc}
A_{P U}^{\dagger} & 0 \\
0 & A_{Q V}^{\dagger}
\end{array}\right]
$$

and the other details follow easily, if we recall that since $R=R^{*}, \widehat{P}=P^{*}$ and $\widehat{Q}=Q^{*}$.
Theorem 4.1 and Lemma 3.2 imply the following theorem. (Recall that $\widehat{U}=U^{*}$ and $\widehat{V}=V^{*}$ if $S=S^{*}$.)

Theorem 4.3. Suppose that $R=R^{*}, S=S^{*}$, and A is (R, S)-symmetric. Let

$$
A_{P U}=\Phi D_{P U} X^{*} \quad \text { and } \quad A_{Q V}=\Psi D_{Q V} Y^{*}
$$

be singular value decompositions of $A_{P U}$ and $A_{Q V}$. Then

$$
A=\left[\begin{array}{ll}
P \Phi & Q \Psi
\end{array}\right]\left[\begin{array}{cc}
D_{P U} & 0 \\
0 & D_{Q V}
\end{array}\right]\left[\begin{array}{lll}
U X & V
\end{array}\right]^{*}
$$

is a singular value decomposition of A. Thus, the singular values of $A_{P U}$ are singular values of A with associated R-symmetric left singular vectors and S-symmetric right singular vectors, and the singular values of $A_{Q V}$ are singular values of A with associated R-skew symmetric left singular vectors and S-skew symmetric right singular vectors.
5. Characterization and properties of (R, S)-skew symmetric matrices.

The following theorem characterizes (R, S)-skew symmetric matrices.
ThEOREM 5.1. A is (R, S)-skew symmetric if and only if

$$
A=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
0 & A_{P V} \tag{5.1}\\
A_{Q U} & 0
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

where

$$
\begin{equation*}
A_{P V}=P^{*} A V \quad \text { and } \quad A_{Q U}=Q^{*} A U \tag{5.2}
\end{equation*}
$$

Proof. From (2.9) and (2.10), $R A S=-A$ if and only if (5.1) holds. If (5.1) holds, then (2.8) implies that

$$
A\left[\begin{array}{ll}
U & V
\end{array}\right]=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
0 & A_{P V} \\
A_{Q U} & 0
\end{array}\right]
$$

so $A U=Q A_{Q U}$ and $A V=P A_{P V}$. Therefore (2.1) implies (5.2).
The verification of the converse is straightforward.
Theorem 5.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to the independent $s \times k$ and $r \times \ell$ least squares problems

$$
\left\|A_{Q U} x-\psi\right\|=\min _{\xi \in \mathbb{C}^{k}}\left\|A_{Q U} \xi-\psi\right\|
$$

and

$$
\left\|A_{P V} y-\phi\right\|=\min _{\eta \in \mathbb{C}^{\ell}}\left\|A_{P V} \eta-\phi\right\|
$$

The proof is similar to the proof of Theorem 4.2, noting that in this case

$$
K=\left[\begin{array}{cc}
0 & A_{P V} \\
A_{Q U} & 0
\end{array}\right] \quad \text { and } \quad K^{\dagger}=\left[\begin{array}{cc}
0 & A_{Q U}^{\dagger} \\
A_{P V}^{\dagger} & 0
\end{array}\right]
$$

THEOREM 5.2. Suppose that A is (R, S)-skew symmetric, $R^{*}=R$, and $w=$ $P \phi+Q \psi$. Then the general solution of (4.3) is

$$
z=U\left[A_{Q U}^{\dagger} \psi+\left(I_{k}-A_{Q U}^{\dagger} A_{Q U}\right) \xi\right]+V\left[A_{P V}^{\dagger} \phi+\left(I_{\ell}-A_{P V}^{\dagger} A_{P V}\right) \eta\right], \xi \in \mathbb{C}^{k}, \eta \in \mathbb{C}^{\ell}
$$

and

$$
\|A z-w\|^{2}=\left\|\left(A_{Q U} A_{Q U}^{\dagger}-I_{s}\right) \psi\right\|^{2}+\left\|\left(A_{P V} A_{P V}^{\dagger}-I_{r}\right) \phi\right\|^{2}
$$

for all such z. If either $\operatorname{rank}(A)=n$ or $S=S^{*}$, then

$$
A^{\dagger}=\left[\begin{array}{ll}
U & V
\end{array}\right]\left[\begin{array}{cc}
0 & A_{Q U}^{\dagger} \\
A_{P V}^{\dagger} & 0
\end{array}\right]\left[\begin{array}{l}
P^{*} \\
Q^{*}
\end{array}\right]
$$

and $z_{0}=U A_{Q U}^{\dagger} \psi+V A_{P V}^{\dagger} \phi$ is the optimal solution of (4.3). Moreover, z_{0} is the unique solution of (4.3) if $\operatorname{rank}(A)=n$.

Theorem 5.1 and Lemma 3.2 imply the following theorem.

