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CHARACTERIZATION AND PROPERTIES OF (R, S)-SYMMETRIC,

(R, S)-SKEW SYMMETRIC, AND (R, S)-CONJUGATE MATRICES

WILLIAM F. TRENCH† ‡

SIAM J. Matrix Anal Appl. 26 (2005) 748–757

Abstract. Let R ∈ Cm×m and S ∈ Cn×n be nontrivial involutions; i.e., R = R−1 6= ±Im and
S = S−1 6= ±In. We say that A ∈ Cm×n is (R,S)-symmetric ((R,S)-skew symmetric) if RAS = A

(RAS = −A).

We give an explicit representation of an arbitrary (R,S)-symmetric matrix A in terms of matrices
P and Q associated with R and U and V associatedwith S. If R = R∗, then the least squares problem
for A can be solved by solving the independent least squares problems for APU = P∗AU ∈ Cr×k

and AQV = Q∗AV ∈ Cs×`, where r + s = m and k + ` = n. If, in addition, either rank(A) = n

or S∗ = S, then A† can be expressed in terms of A
†

PU
and A

†

QV
. If R = R∗ and S = S∗, then

a singular value decomposition of A can obtained from singular value decompositions of APU and
AQV . Similar results hold for (R,S)-skew symmetric matrices.

We say that A ∈ Cm×n is R-conjugate if RAS = R, where R ∈ Rm×m and S ∈ Rn×n,
R = R−1 6= ±Im, and S = S−1 6= ±In. In this case <(A) is (R,S)-symmetric and =(A) is (R,S)-
skew symmetric, so our results provide explicit representations for (R,S)-conjugate matrices. If
RT = R the least squares problem for the complex matrix A reduces to two least squares problems
for a real matrix K. If, in addition, either rank(A) = n or ST = S, then A† can be obtained from
K†. If both RT = R and ST = S, a singular value decomposition of A can be obtained from a
singular value decomposition of K.

Key words. least squares, Moore–Penrose inverse, optimal solution, (R, S)-conjugate, (R,S)-
skew symmetric, (R,S)-symmetric

AMS subject classifications. 15A18, 15A57

1. Introduction. In this paper we expand on a problem initiated by Chen [1],
who considered matrices A ∈ Cm×n such that

RAS = A or RAS = −A, (1.1)

where R ∈ Cm×m and S ∈ Cn×n are involutory Hermitian matrices; i.e., R = R∗,
R2 = Im, S = S∗, and S2 = In. Chen cited applications involving such matrices,
developed some of their theoretical properties, and indicated with numerical examples
that the least squares problem for a matrix of rank n with either property reduces
to two independent least squares problems for matrices of smaller dimensions. He
also considered properties of the Moore–Penrose inverses of such matrices but did not
obtain explicit expressions for them in terms of Moore–Penrose inverses of lower order
matrices.

Here we characterize the matrices A ∈ Cm×n satisfying (1.1) without assuming
that R and S are Hermitian. We obtain general results on the least squares prob-
lem for the case where R is Hermitian, without assuming that S is Hermitian or
that rank(A) = n. Under the additional assumption that either S is Hermitian or
rank(A) = n, we obtain explicit expressions for A† in terms of the Moore–Penrose in-
verses of two related matrices with smaller dimensions. Finally, under the assumption
that R = R∗ and S = S∗, we obtain a singular value decomposition of A in terms of
singular value decompositions of these related matrices.
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Under the assumption that R ∈ Rm×m and S ∈ Rn×n, we consider the analogous
questions for matrices A ∈ Cm×n such that RAS = A, so that R<(A)S = <(A) and
R=(A)S = −=(A). We say that such matrices are (R, S)-conjugate.

We gave related results for square matrices with R = S in [5] and studied other
approximation problems for (R, S)-symmetric and (R, S)-skew symmetric matrices in
[6].

