Trinity University

From the SelectedWorks of William F. Trench

2012

Characterization and properties of \$(R,S_\sigma)\$-commutative matrices

William F. Trench, Trinity University

Characterization and properties of (R, S_{σ})-commutative matrices

William F. Trench *
Trinity University, San Antonio, Texas 78212-7200, USA
Mailing address: 659 Hopkinton Road, Hopkinton, NH 03229 USA

NOTICE: this is the author's version of a work that was accepted for publication in Linear Algebra and Its Applications. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Please cite this article in press as: W.F. Trench, Characterization and properties of $\left(R, S_{\sigma}\right)$-commutative matrices, Linear Algebra Appl. (2012), doi:10.1016/j.laa.2012.02.003

Abstract

Let $R=P \operatorname{diag}\left(\gamma_{0} I_{m_{0}}, \gamma_{1} I_{m_{1}}, \ldots, \gamma_{k-1} I_{m_{k-1}}\right) P^{-1} \in \mathbb{C}^{m \times m}$ and $S_{\sigma}=$ $Q \operatorname{diag}\left(\gamma_{\sigma(0)} I_{n_{0}}, \gamma_{\sigma(1)} I_{n_{1}}, \ldots, \gamma_{\sigma(k-1)} I_{n_{k-1}}\right) Q^{-1} \in \mathbb{C}^{n \times n}$, where $m_{0}+m_{1}+$ $\cdots+m_{k-1}=m, n_{0}+n_{1}+\cdots+n_{k-1}=n, \gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$ are distinct complex numbers, and $\sigma: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}=\{0,1, \ldots, k-1\}$. We say that $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative if $R A=A S_{\sigma}$. We characterize the class of $\left(R, S_{\sigma}\right)$ commutative matrrices and extend results obtained previously for the case where $\gamma_{\ell}=e^{2 \pi i \ell / k}$ and $\sigma(\ell)=\alpha \ell+\mu(\bmod k), 0 \leq \ell \leq k-1$, with $\alpha, \mu \in \mathbb{Z}_{k}$. Our results are independent of $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$, so long as they are distinct; i.e., if $R A=A S_{\sigma}$ for some choice of $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$ (all distinct), then $R A=A S_{\sigma}$ for arbitrary of $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

MSC: 15A09; 15A15; 15A18; 15A99

Keywords: Commute; Eigenvalue problem; Least Squares problem; Moore-Penrose Inverse; $\left(R, S_{\sigma}\right)$-commutative; Singular value decomposition

[^0]
1 Introduction

A matrix $A=\left[a_{r s}\right]_{r, s=0}^{n-1} \in \mathbb{C}^{n \times n}$ is said to be centrosymmetric if

$$
a_{n-r-1, n-s-1}=a_{r s}, \quad 0 \leq r, s \leq n-1,
$$

or centro-skewsymmetric if

$$
a_{n-r-1, n-s-1}=-a_{r s}, \quad 0 \leq r, s \leq n-1
$$

The study of such matrices is facilitated by the observation that A is centrosymmetric (centro-skewsymmetric) if and only if $J A=A J(J A=-A J)$, where J is the flip matrix, with ones on the secondary diagonal and zeroes elsewhere. Several authors $[2,3,4,5,8,10,13,25]$ used this observation to show that centrosymmetric and centroskewsymmetric matrices can be written as $A=P C P^{-1}$, where P diagonalizes J and C has a useful block structure. We will discuss this further in Example 3.

Following this idea, other authors $[6,11,12,14,24]$ considered matrices satisfying $R A=A R$ or $R A=-A R$, where R is a nontrivial involution; i.e., $R=R^{-1} \neq \pm I$. We continued this line of investigaton in [15, 16, 17, 19], and extended it in [18, 20], defining $A \in \mathbb{C}^{m \times n}$ to be (R, S)-symmetric $((R, S)$-skew symmetric) if $R A=A S$ ($R A=-A S$), where $R \in \mathbb{C}^{m \times m}$ and $S \in \mathbb{C}^{n \times n}$ are nontrivial involutions. We showed that a matrix A with either of these properties can be written as $A=P C Q^{-1}$, where P and Q diagonalize R and S respectively and C has a useful block form.

