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Abstract
We consider generalizations of the Kac-Murdock-Szegé matrices of the
forms L, = (p‘rfs‘ Cmin(rs) )rms=1 and Up = (p‘rfs‘ Cmax(r,s) )rs=1, Where p
and ci,c2,...,cn are real numbers. We obtain explicit expressions for the
determinants and inverses of L,, and U, , determine their inertias, and diag-
onalize their quadratic forms. We also consider the spectral distributions of
two special cases.

Key words: Kac-Murdock-Szego matrices; Toeplitz matrices; determinant; inverse;
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1. Introduction.

The Kac-Murdock-Szegé (KMS) matrices [4] are the symmetric Toeplitz matri-

ces
n

Ka(p) = (p7*1)

where p is real. It is known [3, Section 7.2, Problems 12-13] that

n=12...,

3
r,s=1

det(Kn(p)) = (1 - p*)" " (1)
and, if p # £1, then
[ 1 —p 0 0 0 0 ]
—-p  14+p* —p 0 0 0
, 0 —p 1+4p? 0 0 0
K (p) = 1= : : : . : : : ;
0 0 0 e 14p2 —p 0
0 0 0 e —=p 14p% —p
| 0 0 0 0 —p 1]
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thus, except for its first and last rows, K, !(p) is a tridiagonal Toeplitz matrix.

In this paper we consider generalizations of the KMS matrices of the form

Ln = (p|r75| Cmin(r,s))ﬁg:l and Un = (p|r75| Cmax(r,s))ﬁg:l;

where p and c1, ¢, ..., ¢, are real numbers; thus,
r 2 -3 -2 —1 T
c1 pe1 pocy e "% P Pt er
— 73 —
pc1 Co pCa s P %ca p"T%ca P
2 —5 —4 —3
pocy pCa c3 <o p"%cs p"T%cs p"Tocs
L, = (2)
—3 —4 —5 2
pTcr P Fea p"TPc3 o+ Cp—2 PCp—2 PTCp—2
- -3 —4
Pt p"%ca p"TRc3 0 pCp—2 Cpe1l PCpoi
—1 2 -3 2
| p" e Pt p"TPc3 o pCn—2 PCn—1 Cn |
and
r 2 -3 -2 —1 T
c1 pC2 peca R A O L O B i
—4 -3 -2
pC2 Co pc3 e PV R epe PPl P e
2 —5 —4 —3
pocs pc3 c3 P %ch—2 P e P Ck
U, = . :
—3 —4 —5 2
Pt Ch—2 PV Cp—2 PV CCp—2 - Cn—2 PCn—1 poCn
- -3 —4
Pt PV PV RC—1 o pCp—t Cn-1 PCn
—1 -2 -3 2
L P en P ey, P %y, poCn PCn, Cn |

Although we do not know of any practical applications in which these matrices
occur, we believe that they have interesting properties. In particular, we hope
to discover conditions on sequences {c,}52 ,; which guarantee that the spectra of
the family {L,,}52, and/or the family {U,}22; have predictable distributions as
n — 0. Theorems 5-8 provide a modest start in this direction.

In Section 2 we obtain explicit expressions for the determinants and inverses of
L,, and U,,. We also determine their inertias and diagonalize their quadratic forms.
In Section 3 we discuss the distribution of the eigenvalues of the matrices

n

Ka(p,7) = (p71 + 7))

r,s=1

(which is of the form (2) with ¢, = 1+ ~p*"), where 0 < p < 1 and v is an arbitrary
real number. In Section 4 we discuss the distribution of the eigenvalues of

n
r,s=1

L,, = (min(r, s) — )

(which is of the form (2) with ¢, = r —~), where v < 1/2.
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2. Properties of L,, and U,.

Let A, be the n xn matrix with 1’s on the diagonal, —p’s on the super diagonal,
and zeros elsewhere; thus,

1 —p 0 0 0 O
1 - 0 0 0
0o 0 1 0 0 0
A, = :
0 0 0 1 =p 0
0 0 O 0 1 —p
L0 0 0 0 1

It is straightforward to verify that

c1 0 0 e 0 0 0
pc1 a1 0 e 0 0 0
p2cy pay Qo e 0 0 0
LnAn — . . . ,
PP e "l p" P n—3 0 0
P2 p"Par ptran PQn_3 Q2 0
L " e p"Pon p" o o pPany pan—o oo |
where
ai:Ci+l_p2Cia Z_la ,?’L—l,
and that
AgLnAn = diag(cl, a1, Q2,..., O[nfl) (3)