Theorem 5.3. Suppose that $R=R^{*}, S=S^{*}$, and A is (R, S)-skew symmetric. Let

$$
A_{P V}=\Phi D_{P V} Y^{*} \quad \text { and } \quad A_{Q U}=\Psi D_{Q U} X^{*}
$$

be singular value decompositions of $A_{P V}$ and $A_{Q U}$. Then

$$
A=\left[\begin{array}{ll}
P \Phi & Q \Psi
\end{array}\right]\left[\begin{array}{cc}
D_{P V} & 0 \\
0 & D_{Q U}
\end{array}\right]\left[\begin{array}{ll}
V Y & U X
\end{array}\right]^{*}
$$

is a singular value decomposition of A. Thus, the singular values of $A_{P V}$ are singular values of A with R-symmetric left singular vectors and S-skew symmetric right singular vectors, and the singular values of $A_{Q U}$ are singular values of A with R-skew symmetric left singular vectors and S-symmetric right singular vectors.
6. Characterization and properties of (R, S)-conjugate matrices. In this section we impose the following standing assumption.

Assumption A. $R \in \mathbb{R}^{m \times m}, S \in \mathbb{R}^{n \times n} R^{-1}=R \neq \pm I_{m}, S^{-1}=S \neq \pm I_{n}$, $P \in \mathbb{R}^{m \times r}, Q \in \mathbb{R}^{m \times s}, U \in \mathbb{R}^{n \times k}$, and $V \in \mathbb{R}^{n \times \ell}$. Also, $A=B+i C$ with B, $C \in \mathbb{R}^{m \times n}$.

Under this assumption, (2.3) reduces to

$$
\widehat{P}=\frac{P^{T}(I+R)}{2} \quad \text { and } \quad \widehat{Q}=\frac{Q^{T}(I-R)}{2}
$$

and (2.6) reduces to

$$
\widehat{U}=\frac{U^{T}(I+S)}{2}, \quad \text { and } \quad \widehat{V}=\frac{V^{T}(I-S)}{2}
$$

Moreover, if $R=R^{T}$, then $\widehat{P}=P^{T}, \widehat{Q}=Q^{T}$, and [$P i Q$] is unitary. Similarly, if $S=S^{T}$, then $\widehat{U}=U^{T}, \widehat{V}=V^{T}$, and $[U i V]$ is unitary.

We say that A is (R, S)-conjugate if $R A S=\bar{A}$. The following theorem characterizes the class of (R, S)-conjugate matrices.

Theorem 6.1. $A=B+i C$ is (R, S)-conjugate if and only if

$$
A=[P i Q]\left[\begin{array}{lr}
B_{P U} & -C_{P V} \tag{6.1}\\
C_{Q U} & B_{Q V}
\end{array}\right]\left[\begin{array}{r}
\widehat{U} \\
-i \widehat{V}
\end{array}\right]
$$

where

$$
\begin{equation*}
B_{P U}=P^{T} B U, \quad B_{Q V}=Q^{T} B V, \quad C_{P V}=P^{T} C V, \quad C_{Q U}=Q^{T} C U \tag{6.2}
\end{equation*}
$$

Proof. If $R A S=\bar{A}$, then $R B S=B$ and $R C S=-C$. Therefore Theorem 4.1 implies that

$$
B=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
B_{P U} & 0 \\
0 & B_{Q V}
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

with $B_{P U}$ and $B_{Q V}$ as in (6.2) and Theorem 5.1 implies that

$$
C=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
0 & C_{P V} \\
C_{Q U} & 0
\end{array}\right]\left[\begin{array}{c}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

with $C_{P V}$ and $C_{Q U}$ as in (6.2). Therefore

$$
A=B+i C=\left[\begin{array}{ll}
P & Q
\end{array}\right]\left[\begin{array}{cc}
B_{P U} & i C_{P V} \\
i C_{Q U} & B_{Q V}
\end{array}\right]\left[\begin{array}{l}
\widehat{U} \\
\widehat{V}
\end{array}\right]
$$

which is equivalent to (6.1).
For the converse, if A satisfies (6.1) where the center matrix is in $\mathbb{R}^{m \times n}$, then $R A S=\bar{A}$. Moreover, $A=B+i C$ with

$$
B=P B_{P U} \widehat{U}+Q B_{Q V} \widehat{V} \quad \text { and } \quad C=Q C_{Q U} \widehat{U}+P C_{P V} \widehat{V}
$$

Now we invoke (2.1) (with $\left.{ }^{*}=^{T}\right)$ and (2.7) to verify (6.2).
Theorem 6.1 with $m=n$ and $R=S$ is related to a a result of Ikramov [2]. See also [5, Theorem 19].