Chen [7] and Fasino [9] studied matrices $A \in \mathbb{C}^{n \times n}$ such that $R A R^{*}=\zeta^{\mu} A$, where R is a unitary matrix that satisfies $R^{k}=I$ for some $k \leq n$ and $\zeta=e^{2 \pi i / k}$. In [21] we studied matrices $A \in \mathbb{C}^{m \times n}$ such that $R A=\zeta^{\mu} A S$, where

$$
\begin{gather*}
R=P \operatorname{diag}\left(I_{m_{0}}, \zeta I_{m_{1}}, \ldots, \zeta^{k-1} I_{m_{k-1}}\right) P^{-1} \tag{1}\\
S=Q \operatorname{diag}\left(I_{n_{0}}, \zeta I_{n_{1}}, \ldots, \zeta^{k-1} I_{n_{k-1}}\right) Q^{-1} \tag{2}\\
m_{0}+m_{1}+\cdots+m_{k-1}=m, \quad n_{0}+n_{1}+\cdots+n_{k-1}=n \tag{3}
\end{gather*}
$$

and

$$
\alpha, \mu \in \mathbb{Z}_{k}=\{0,1, \ldots, k-1\}
$$

Finally, motivated by a problem concerning unilevel block circulants [22], in [23] we considered matrices $A \in \mathbb{C}^{m \times n}$ such that $R A=\zeta^{\mu} A S^{\alpha}$, with $\alpha, \mu \in \mathbb{Z}_{k}$. We called such matrices (R, S, α, μ)-symmetric, and showed that A has this property if and only if

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\alpha \ell+\mu(\bmod k)} F_{\ell} \widehat{Q}_{\ell} \quad \text { with } \quad F_{\ell} \in \mathbb{C}^{\alpha \ell+\mu(\bmod k) \times n_{\ell}}, \quad 0 \leq \ell \leq k-1 \tag{4}
\end{equation*}
$$

which has useful computational and theoretical applications. $\left(P_{0}, \ldots, P_{k-1}\right.$ and \widehat{Q}_{0}, $\ldots, \widehat{Q}_{k-1}$ are defined in Section 2, specifically, (7)-(10).) The class of $(R, S, \alpha, \mu)-$ symmetric matrices includes, for example, centrosymmetric, skew-centrosymmetric,
R-symmetric, R-skew symmetric, (R, S)-symmetric, and (R, S)-skew symmetric matrices, and block circulants $\left[A_{s-\alpha r}\right]_{r, s=0}$.

Having said this, we now propose that all the papers in our bibliography - including our own - are based on an unnecessarily restrictive assumption; namely, that the spectra of the matrices R and S that are used to define the symmetries consist of a set (usually the complete set) of k-th roots of unity for some $k \geq 2$. In this paper we point out that this assumption is irrelevant and present an alternative approach that eliminates this requirement and exposes a wider class of generalized symmetries if $k>2$. We extend our results in [21] and [23] to this larger class of matrices.

2 Preliminary considerations

Throughout the rest of this paper,

$$
\begin{equation*}
R=P \operatorname{diag}\left(\gamma_{0} I_{m_{0}}, \gamma_{1} I_{m_{1}}, \ldots, \gamma_{k-1} I_{m_{k-1}}\right) P^{-1} \in \mathbb{C}^{m \times m} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
S=Q \operatorname{diag}\left(\gamma_{0} I_{n_{0}}, \gamma_{1} I_{n_{1}}, \ldots, \gamma_{k-1} I_{n_{k-1}}\right) Q^{-1} \in \mathbb{C}^{n \times n}, \tag{6}
\end{equation*}
$$

where $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$ are distinct complex numbers, except when there is an explicit statement to the contrary. We define

$$
R_{\sigma}=P \operatorname{diag}\left(\gamma_{\sigma(0)} I_{m_{0}}, \gamma_{\sigma(1)} I_{m_{1}}, \ldots, \gamma_{\sigma(k-1)} I_{m_{k-1}}\right) P^{-1}
$$