= diag(ci,c2 — pPer,cs— pPea, ...y — P20n71)-

It is also straightforward to verify that

By 0 0 ) 0 0

pP2 B2 0 0 0 0

p*Bs pBs B3 0 0 0

AnUn = E E E - : : C |

pn736n72 pn74ﬂn72 pn75ﬂn72 tet 67172 O O

Pn725n—1 pnigﬂnfl Pn745n—1 e pﬂnfl ﬂnfl 0

i pnflcn pn72cn pnflcn .. P2Cn PCr Cn |
where

2 .
61':Ci—pci+1, z:l,...,n—l,
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and that

AnUnAg = diag(ﬂl; 625 R 67171; Cn)
= diag(c; — p?ca,ca — p?c3, ..., Cn1 — p2Cn,Cp).

(4)

Since det(A4,) =1, (3) and (4) imply that

n—1
det(Ly) = e1 [ (civr — pci) (5)
i=1
and
n—1
det(Un) = en [ (ei = Pcivr). (6)
i=1
Note that (5) and (6) both reduce to (1) when ¢y =co=---=¢, = 1.

We will prove the following two theorems together.

THEOREM 1 The inertia of L, is (m, z,p), where m, z, and p are the numbers of
negative, zero, and positive elements in the set

2 2 2
{c1,c0 — p“c1,c3 — p°caye sy — PoCpn_1}.
Moreover,
2 2
n n n n
r—s . —1 2 | —1

E p lCmin(r,s)ﬂfrﬂis =c E P |+ E (Cit1—p ci) E x| - (7)

rs=1 j=1 i=2 =i

THEOREM 2 The inertia of U, is (m, z,p), where m, z, and p are the numbers of
negative, zero, and positive elements in the set

2 2 2
{Cl_p C2,C2 — P C3y...,Cp—1—p Cnacn}-
Moreover,
_ 2 2
n n—1 i n
r—s . 2 7—7 n—7
§ Pl |Cmax(r,s)$r-rs = § (Ci — P CiJrl) § 14 J:Ej +cn g 14 J:Ej
rs=1 i=1 j=1 j=1

PROOF: By Sylvester’s theorem, (3) and (4) imply the statements concerning inertia.
From (3),

Ln, = (AH)T diag(cr, e — pPer, 3 — pPea, .oy — pren_1) AL (9)
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From (4),
U, = A;l diag(cy — p*ca, co — p2csy ..., Cn1 — pPCn, cn)(Agl)T. (10)
Since ~ ) ) )
L pp p p P
0 1 P pn pn 3 pn72
0 0 1 pn pn74 pn 3
A= o : : :
0 0 O p 02
0 0 O 1 p
L0 0 0 0 1
(9) implies (7) and (10) implies (8). [ |

EXAMPLE 1. With p =1 and and ¢, =, (7) and (8) reduce to
2
Z min(r, $)z,xs = Z ij (11)
r,s=1 i=1 j=i
and

2

Z max(r, §)T,xs = — Z ij

r,s=1 1=1 Jj=1

2
n
+n g T
Jj=1

These diagonalizations have recently been obtained by T. Y. Lam [5], who observed
that (11) was previously stated in [2].

EXAMPLE 2. With ¢, =1, (7) and (8) provide distinct diagonalizations of the
quadratic form associated with K, (p):

n

Z p|r75|xrxS — ipjflxj

rs=1 j=1 i=2 \ j=i
2 2
n n—1 n
P OFESERRSTIED B 0 3Tl IN b o et

rs=1 i=1 \j=1 j=1
THEOREM 3 If det(L,) # 0 define
1

o; = i=1,....,n—1
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Then L, = (urs)y o—; is the symmetric tridiagonal matriz with

2
uir = 1/c1 4 p°o1,  Unn = On_1,

ur,a:ar,1+p2ar, r=2,...,n—1,
and
Up41,r = Uprr4+1 = — PO, T:L...,?’L—l.
For example,
1/er+p*or —por 0 0 0
—poy o1+ pPoa —poa 0 0
Lgl = 0 —poa o2 + p203 —pos 0
0 0 —pos o3+ p*os  —poy
0 0 0 —pPo4 04