Henceforth

$$
K=\left[\begin{array}{rr}
B_{P U} & -C_{P V} \\
C_{Q U} & B_{Q V}
\end{array}\right] \in \mathbb{R}^{m \times n}
$$

An arbitrary z can be written uniquely as $z=U x+i V y$ with $x=\widehat{U} z$ and $y=-i \widehat{V} z$. An arbitrary w can be written uniquely as $w=P \phi+i Q \psi$ with $\phi=\widehat{P} w$ and $\psi=-i \widehat{Q} w$. For our present purposes it is useful to write x, y, ϕ, and ψ in terms of their real and imaginary parts; thus,

$$
\begin{array}{cc}
x=x_{1}+i x_{2}, & x_{1}, x_{2} \in \mathbb{R}^{k}, \\
\phi=y_{1}+i y_{2}, & y_{1}, y_{2} \in \mathbb{R}^{\ell} \\
\phi=\phi_{1}+i \phi_{2}, & \phi_{1}, \phi_{2} \in \mathbb{R}^{r}, \\
\psi=\psi_{1}+i \psi_{2}, & \psi_{1}, \psi_{2} \in \mathbb{R}^{s}
\end{array}
$$

Theorem 6.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to two independent least squares problems for the real matrix K :

$$
\left\|K\left[\begin{array}{l}
x_{j} \\
y_{j}
\end{array}\right]-\left[\begin{array}{c}
\phi_{j} \\
\psi_{j}
\end{array}\right]\right\|=\min _{\xi_{j} \in \mathbb{R}^{k}, \eta_{j} \in \mathbb{R}^{\ell}}\left\|K\left[\begin{array}{c}
\xi_{j} \\
\eta_{j}
\end{array}\right]-\left[\begin{array}{c}
\phi_{j} \\
\psi_{j}
\end{array}\right]\right\|, \quad j=1,2
$$

Theorem 6.2. Suppose that A is (R, S)-conjugate, $R^{T}=R$, and $w=P \phi+Q \psi$. Then the general solution of (4.3) is

$$
z=[U i V]\left(K^{\dagger}\left[\begin{array}{l}
\psi \\
\phi
\end{array}\right]+\left(I-K^{\dagger} K\right)\left[\begin{array}{l}
\xi \\
\eta
\end{array}\right]\right), \quad \xi \in \mathbb{C}^{k}, \quad \eta \in \mathbb{C}^{\ell}
$$

and

$$
\|A z-w\|^{2}=\left\|\left(K K^{\dagger}-I\right)\left[\begin{array}{c}
\psi_{1} \\
\phi_{1}
\end{array}\right]\right\|^{2}+\left\|\left(K K^{\dagger}-I\right)\left[\begin{array}{l}
\psi_{2} \\
\phi_{2}
\end{array}\right]\right\|^{2}
$$

for all such z. If either $\operatorname{rank}(A)=n$ or $S=S^{T}$, then

$$
A^{\dagger}=[U i V] K^{\dagger}\left[\begin{array}{c}
P^{T} \\
-i Q^{T}
\end{array}\right]
$$

and

$$
z_{0}=\left[\begin{array}{ll}
U & i V
\end{array}\right] K^{\dagger}\left[\begin{array}{l}
\psi \\
\phi
\end{array}\right]
$$

is the optimal solution of (4.3). Moreover, z_{0} is the unique solution of (4.3) if $\operatorname{rank}(A)=$ n.

Finally, Lemma 3.2 and Theorem 6.1 imply the following theorem.
THEOREM 6.3. Suppose $R^{T}=R, S^{T}=S$, and A is (R, S)-conjugate. Let $K=$ $W D Z^{T}$ be a singular value decomposition of K. Then

$$
A=[P i Q] W D([U i V] Z)^{*}
$$

is a singular value decomposition of A. Therefore the left singular vectors of A can be written as $w_{j}=P \phi_{j}+i Q \psi_{j}$, with $\phi_{j} \in \mathbb{R}^{r}$ and $\psi_{j} \in \mathbb{R}^{s}, 1 \leq j \leq m$, and the right singular vectors of A can be written as $z_{j}=U x_{j}+i V y_{j}$ with $x_{j} \in \mathbb{R}^{k}$ and $y_{j} \in \mathbb{R}^{\ell}$, $1 \leq j \leq n$.

REFERENCES

[1] H.-C. Chen, Generalized reflexive matrices: special properties and applications, SIAM J. Matrix Anal. Appl. 19 (1998), pp. 140-153.
[2] Kh. D. Ikramov, The use of block symmetries to solve algebraic eigenvalue problems, USSR Comput. Math. Math. Physics 30 (1990) 9-16.
[3] C. D. Meyer and R. J. Painter, Note on a least squares inverse for a matrix, J. Assoc. Comput. Mach. 17 (1970), pp. 110-112.
[4] R. Penrose, A generalized inverse of matrices, Proc. Cambridge Philos. Soc. 51 (1955), pp. 406413.
[5] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004), pp. 207-218.
[6] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl., in press.

[^0]: ${ }^{\dagger}$ Trinity University, San Antonio, Texas, USA (wtrench@trinity.edu)
 ${ }^{\ddagger}$ Mailing address: 95 Pine Lane, Woodland Park, Colorado 80863, USA