and

$$
S_{\sigma}=Q \operatorname{diag}\left(\gamma_{\sigma(0)} I_{n_{0}}, \gamma_{\sigma(1)} I_{n_{1}}, \ldots, \gamma_{\sigma(k-1)} I_{n_{k-1}}\right) Q^{-1}
$$

where $\sigma: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}$.
We can partition

$$
\begin{align*}
& P=\left[\begin{array}{llll}
P_{0} & P_{1} & \cdots & P_{k-1}
\end{array}\right], \quad Q=\left[\begin{array}{llll}
Q_{0} & Q_{1} & \cdots & Q_{k-1}
\end{array}\right], \tag{7}\\
& P^{-1}=\left[\begin{array}{c}
\widehat{P}_{0} \\
\widehat{P}_{1} \\
\vdots \\
\widehat{P}_{k-1},
\end{array}\right] \text { and } Q^{-1}=\left[\begin{array}{c}
\widehat{Q}_{0} \\
\widehat{Q}_{1} \\
\vdots \\
\widehat{Q}_{k-1},
\end{array}\right] \text {, } \tag{8}
\end{align*}
$$

where

$$
\begin{align*}
& P_{r} \in \mathbb{C}^{m \times m_{r}}, \quad \widehat{P}_{r} \in \mathbb{C}^{m_{r} \times m}, \quad \widehat{P}_{r} P_{s}=\delta_{r s} I_{m_{r}}, \quad 0 \leq r, s \leq k-1, \tag{9}\\
& Q_{r} \in \mathbb{C}^{n \times n_{r}}, \quad \widehat{Q}_{r} \in \mathbb{C}^{n_{r} \times n}, \quad \text { and } \quad \widehat{Q}_{r} Q_{s}=\delta_{r s} I_{n_{r}}, \quad 0 \leq r, s \leq k-1 . \tag{10}
\end{align*}
$$

We can now write

$$
\begin{gather*}
R=\sum_{\ell=0}^{k-1} \gamma_{\ell} P_{\ell} \widehat{P}_{\ell}, \quad R_{\sigma}=\sum_{\ell=0}^{k-1} \gamma_{\sigma(\ell)} P_{\ell} \widehat{P}_{\ell}, \tag{11}\\
S=\sum_{\ell=0}^{k-1} \gamma_{\ell} Q_{\ell} \widehat{Q}_{\ell}, \quad \text { and } \quad S_{\sigma}=\sum_{\ell=0}^{k-1} \gamma_{\sigma(\ell)} Q_{\ell} \widehat{Q}_{\ell} . \tag{12}
\end{gather*}
$$

Definition 1 In general, if $U \in \mathbb{C}^{m \times m}, V \in \mathbb{C}^{n \times n}$, and $A \in \mathbb{C}^{m \times n}$, we say that A is (U, V)-commutative if $U A=A V$. In particular, we say that $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$ commutative if $R A=A S_{\sigma}$. If σ is the identity (i.e., $R A=A S$), we say that A is (R, S)-commutative. If $A, R \in \mathbb{C}^{n \times n}$ and $R A=A R$, we say - as usual - that A commutes with R.

3 Necessary and sufficient conditions for (R, S_{σ})-commutativity

Theorem $1 A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative if and only if

$$
\begin{equation*}
A=P\left(\left[C_{r s}\right]_{r, s=0}^{k-1}\right) Q^{-1}, \quad \text { where } \quad C_{r s} \in \mathbb{C}^{m_{r} \times n_{s}} \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
C_{r s}=0 \quad \text { if } \quad r \neq \sigma(s), \quad 0 \leq r, s \leq k-1 \tag{14}
\end{equation*}
$$