2. Preliminary considerations. Let R ∈ Cm×m and S ∈ Cn×n be nontrivial
involutions; thus R = R−1 6= ±Im and S = S−1 6= ±In. Then the minimal and
characteristic polynomials of R are

mR(x) = (x− 1)(x+ 1) and cR(x) = (x− 1)r(x + 1)s,

where 1 ≤ r, s ≤ m and r + s = m. Therefore there are matrices P ∈ C
m×r and

Q ∈ Cm×s such that

P ∗P = Ir , Q∗Q = Is, (2.1)

RP = P, and RQ = −Q. (2.2)

Thus, the columns of P (Q) form an orthonormal basis for the eigenspace of R associ-
ated with the eigenvalue λ = 1 (λ = −1). Although P and Q are not unique, suitable
P and Q can be obtained by applying the Gram–Schmidt procedure to the columns
of I + R and I − R, respectively. If R is a signed permutation matrix, this requires
little computation. For example, if J is the flip matrix with ones on the secondary
diagonal and zeros elsewhere and R = J2k, we can take

P =
1√
2

[
Ik
Jk

]
and Q =

1√
2

[
Ik

−Jk

]
,

while if R = J2k+1, we can take

P =
1√
2




Ik 0k×1

01×k

√
2

Jk 0k×1



 and Q =
1√
2




Ik

01×k

−Jk



 .

If we define

P̂ =
P ∗(I + R)

2
and Q̂ =

Q∗(I − R)

2
, (2.3)

then

P̂P = Ir , P̂Q = 0 Q̂P = 0, and Q̂Q = Is,

so

[P Q]−1 =

[
P̂

Q̂

]
. (2.4)

Similarly, there are integers k and ` such that k + ` = n and matrices U ∈ Cn×k

and V ∈ Cn×` such that

U∗U = Ik, V ∗V = I`,
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SU = U, and SV = −V. (2.5)

Moreover, if we define

Û =
U∗(I + S)

2
and V̂ =

V ∗(I − S)

2
, (2.6)

then

ÛU = Ik, ÛV = 0, V̂ U = 0, and V̂ V = I`, (2.7)

so

[U V ]−1 =

[
Û

V̂

]
. (2.8)

It is straightforward to verify that if R = R∗, then [P Q] and [P iQ] are both
unitary. Similarly, if S = S∗, then [U V ] and [U iV ] are both unitary. We will use
this observation in several places without restating it.

From (2.4) and (2.8), any A ∈ Cm×n can be written conformably in block form
as

A = [P Q]

[
APU APV

AQU AQV

] [
Û

V̂

]
. (2.9)

We say that A ∈ Cm×n is (R, S)-symmetric if RAS = A, or (R, S)-skew symmetric if
RAS = −A. From (2.2), (2.5), and (2.6),

RAS = [P Q]

[
APU −APV

−AQU AQV

] [
Û

V̂

]
. (2.10)

Henceforth, z ∈ Cn, x ∈ Ck, y ∈ C`, w ∈ Cm, φ ∈ Cr , and ψ ∈ Cs. We say that
w is R-symmetric (R-skew symmetric) if Rw = w (Rw = −w). An arbitrary w can

be written uniquely as w = Pφ+Qψ with φ = P̂w and ψ = Q̂w. From (2.2), Pφ is
R-symmetric and Qψ is R-skew symmetric. Similarly, we say that z is S-symmetric
(S-skew symmetric) if Sz = z (Sz = −z). An arbitrary z can be written uniquely as

z = Ux + V y with x = Ûz and y = V̂ z. From (2.5), Ux is S-symmetric and V y is
S-skew symmetric.

3. Two useful lemmas. Suppose that B ∈ Cm×n and consider the least squares
problem for B: If w ∈ Cm, find z ∈ Cn such that

‖Bz − w‖ = min
ζ∈Cn

‖Bζ − w‖, (3.1)

where ‖ ·‖ is the 2-norm. This problem has a unique solution if and only if rank(B) =
n. In this case, z = (B∗B)−1B∗w. In any case, the optimal solution of (3.1) is the
unique n-vector z0 of minimum norm that satisfies (3.1); thus, z0 = B†w where B† is
the Moore–Penrose inverse of B. The general solution of (3.1) is z = z0 + q with q in
the null space of B, and

‖Bz − w‖ = ‖(BB† − I)w‖
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for all such z.
The proof of the next lemma is motivated in part by a theorem of Meyer and

Painter [3].
Lemma 3.1. Suppose that

B = CKF, (3.2)

where C ∈ Cm×m is unitary and F ∈ Cn×n is invertible. Then the general solution of

(3.1) is

z = F−1K†C∗w + (I − F−1K†KF )h, h ∈ C
n, (3.3)

and

‖Bz −w‖ = ‖(KK† − I)C∗w‖ (3.4)

for all such z. If either rank(B) = n or F is unitary, then

B† = F−1K†C∗,

so the optimal solution of (3.1) is

z0 = F−1K†C∗w. (3.5)

Moreover, z0 is the unique solution of (3.1) if rank(B) = n.