PRrOOF: From (9),
L;l = An diag(l/cl, 01,02y ..., O’nfl)Ag,

and routine manipulations verify the stated result. [ ]
Example 3. Let ¢, = 1 + vp?", where v is an arbitrary real number. Then

|r—s]

P Cmin(r,s) = P|T75| + FYpTJrS'

We denote L,, by K,(p,7), since we will return to this matrix in Section 3; thus
n

Kn(p,v) = (p"”’s' + ”yp”s)

r,s=1

In this case ¢;11 — p?c; =1 — p?, so (5) implies that

det(Kn(p,7)) = (1 +7p*)(1 = p*)" . (12)
Since 1
o; = yeet=1,...,n—1,
1—p?
Theorem 3 implies that
. . -
tw o, 0 - 0 0 0
14 7p?
—p 1+p> —p -+ 0 0 0
1 0 - 14p* - 0 0 0
K;? =
w0 =10 : : SR : :
0 0 0 R R 0
0 0 0 e —=p 1L+p* —p
|0 0 0 - 0 —p 1
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if p #£ 41 and yp? # —1.
Example 4. If p =1 and ¢, =r — « then

Ly, = (min(r, s) — )7 s=1-
Since 0; =1, =1,...,n— 1, Theorem 3 implies that
-9 )
it A | ) 0 0 0 0
1—n~
-1 2 -1 0 0 0 0 0
0 -1 2 -1 0

if v £ 1.

THEOREM 4 If det(U,,) # 0 define

1

T, = ——5 1=1

2 )
Ci — P~Cit1

yo.,m— 1.

Then Uyt = (vps)yt o=y is the symmetric tridiagonal matriz with

2
V11 = T1, Unn = P Tn71+1/cn;

'Urr:p27-r71+7'r, r=2,...,n—1,
and
Ur41,r = Uprr4+1 = —PTr, T:1,...,TL—1.
For example,
T1 —pT1 0 0 0
—pT1 PP+ T —pT2 0 0
U:?l = 0 —pT2 p27'2 + 73 —pT3 0
0 0 —p13 P34 Ty —pT4
0 0 0 —pra pPra+1/cs
ProOF: From (10),
Ut = AL diag(11, 72,73, -+, Ta—1, 1/cn) An,

(13)



and routine manipulations verify the stated result.
Example 5. Let ¢, = 1+ vp~2", where v is real. Then
n

Un = (P71 +9077)

r,s=1
In this case ¢; — pciz1 =1 — p?, so (6) implies that

det(U,) = (1+7p~>")(1 = p2)"

Since .
T = st =1,...,n—1,
1—p?
Theorem 4 implies that
! —p 0 0 0
-p  1+4+p> —p 0 0
0 —p 14p° 0 0
-1 1 ; ; :
" 1—p? 0 0 0 1+p2 —p
0 0 0 —p 147
0 0 0 0 p

if p £ 41 and v # —p?".
Example 6. If p =1 and ¢, =r —~ then

Un = (max(r, s) = 7). s=1-

Since ; = —1,4=1,...,n— 1, Theorem 4 implies that
r—1 1 00 --- 0 0 0 0 T
_9 0 0
0 1 -2 1 0 0 O 0
U71 —
—2 1 0
0 1 -2 1
— 1
0 0 00 o o 1 P17
L TI,—")/ m

if v #£ n.

William F. Trench
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3. Spectral Properties of K, (p,~).
If 0 < p <1 then

o0

Z p|n|ein0 — F(G)

n=—oo

1—p?
= 14
1—2pcosf + p?’ (14)
and it is known that the eigenvalues A1, < Ao, < -+ - < A\pp of K (p) = (p|r75|>f’}75:1

are given by
Ajn = F(dn—jt1,n),

where _

(J—Dm
n+1

(See [6] for more on this.) This illustrates a theorem of Szegé [1, Chapter 5] which
implies that if {¢,}22_ are the Fourier coefficients of a bounded real-valued even
function f € L[—m,n| then the spectra of the symmetric Toeplitz matrices T,, =
(er—s)is=1, n = 1,2,..., are equally distributed in the sense of H. Weyl [1, p. 62]
with values of f at n equally spaced points in [0, 7], as n — oco. We will now obtain
related results on the spectrum of K, (p,7) as n — oo, assuming that 0 < p < 1.
We also assume temporarily that yp? # —1, so K, (p, ) is invertible.