Proof. Any $A \in \mathbb{C}^{m \times n}$ can be written as in (13) with $C=P^{-1} A Q$ partitioned as indicated. If

$$
D=\operatorname{diag}\left(\gamma_{0} I_{m_{0}}, \gamma_{1} I_{m_{1}}, \ldots, \gamma_{k-1} I_{m_{k-1}}\right)
$$

and

$$
D_{\sigma}=\operatorname{diag}\left(\gamma_{\sigma(0)} I_{n_{0}}, \gamma_{\sigma(1)} I_{n_{1}}, \ldots, \gamma_{\sigma(k-1)} I_{n_{k-1}}\right)
$$

then

$$
R A=\left(P D P^{-1}\right)\left(P C Q^{-1}\right)=P D C Q^{-1}=P\left(\left[\gamma_{r} C_{r s}\right]_{r, s=0}^{k-1}\right) Q^{-1}
$$

and

$$
A S_{\sigma}=\left(P C Q^{-1}\right)\left(Q D_{\sigma} Q^{-1}\right)=P C D_{\sigma} Q^{-1}=P\left(\left[\gamma_{\sigma(s)} C_{r s}\right]_{r, s=0}^{k-1}\right) Q^{-1}
$$

Therefore $R A=A S_{\sigma}$ if and only if $\left(\gamma_{r}-\gamma_{\sigma(s)}\right) C_{r s}=0,0 \leq r, s \leq k-1$, which is equivalent to (14), since $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$ are distinct.

The following theorem is a convenient reformulation of Theorem 1.
Theorem $2 A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative if and only if

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell} \quad \text { with } \quad F_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times n_{\ell}}, \quad 0 \leq \ell \leq k-1, \tag{15}
\end{equation*}
$$

in which case

$$
\begin{equation*}
F_{\ell}=\widehat{P}_{\sigma(\ell)} A Q_{\ell}, \quad 0 \leq \ell \leq k-1 \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
R A=A S_{\sigma}=\sum_{\ell=0}^{k-1} \gamma_{\sigma(\ell)} P_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell} \tag{17}
\end{equation*}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

Proof. From (13), an arbitrary $A \in \mathbb{C}^{m \times n}$ can be written as

$$
\begin{equation*}
A=\sum_{s=0}^{k-1} \sum_{r=0}^{k-1} P_{r} C_{r s} \widehat{Q}_{\ell} \tag{18}
\end{equation*}
$$

From Theorem 1, A is $\left(R, S_{\sigma}\right)$-commutative if and and only if $C_{r s}=0$ if $r \neq \sigma(s)$, in which case (18) reduces to (15) with $F_{\ell}=C_{\sigma(\ell), \ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times n_{\ell}}$. From (10) and (15), $A Q_{\ell}=P_{\sigma(\ell)} F_{\ell}, 0 \leq \ell \leq k-1$, so (9) with $r=\sigma(\ell)$ implies (16). Eqns. (9)-(12) and (15) imply (17).

Example 1 If σ is the permutation

$$
\sigma=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
1 & 3 & 4 & 0 & 2 & 5
\end{array}\right)=(0,1,3)(2,4)(5)
$$

then (15) becomes

$$
A=P_{1} F_{0} \widehat{Q}_{0}+P_{3} F_{1} \widehat{Q}_{1}+P_{4} F_{2} \widehat{Q}_{2}+P_{0} F_{3} \widehat{Q}_{3}+P_{2} F_{4} \widehat{Q}_{4}+P_{5} F_{5} \widehat{Q}_{5}
$$

with

$$
\begin{array}{lll}
F_{0} \in \mathbb{C}^{m_{1} \times n_{0}}, & F_{1} \in \mathbb{C}^{m_{3} \times n_{1}}, & F_{2} \in \mathbb{C}^{m_{4} \times n_{2}}, \\
F_{3} \in \mathbb{C}^{m_{0} \times n_{3}}, & F_{4} \in \mathbb{C}^{m_{2} \times n_{4}}, & F_{5} \in \mathbb{C}^{m_{5} \times n_{5}},
\end{array}
$$

and
$R A=A S_{\sigma}=\gamma_{1} P_{1} F_{0} \widehat{Q}_{0}+\gamma_{3} P_{3} F_{1} \widehat{Q}_{1}+\gamma_{4} P_{4} F_{2} \widehat{Q}_{2}+\gamma_{0} P_{0} F_{3} \widehat{Q}_{3}+\gamma_{2} P_{2} F_{4} \widehat{Q}_{4}+\gamma_{5} P_{5} F_{5} \widehat{Q}_{5}$
for arbitrary $\gamma_{0}, \ldots, \gamma_{5}$.