Proof. Recall [4] that Z = W † and W = Z† if and only if Z and W satisfy the
Penrose conditions

WZW = W, ZWZ = Z, (ZW )∗ = ZW, and (WZ)∗ = WZ. (3.6)

Let

BL = F−1K†C∗. (3.7)

By letting W = K and Z = K† in (3.6), it is straightforward to verify that

BLBBL = BL, BBLB = B, (BBL)∗ = BBL, and BLB = F−1K†KF. (3.8)

Any ζ ∈ Cn×n can be written as ζ = BLw + q, so

Bζ − w = (BBL − I)w +Bq.

From the second and third equalities in (3.8),

[(BBL − I)w]∗Bq = 0,

so

‖Bζ −w‖2 = ‖(BBL − I)w‖2 + ‖Bq‖2,

which is a minimum if and only if Bq = 0.
The second equality in (3.8) implies that rank(BLB) = rank(B), so rank(I−BLB)

equals the dimension of the null space of B. Now the second equality in (3.8) implies
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that Bq = 0 if and only if q = (I −BLB)h, h ∈ Cn×n. Hence, the general solution of
(3.1) is

z = BLw + (I − BLB)h, h ∈ C
n×n.

Substituting (3.2) and (3.7) into this yields (3.3). From (3.2) and (3.3),

Bz − w = C(KK† − I)C∗w,

since C is unitary. This implies (3.4).
If rank(B) = n, then rank(K) = n, so K†K = I and the fourth equality in

(3.8) reduces to BLB = I. If F is unitary, the fourth equality in (3.8) implies that
(BLB)∗ = BLB. In either case, (3.8) implies that BL = B†, so (3.5) is the optimal
solution of (3.1). If rank(B) = n, then (3.3) reduces to (3.5).

The following lemma is obvious.
Lemma 3.2. Suppose that B ∈ Cm×n and B = CKF, where C ∈ Cm×m and

F ∈ Cn×n are unitary and K = ZDW ∗ is a singular value decomposition of K. Then

B = (CZ)D(FW )∗ is a singular value decomposition of B.

4. Characterization and properties of (R, S)-symmetric matrices. The
following theorem characterizes (R, S)-symmetric matrices.

Theorem 4.1. A is (R, S)-symmetric if and only if

A = [P Q]

[
APU 0

0 AQV

] [
Û

V̂

]
, (4.1)

where

APU = P ∗AU and AQV = Q∗AV. (4.2)

Proof. From (2.9) and (2.10), RAS = A if and only if (4.1) holds. If (4.1) holds,
then (2.8) implies that

A[U V ] = [P Q]

[
APU 0

0 AQV

]
,

so AU = PAPU and AV = QAQV . Therefore (2.1) implies (4.2).
The verification of the converse is straightforward.

The following theorem reduces the least squares problem

‖Az − w‖ = min
ζ∈Cn

‖Aζ −w‖ (4.3)

to the independent r × k and s× ` least squares problems

‖APUx− φ‖ = min
ξ∈Ck

‖APUξ − φ‖

and

‖AQV y − ψ‖ = min
η∈C`

‖AQV η − ψ‖.
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Theorem 4.2. Suppose that A is (R, S)-symmetric, R = R∗, and w = Pφ+Qψ.

Then the general solution of (4.3) is

z = U [A†
PUφ+ (Ik −A

†
PUAPU )ξ] + V [A†

QV ψ + (I` −A
†
QV AQV )η], ξ ∈ C

k, η ∈ C
`,

and

‖Az − w‖2 = ‖(APUA
†
PU − Ir)φ‖2 + ‖(AQV A

†
QV − Is)ψ‖2

for all such z. If either rank(A) = n or S = S∗, then

A† = [U V ]

[
A

†
PU 0

0 A
†
QV

][
P ∗

Q∗

]

and z0 = UA
†
PUφ+V A†

QV ψ is the optimal solution of (4.3).Moreover, z0 is the unique

solution of (4.3) if rank(A) = n.

Proof. Starting from Theorem 4.1, we apply Lemma 3.1 with

C = [P Q], K =

[
APU 0

0 AQV

]
, F =

[
Û

V̂

]
,

z = Ux+ V y, w = Pφ+Qψ and h = Uξ + V η.