)T
<< L j=1,2,...n
n

We begin by considering the spectrum of

o 4 :
in —p 0 0 0 0
L+p
—p 1+p> —p -+ 0 0 0
0 —p L+p% - 0 0 0
Vo = (1=p") K (p.7) = . . L : .
0 0 0 e 1402 —p 0
0 0 0 o —=p 1492 —p
i 0 0 0 e 0 —p I
It is straightforward to verify that if xg, 21, ..., Zn, Zn4+1 (not all zero) satisfy
—pry—1 +[1+p? — pla, —prrpr =0, 1 <7 <n, (15)
and the boundary conditions
(1 +7pH)z0 = p(1+7)z1 and i1 = pon, (16)
then z = [z1 22 - -+ 2,)T is a p-eigenvector of V;,. The solutions of (15) are of the

form
Ty =c1¢" + (7, (17)
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where ¢ and 1/ are the zeros of the reciprocal polynomial
P(z) = —pz> + (1 +p* — p)z — p. (18)
The boundary conditions (16) require that

(L+9p*)(c1+c2) = p(1+7)(erl +c2/C) (19)
al" et = pler" 4 el).

The determinant of this system is

Do(¢) = L+9p* = p(1+7)¢ 140" —p(1+7)/¢
" ¢"H1 = p/C) ¢TI = pC) (20)
= (1 +9)(C" 7 = ¢ = p(2 + (1 +p?)) (" = ¢
P21+ )(CT =T,

With ¢ = £1, (19) has the nontrivial solution (1, —1), but (17) yields x, = 0 for
all r. Therefore the zeros 1 of D,, are not associated with eigenvalues of V;,. The
remaining 2n zeros of D,, occur in reciprocal pairs ({,1/(). Corresponding to a
given pair, z as defined in (17) is an eigenvector of V,,, and therefore of K, (p,~).
To determine the eigenvalue p of V,, with which it is associated, we note that since

P(z) = —p(z = ¢)(z = 1/¢) = =p(z* = (¢ +1/()z + 1),
(18) implies that
p=1=p(C+1/¢)+p*

Therefore
1—p?
1—p(C+1/¢) + p?

is an eigenvalue of K, (p,7). In particular, if ¢ = €% then F () (see (14)) is an
eigenvalue of K, (p,7).

A=G(() =

THEOREM 5 Let p and v be real numbers, with 0 < p < 1. Then:
(a) Kn(p,7y) has eigenvalues of the form F(6;,), j =2,...,n— 1, where

U—Dm

<O, <iZ j=2...n-1 (21)
n

(b) If v < 1/p then K, (p,7) has an eigenvalue of the form F(01,), where
0< b, < —.
n

(¢) If v > —1/p then K, (p,7) has an eigenvalue of the form F(0,,), where

(n—1)r

< Opp < .
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PROOF: It suffices to prove (a) and (b) under the additional assumption that v #
—1/p? (so that V,, is defined), since the conclusions will then follow in the case
where v = —1/p? by a continuity argument. We first isolate the zeros ¢ = ¥ of
D,, with 0 < 8 < 7. Define

B o\ sin(n+1)0 o 8innf 5 sin(n — 1)0
Sn(0) = (A +7p")— = = P2+ (1 + 7)) + " (14 7) —
on [0, 7], where the definition at the endpoints is by continuity; then D, (e!) =
D,,(e~™%) = 0 if and only if S,,(#) = 0.

It is routine to verify that

Sn(0) =1 =p)[1+p+n(l-p)(1-p), (22)
Sn (%) =(-1)(1-p?), j=1,....,n—1, (23)

and
Su(m) = (=1)"(1 = p* + n(1 + p)*(1 + 7p)). (24)

From (23), S, changes sign on ((j —1)7/n,jm/n), j = 2,...,n—1. This implies (a).
If v < 1/p then (22), and (23) with j = 1 imply that S,, changes sign on (0, 7/n).
This implies (b). If v > —1/p then (23) with j = n — 1 and (24) imply that S,
changes sign on ((n — 1)m/n, 7). This implies (c).
Now let A1, < Aapn < ... < Apy be the eigenvalues of K, (p, 7). Let
1= 1+

a=-"— min F(0) and 6:—p:maXF(9),
14+p o0<6<n 1—p o0<6<n

and define

M) j=1,...,n. (25)

=F
Xi ( 2n

THEOREM 6 Suppose that 0 < p < 1, |y| < 1/p, and H is continuous on [a, (3].
Then