Example 2 If

$$
\sigma=\left(\begin{array}{llllll}
0 & 1 & 2 & 3 & 4 & 5 \\
2 & 1 & 0 & 1 & 2 & 0
\end{array}\right)
$$

(which is not a permutation), then (15) becomes

$$
A=P_{2} F_{0} \widehat{Q}_{0}+P_{1} F_{1} \widehat{Q}_{1}+P_{0} F_{2} \widehat{Q}_{2}+P_{1} F_{3} \widehat{Q}_{3}+P_{2} F_{4} \widehat{Q}_{4}+P_{0} F_{5} \widehat{Q}_{5}
$$

with

$$
\begin{array}{lll}
F_{0} \in \mathbb{C}^{m_{2} \times n_{0}}
\end{array}, \quad F_{1} \in \mathbb{C}^{m_{1} \times n_{1}}, \quad F_{2} \in \mathbb{C}^{m_{0} \times n_{2}},
$$

and
$R A=A S_{\sigma}=\gamma_{2} P_{2} F_{0} \widehat{Q}_{0}+\gamma_{1} P_{1} F_{1} \widehat{Q}_{1}+\gamma_{0} P_{0} F_{2} \widehat{Q}_{2}+\gamma_{1} P_{1} F_{3} \widehat{Q}_{3}+\gamma_{2} P_{2} F_{4} \widehat{Q}_{4}+\gamma_{0} P_{0} F_{5} \widehat{Q}_{5}$ for arbitrary $\gamma_{0}, \ldots, \gamma_{5}$.

Example 3 All results obtained by assuming that R and S are involutions (and therefore have eigenvalues 1 and -1) can just as well be obtained by assuming only that R and S have the same two distinct eigenvalues, with possibly different multiplicities. The original idea in this area of research has its origins in the observation that A is centrosymmetric (skew-centrosymmetric) if and only if $A J=J A(A J=-J A)$. Since $J^{2}=I$, these conditions can just as well be written as $J A J=A(J A J=-A)$; however, this and the invertibility of J are irrelevant. To illustrate this, suppose $n=2 r$, in which case

$$
J=\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]\left[\begin{array}{cc}
I_{r} & 0 \\
0 & -I_{r}
\end{array}\right]\left[\begin{array}{l}
P_{0}^{T} \\
P_{1}^{T}
\end{array}\right]
$$

(i.e., $\widehat{P}_{0}=P_{0}^{T}$ and $\widehat{P}_{1}=P_{1}^{T}$), where

$$
P_{0}=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
I_{r} \\
J_{r}
\end{array}\right] \quad \text { and } \quad P_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
I_{r} \\
-J_{r}
\end{array}\right]
$$

Starting from this, it can be shown $A J=J A$ (or, equivalently, A is centrosymmetric) if and only if

$$
A=\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]\left[\begin{array}{cc}
B_{0} & 0 \tag{19}\\
0 & B_{1}
\end{array}\right]\left[\begin{array}{c}
P_{0}^{T} \\
P_{1}^{T}
\end{array}\right]=P_{0} B_{0} P_{0}^{T}+P_{1} B_{1} P_{1}^{T}
$$

with $B_{0}, B_{1} \in \mathbb{C}^{r \times r}$. However, Theorem 2 implies that A has the form (19) if $R A=$ $A R$ for some R of the form

$$
R=\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]\left[\begin{array}{cc}
\gamma_{0} I_{r} & 0 \\
0 & \gamma_{1} I_{r}
\end{array}\right]\left[\begin{array}{c}
P_{0}^{T} \\
P_{1}^{T}
\end{array}\right]
$$