It is straightforward to verify that

K† =

[
A

†
PU 0

0 A
†
QV

]
,

and the other details follow easily, if we recall that since R = R∗, P̂ = P ∗ and Q̂ = Q∗.

Theorem 4.1 and Lemma 3.2 imply the following theorem. (Recall that Û = U∗

and V̂ = V ∗ if S = S∗.)

Theorem 4.3. Suppose that R = R∗, S = S∗, and A is (R, S)-symmetric. Let

APU = ΦDPUX
∗ and AQV = ΨDQV Y

∗

be singular value decompositions of APU and AQV . Then

A = [PΦ QΨ]

[
DPU 0

0 DQV

]
[UX V Y ]∗

is a singular value decomposition of A. Thus, the singular values of APU are singular

values of A with associated R-symmetric left singular vectors and S-symmetric right

singular vectors, and the singular values of AQV are singular values of A with asso-

ciated R-skew symmetric left singular vectors and S-skew symmetric right singular

vectors.
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5. Characterization and properties of (R, S)-skew symmetric matrices.

The following theorem characterizes (R, S)-skew symmetric matrices.
Theorem 5.1. A is (R, S)-skew symmetric if and only if

A = [P Q]

[
0 APV

AQU 0

] [
Û

V̂

]
, (5.1)

where

APV = P ∗AV and AQU = Q∗AU. (5.2)

Proof. From (2.9) and (2.10), RAS = −A if and only if (5.1) holds. If (5.1) holds,
then (2.8) implies that

A[U V ] = [P Q]

[
0 APV

AQU 0

]
,

so AU = QAQU and AV = PAPV . Therefore (2.1) implies (5.2).
The verification of the converse is straightforward.
Theorem 5.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to

the independent s× k and r × ` least squares problems

‖AQUx− ψ‖ = min
ξ∈Ck

‖AQUξ − ψ‖

and

‖APV y − φ‖ = min
η∈C`

‖APV η − φ‖.

The proof is similar to the proof of Theorem 4.2, noting that in this case

K =

[
0 APV

AQU 0

]
and K† =

[
0 A†

QU

A
†
PV 0

]
.

Theorem 5.2. Suppose that A is (R, S)-skew symmetric, R∗ = R, and w =
Pφ+Qψ. Then the general solution of (4.3) is

z = U [A†
QUψ + (Ik − A

†
QUAQU )ξ] + V [A†

PV φ+ (I` −A
†
PV APV )η], ξ ∈ C

k, η ∈ C
`,

and

‖Az − w‖2 = ‖(AQUA
†
QU − Is)ψ‖2 + ‖(APV A

†
PV − Ir)φ‖2

for all such z. If either rank(A) = n or S = S∗, then

A† = [U V ]

[
0 A†

QU

A†
PV 0

][
P ∗

Q∗

]

and z0 = UA
†
QUψ+V A†

PV φ is the optimal solution of (4.3).Moreover, z0 is the unique

solution of (4.3) if rank(A) = n.

Theorem 5.1 and Lemma 3.2 imply the following theorem.
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Theorem 5.3. Suppose that R = R∗, S = S∗, and A is (R, S)-skew symmetric.

Let

APV = ΦDPV Y
∗ and AQU = ΨDQUX

∗

be singular value decompositions of APV and AQU . Then

A = [PΦ QΨ]

[
DPV 0

0 DQU

]
[V Y UX]∗

is a singular value decomposition of A. Thus, the singular values of APV are singular

values of A with R-symmetric left singular vectors and S-skew symmetric right sin-

gular vectors, and the singular values of AQU are singular values of A with R-skew

symmetric left singular vectors and S-symmetric right singular vectors.

6. Characterization and properties of (R, S)-conjugate matrices. In this
section we impose the following standing assumption.

Assumption A. R ∈ Rm×m, S ∈ Rn×n R−1 = R 6= ±Im, S−1 = S 6= ±In,
P ∈ R

m×r, Q ∈ R
m×s, U ∈ R

n×k, and V ∈ R
n×`. Also, A = B + iC with B,

C ∈ Rm×n.

Under this assumption, (2.3) reduces to

P̂ =
P T (I + R)

2
and Q̂ =

QT (I − R)

2
,

and (2.6) reduces to

Û =
UT (I + S)

2
, and V̂ =

V T (I − S)

2
.