T ST [H( ) — x| = 0. (26)

j=1

According to a definition given in [8], the sets {\;,}7_; and {x;n}}_, are ab-
solutely equally distributed as n — oo. This is stronger than Weyl’s definition of
equally distributed as n — oo, which does not require the absolute value signs in
(26). The proof that we are about to give is similar to the proof of Theorem 4 in
[7]. We repeat the proof here because there were minor — but potentially confusing
— errors in the enumeration of {\;,}7_; and {x;n}}—_; in [7].
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PROOF: Since F is decreasing, Theorem 5 implies that
Ajn:F(9n7j+17n), ]:1,,n
Therefore (21), (25), and the mean value theorem imply that
Km
)\ n n < a0 27
[Akn = Xin| < 5 (27)
where K = maxo<o<r |F’(0)|. Let

Wa(H) =Y |H(Nn) = H(xin)|-
k=1

If H is constant then W, (H) = 0. If N is a positive integer then (27) and the mean
value theorem imply that
_ NBN-1Kr
O i P
n
so (26) holds if H is a polynomial.

Now suppose H is an arbitrary continuous function on [« 5] and let € > 0 be
given. From the Weierstrass approximation theorem, there is a polynomial P such
that |H(u) — P(u)| < € for all w in [o, §]. Therefore W,,(H) < W,,(P) + 2ne, and

n(H n(P
1imsupW (H) < lim I/Vi(>—l-26:2e.
n—00 n n—oo n
Now let € — 0 to conclude that lim,, o Wy, (H)/n = 0. [ |

THEOREM 7 Suppose that 0 < p < 1 and H is continuous on [«, 5]. Then:
(a) If v > 1/p then

(14+)(1 +~p%)

lim A, = 28
n—oo V(1= p?) 28
and
1 n—1
Jim LS H ()~ G =0 (29)
j=1
(b) If v < —1/p then
. (1+9)( +p%)
lim A\, =—F—7—= 30
n—oo ! Y1 = p?) (30)
and
I
Jim = T H(Am) — Hxjn)| = 0. (31)

Jj=2
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PROOF: If ¥ = —1/p? then (12) implies that A1, = 0, which verifies (30) in this
case. Henceforth we assume that |y| > 1/p, but v # —1/p%. For all values of n and
v, Theorem 5 implies that at least n — 1 eigenvalues of K, (p,~) are values of F(9)
and therefore in (o, 3). This and the fact that D, (1) = D,(—1) = 0 account for
at least 2n zeros of D,,. If v > 1/p then S, (0) and S, (w/n) are both negative for
n sufficiently large, while if v < —1/p? then S, (7) and S,,((n — 1)7/n) and S, ()
have the same sign for n sufficiently large. Therefore, there is an N such that if
n > N then D,, has exactly one pair ((,,1/(,) of zeros which are not on the unit
circle.

Hence, ¢, is real, and we may assume without loss of generality that |(,| > 1.
We denote the eigenvalue corresponding to ¢, by v,; thus,

1—p?
L= p(Cn +1/¢n) + p?
Since (, is not on the unit circle, v, ¢ [«, 8]. Therefore the Cauchy interlacement

theorem implies that v, = \,, for all n > N or v, = Ay, for every n > N, and
that |vp41| > |vn|. Therefore (32) implies that |(ni1| > [Cal-

Now it is convenient to rewrite (20) as

Un = G(Cn) = (32)

Dn(¢) = ¢ H(1/¢) = ¢C"TTH(Q), (33)
with
H(¢) = (L+90)¢% = p(2+7(1+p*)¢+p*(1+7) (34)
= ([1+70°)(C = p)(¢ = C);
where
(o = p(1+7)
T 14
Since Dy, ((,) = 0, (33) and (34) imply that
o= Con = G 2 PH(1/Gn)
T @+ (G p)
Since |(,| is increasing and greater than 1, this implies that lim, o (n = (oo-
Therefore

. L+ +7p%)
lim v, = G((x) = ——FF———5—=.
n—o0 (C) (1 = p?)