with $\gamma_{0} \neq \gamma_{1}$, in which case

$$
R A=A R=\gamma_{0} P_{0} B_{0} P_{0}^{T}+\gamma_{1} P_{1} B_{1} P_{1}^{T}
$$

for arbitrary γ_{0} and γ_{1}.
According to the classical theorem, $A J=-J A$ (or, equivalently, A is skewcentrosymmetric) if and only if

$$
A=\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]\left[\begin{array}{cc}
0 & C_{1} \tag{20}\\
C_{0} & 0
\end{array}\right]\left[\begin{array}{c}
P_{0}^{T} \\
P_{1}^{T}
\end{array}\right]=P_{1} C_{0} \widehat{P}_{0}+P_{0} C_{1} \widehat{P}_{1}
$$

with $C_{0}, C_{1} \in \mathbb{C}^{r \times r}$. Now let $\sigma(0)=1$ and $\sigma(1)=0$, so

$$
R_{\sigma}=\left[\begin{array}{ll}
P_{0} & P_{1}
\end{array}\right]\left[\begin{array}{cc}
\gamma_{1} I_{r} & 0 \\
0 & \gamma_{0} I_{r}
\end{array}\right]\left[\begin{array}{c}
P_{0}^{T} \\
P_{1}^{T}
\end{array}\right]
$$

Theorem 2 implies that A has the form (20) if and only if $R A=A R_{\sigma}$ for some γ_{0} and γ_{1} with $\gamma_{0} \neq \gamma_{1}$, in which case

$$
R A=A R_{\sigma}=\gamma_{1} P_{1} C_{0} \widehat{P}_{0}+\gamma_{0} P_{0} C_{1} \widehat{P}_{1}
$$

for all γ_{0} and γ_{1}.

Example 4 Let $R=\left[\delta_{r, s-1(\bmod k)}\right]_{r, s=0}^{k-1}$, which is the 1 -circulant with first row

$$
\left[\begin{array}{lllll}
0 & 1 & 0 & \cdots & 0
\end{array}\right]
$$

By the Ablow-Brenner theorem [1], $C \in \mathbb{C}^{k \times k}$ is an α-circulant $C=\left[c_{s-\alpha r(\bmod k)}\right]_{r, s=0}^{k-1}$ if and only if $R C=C R^{\alpha}$. Since

$$
R=P \operatorname{diag}\left(1, \zeta, \zeta^{2}, \ldots, \zeta^{k-1}\right) P^{*}
$$

where

$$
P=\left[\begin{array}{llll}
p_{0} & p_{1} & \cdots & p_{k-1}
\end{array}\right] \quad \text { with } \quad p_{\ell}=\frac{1}{\sqrt{k}}\left[\begin{array}{c}
1 \\
\zeta^{\ell} \\
\zeta^{2 \ell} \\
\vdots \\
\zeta^{(k-1) \ell}
\end{array}\right], \quad 0 \leq \ell \leq k-1
$$

and

$$
R^{\alpha}=P \operatorname{diag}\left(1, \zeta^{\alpha}, \zeta^{2 \alpha}, \ldots, \zeta^{(k-1) \alpha}\right) P^{*}
$$

the Ablow-Brenner theorem can be interpreted to mean that C is $\left(R, R_{\sigma}\right)$-commutative with $\sigma(\ell)=\alpha \ell(\bmod k), 0 \leq \ell \leq k-1$. Therefore Theorem 2 implies that

$$
C=\sum_{\ell=0}^{k-1} p_{\alpha \ell(\bmod k)} f_{\ell} p_{\ell}^{*}
$$

where $f_{0}, f_{1}, \ldots, f_{k-1}$ are scalars. As a matter of fact, if

$$
R=P \operatorname{diag}\left(\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}\right) P^{*}
$$

with arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$, then

$$
R C=C R_{\sigma}=\sum_{\ell=0}^{k-1} \gamma_{\alpha \ell(\bmod k)} p_{\alpha \ell(\bmod k)} f_{\ell} p_{\ell}^{*}
$$