Moreover, if R = RT , then P̂ = P T , Q̂ = QT , and [P iQ] is unitary. Similarly, if

S = ST , then Û = UT , V̂ = V T , and [U iV ] is unitary.
We say that A is (R, S)-conjugate if RAS = A. The following theorem charac-

terizes the class of (R, S)-conjugate matrices.
Theorem 6.1. A = B + iC is (R, S)-conjugate if and only if

A = [P iQ]

[
BPU −CPV

CQU BQV

][
Û

−iV̂

]
, (6.1)

where

BPU = P TBU, BQV = QTBV, CPV = P TCV, CQU = QTCU. (6.2)

Proof. If RAS = A, then RBS = B and RCS = −C. Therefore Theorem 4.1
implies that

B = [P Q]

[
BPU 0

0 BQV

] [
Û

V̂

]

with BPU and BQV as in (6.2) and Theorem 5.1 implies that

C = [P Q]

[
0 CPV

CQU 0

] [
Û

V̂

]
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with CPV and CQU as in (6.2). Therefore

A = B + iC = [P Q]

[
BPU iCPV

iCQU BQV

] [
Û

V̂

]
,

which is equivalent to (6.1).
For the converse, if A satisfies (6.1) where the center matrix is in Rm×n, then

RAS = A. Moreover, A = B + iC with

B = PBPU Û +QBQV V̂ and C = QCQU Û + PCPV V̂ .

Now we invoke (2.1) (with ∗ =T ) and (2.7) to verify (6.2).
Theorem 6.1 with m = n and R = S is related to a a result of Ikramov [2]. See

also [5, Theorem 19].
Henceforth

K =

[
BPU −CPV

CQU BQV

]
∈ R

m×n.

An arbitrary z can be written uniquely as z = Ux+ iV y with x = Ûz and y = −iV̂ z.
An arbitrary w can be written uniquely asw = Pφ+iQψ with φ = P̂w and ψ = −iQ̂w.
For our present purposes it is useful to write x, y, φ, and ψ in terms of their real and
imaginary parts; thus,

x = x1 + ix2, x1, x2 ∈ R
k, y = y1 + iy2, y1, y2 ∈ R

`,

φ = φ1 + iφ2, φ1, φ2 ∈ R
r , ψ = ψ1 + iψ2, ψ1, ψ2 ∈ R

s.

Theorem 6.1 and Lemma 3.1 imply the following theorem, which reduces (4.3) to
two independent least squares problems for the real matrix K:

∣∣∣∣

∣∣∣∣K
[
xj

yj

]
−

[
φj

ψj

]∣∣∣∣

∣∣∣∣ = min
ξj∈Rk ,ηj∈R`

∣∣∣∣

∣∣∣∣K
[
ξj
ηj

]
−

[
φj

ψj

]∣∣∣∣

∣∣∣∣ , j = 1, 2.

Theorem 6.2. Suppose that A is (R, S)-conjugate, RT = R, and w = Pφ+Qψ.

Then the general solution of (4.3) is

z = [U iV ]

(
K†

[
ψ

φ

]
+ (I −K†K)

[
ξ

η

])
, ξ ∈ C

k, η ∈ C
`,

and

‖Az −w‖2 =

∣∣∣∣

∣∣∣∣(KK
† − I)

[
ψ1

φ1

]∣∣∣∣

∣∣∣∣
2

+

∣∣∣∣

∣∣∣∣(KK
† − I)

[
ψ2

φ2

]∣∣∣∣

∣∣∣∣
2

for all such z. If either rank(A) = n or S = ST , then

A† = [U iV ]K†

[
P T

−iQT

]

and

z0 = [U iV ]K†

[
ψ

φ

]
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is the optimal solution of (4.3).Moreover, z0 is the unique solution of (4.3) if rank(A) =
n.

Finally, Lemma 3.2 and Theorem 6.1 imply the following theorem.
Theorem 6.3. Suppose RT = R, ST = S, and A is (R, S)-conjugate. Let K =

WDZT be a singular value decomposition of K. Then

A = [P iQ]WD([U iV ]Z)∗

is a singular value decomposition of A. Therefore the left singular vectors of A can be

written as wj = Pφj + iQψj, with φj ∈ Rr and ψj ∈ Rs, 1 ≤ j ≤ m, and the right

singular vectors of A can be written as zj = Uxj + iV yj with xj ∈ R
k and yj ∈ R

`,

1 ≤ j ≤ n.
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