Since the quantity on the right is greater than g if v > 1/p, or less than « if

v < —1/p, this implies (28) if v > 1/p, or (30) if v < —1/p.
Now Theorem 5 implies that if v > 1/p then \j,, = F(6n—j110),7=1,...,n—1,
while if v < —1/p then A, = F(6p—j41,n), j = 2,...,n, and arguments similar to
the proof of Theorem 6 yield (29) and (31). [ |
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n
r,s=1-*

4. Spectral Properties of L, = (min(r, s) — )
We now consider the spectrum of L, = (min(r, s) —7); _; in the case where v <
1/2. We begin by considering the spectrum of L, ! (see (13)). It is straightforward

to verify that if xg, 1, ..., Zn, Tnt1 (not all zero) satisfy the difference equation
Tre1— 22—z, + 2,41 =0, 1<r<n, (35)
and the boundary conditions
(I—7v)zo+v21 =0 and =z, —xp41 =0, (36)

then x = [z 22 -+ x,)7 satisfies L'z = pz; therefore, p is an eigenvalue of L;,*
if and only if (35) has a nontrivial solution satisfying (36), in which case x is p-
eigenvector of L.t

The solutions of (35) are of the form

Ty = Clcr + CQCiT, (37)
where ¢ and 1/ are the zeros of the reciprocal polynomial
P(z)=2*—(2—p)z + 1. (38)

The boundary conditions (36) require that

(I =y)(e1 +c2) +y(c1¢ + e2/C)
(1™ + (™" = (" + ¢ ) = 0.

The determinant of this system is

|
o

= (DA = NET 1)+ (T + Q)

With ¢ = 1, (39) has the nontrivial solution (1, —1), but (37) yields z, = 0 for all
r. Therefore ¢ = 1 is not associated with an eigenvalue of L, !. The remaining 2n
zeros of D, occur in reciprocal pairs (¢, 1/¢). Corresponding to a given pair, x as
defined in (37) is an eigenvector of L' (and therefore of L,). To determine the
eigenvalue p of L1 with which it is associated, we note that since

P(z) = (2= ¢)(z =1/¢) =2 = (C+1/¢)z + 1,

(38) implies that
1
o= (omeg)

o
C2-(-1/¢

Therefore

A

is an eigenvalue of L,,.
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THEOREM 8 If v < 1/2 then the eigenvalues A1p, < Aap <+ < Apn Of

L,, = (min(r, s) — y)*

r,s=1

are of the form

where
2 — D 27

mr1 Ui SonyT

PRrOOF: It suffices to isolate the zeros ¢ = € of D,, with 0 < 6 < 7. Define
Cr(8) = (1 —~y)cos(n+1/2)0 + vy cos(n — 1/2)6.
Then D,,(e™?) = D, (e~™"%) = 0 if C,,(f) = 0. If v < 1/2 then S,, changes sign on

each interval
2(5 -1 27
I _( U=Dm 2w ) j=1,...,n.

2n+1 "2n+1

This implies that S, (0;,,) = 0 for some 60}, in Ij,,. From (40), (1/4) csc®(0;,/2) is
an eigenvalue of L,,. Since csc?(0/2) is decreasing on (0, 7), the conclusion follows.
|

References

[1] U. Grenander and G. Szégo, Toeplitz Forms and Their Applications, Univ. of
California Press, Berkeley and Los Angeles, 1958.

[2] T. A. Hannula, T. G. Ralley, and I. Reiner, Modular representation algebras,
Bull. Amer. Math. Soc. 73 (1967), 100-101.

[3] R. A. Horn and C. R. Johnson, Matriz Analysis, Cambridge University Press,
1991.

[4] M. Kac, W. L. Murdock, and G. Szeg6, On the eigenvalues of certain Hermitian
forms, J. Rat. Mech. and Anal. 2 (1953), 787-800.

[5] T. Y. Lam, On the diagonalization of quadratic forms, Math. Mag. 72 (1999),
231-235.

[6] W.F. Trench, Numerical solution of the eigenvalue problem for symmetric ratio-
nally generated Toeplitz matrices, STAM J. Matrix Anal. Appl. 9 (1988), 291-303.



16 William F. Trench

[7] W. F. Trench, Asymptotic distribution of the spectra of a class of generalized
Kac-Murdock-Szeqé matrices, Lin. Alg. Appl. 294 (1999), 181-192.

[8] W. F. Trench, Asymptotic distribution of the even and odd spectra of real sym-
metric Toeplitz matrices, Lin. Alg. Appl. 302-303 (1999), 155-162.



	Trinity University
	From the SelectedWorks of William F. Trench
	2001

	Properties of some generalizations of Kac-Murdock-Szeg"o matrices
	Genkms.DVI