Example 5 Let R and S be as in (1) and (2) and let $\sigma(\ell)=\alpha \ell+\mu(\bmod k)$, so

$$
S_{\sigma}=Q \operatorname{diag}\left(\zeta^{\mu} I_{m_{0}}, \zeta^{\alpha+\mu} I_{m_{1}}, \ldots, \zeta^{(k-1) \alpha+\mu} I_{m_{k-1}}\right) Q^{-1}
$$

Then the (R, S, α, μ)-symmetric matrix A in (4) is $\left(R, S_{\sigma}\right)$-commutative. More generally, if R and S are as in (5) and (6) and $\sigma(\ell)=\alpha \ell+\mu(\bmod k)$, then

$$
R A=A S_{\sigma}=\sum_{\ell=0}^{k-1} \gamma_{\alpha \ell+\mu(\bmod k)} P_{\alpha \ell+\mu(\bmod k)} F_{\ell} \widehat{Q}_{\ell}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

Renaming the variables in Theorem 2 yields the following theorem.
Theorem 3 If $\rho: \mathbb{Z}_{k} \rightarrow \mathbb{Z}_{k}$, then $B \in \mathbb{C}^{n \times m}$ is $\left(S, R_{\rho}\right)$-commutative if and only if

$$
\begin{equation*}
B=\sum_{\ell=0}^{k-1} Q_{\rho(\ell)} G_{\ell} \widehat{P}_{\ell} \quad \text { with } \quad G_{\ell} \in \mathbb{C}^{n_{\rho(\ell)} \times m_{\ell}}, \quad 0 \leq \ell \leq k-1 \tag{21}
\end{equation*}
$$

in which case

$$
G_{\ell}=\widehat{Q}_{\rho(\ell)} B P_{\ell}, \quad 0 \leq \ell \leq k-1
$$

and

$$
S B=B R_{\rho}=\sum_{\ell=0}^{k-1} \gamma_{\rho(\ell)} Q_{\rho(\ell)} G_{\ell} \widehat{P}_{\ell}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

4 General Results

Remark 1 If σ or ρ is a permutation of \mathbb{Z}_{k}, we can replace ℓ by $\sigma(\ell)$ or ℓ by $\rho(\ell)$ in a summation $\sum_{\ell=0}^{k-1}$, as in the proof of the following theorem, where " \circ " denotes composition; i.e., $\sigma \circ \rho(\ell)=\sigma(\rho(\ell))$ and $\rho \circ \sigma(\ell)=\rho(\sigma(\ell))$. Also,

$$
\begin{equation*}
\widehat{P}_{\sigma(r)} P_{\sigma(s)}=\delta_{r s} I_{m_{\sigma(r)}} \quad \text { and } \quad \widehat{Q}_{\rho(r)} Q_{\rho(s)}=\delta_{r s} I_{n_{\sigma(r)}}, \quad 0 \leq r, s \leq k-1 \tag{22}
\end{equation*}
$$

if and only if σ and ρ are permutations. We will use this frequently without specifically invoking it.

Theorem 4 Suppose $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative and $B \in \mathbb{C}^{n \times m}$ is $\left(S, R_{\rho}\right)$ commutative. Then: (a) $A B$ is $\left(R, R_{\sigma \circ \rho}\right)$-commutative if ρ is a permutation and (b) $B A$ is $\left(S, S_{\rho \circ \sigma}\right)$-commutative if σ is a permutation.

Proof. From Theorems 2 and 3, our assumptions imply that A is as in (15) and B is as in (21). If ρ is a permutation then replacing ℓ by $\rho(\ell)$ in (15) yields

$$
A=\sum_{\ell=0}^{k-1} P_{\sigma(\rho(\ell))} F_{\rho(\ell)} \widehat{Q}_{\rho(\ell)}
$$

From this, (21), and (22),

$$
A B=\sum_{\ell=0}^{k-1} P_{\sigma(\rho(\ell))} F_{\rho(\ell)} G_{\ell} \widehat{P}_{\ell}
$$

so (9) and (11) imply that

$$
R(A B)=(A B) R_{\sigma \circ \rho}=\sum_{\ell=0}^{k-1} \gamma_{\sigma(\rho(\ell))} P_{\sigma(\rho(\ell))} F_{\rho(\ell)} G_{\ell} \widehat{P}_{\ell}
$$

which proves (a).
If σ is a permutation, replacing ℓ by $\sigma(\ell)$ in (21) yields

$$
B=\sum_{\ell=0}^{k-1} Q_{\rho(\sigma(\ell))} G_{\sigma(\ell)} \widehat{P}_{\sigma(\ell)}
$$

From this, (15), and (22),

$$
B A=\sum_{\ell=0}^{k-1} Q_{\rho(\sigma(\ell))} G_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell}
$$

so (10) and (12) imply that

$$
S(B A)=(A B) S_{\rho \circ \sigma}=\sum_{\ell=0}^{k-1} \gamma_{\rho(\sigma(\ell))} Q_{\rho(\sigma(\ell))} G_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell}
$$

which proves (b).
Corollary 1 If σ is a permutation, $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative, and $B \in \mathbb{C}^{n \times m}$ is $\left(S, R_{\sigma^{-1}}\right)$-commutative, then $A B$ commutes with R and $B A$ commutes with S.

Theorem 5 Suppose $j>1$ and $A_{j} \in \mathbb{C}^{m \times m}$ is $\left(R, R_{\sigma_{j}}\right)$-commutative, where σ_{j} is a permutation if $j>1$. Then $A_{1} A_{2} \cdots A_{j}$ is $\left(R, R_{\left.\sigma_{1} \circ \sigma_{2} \circ \cdots \circ \sigma_{j}\right) \text {-commutative; specifically, }}\right.$, if

$$
\begin{equation*}
A_{j}=\sum_{\ell=0}^{k-1} P_{\sigma_{j}(\ell)} F_{\ell}^{(j)} \widehat{P}_{\ell} \tag{23}
\end{equation*}
$$

then

$$
\begin{gathered}
A_{1} A_{2}=\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2}(\ell)} F_{\sigma_{2}(\ell)}^{(1)} F_{\ell}^{(2)} \widehat{P}_{\ell} \\
A_{1} A_{2} A_{3}=\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \sigma_{3}(\ell)} F_{\sigma_{2} \circ \sigma_{3}(\ell)}^{(1)} F_{\sigma_{3}(\ell)}^{(2)} F_{\ell}^{(3)} \widehat{P}_{\ell},
\end{gathered}
$$

and, in general,

$$
A_{1} A_{2} \cdots A_{j}=\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{j}(\ell)} F_{\sigma_{2} \circ \ldots \circ \sigma_{j}(\ell)}^{(1)} F_{\sigma_{3} \circ \ldots \circ \sigma_{j}(\ell)}^{(2)} \cdots F_{\sigma_{j}(\ell)}^{(j-1)} F_{\ell}^{(j)} \widehat{P}_{\ell}
$$

Proof. To minimize complicated notation, suppose

$$
B_{j}=\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{j}(\ell)} G_{\ell}^{(j)} \widehat{P}_{\ell}
$$

for some $j \geq 1$. Since σ_{j+1} is a permutation, we can replace ℓ by $\sigma_{j+1}(\ell)$ to obtain

$$
B_{j}=\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{j} \circ \sigma_{j+1}(\ell)} G_{\sigma_{j+1}(\ell)} \widehat{P}_{\sigma_{j+1}(\ell)}
$$

Therefore, from (23) with j replaced by $j+1$,

$$
\begin{aligned}
B_{j} A_{j+1} & =\left(\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \ldots \circ \sigma_{j} \circ \sigma_{j+1}(\ell)} G_{\sigma_{j+1}(\ell)} \widehat{P}_{\sigma_{j+1}(\ell)}\right)\left(\sum_{\ell=0}^{k-1} P_{\sigma_{j+1}(\ell)} F_{\ell}^{(j+1)} \widehat{P}_{\ell}\right) \\
& =\sum_{\ell=0}^{k-1} P_{\sigma_{1} \circ \sigma_{2} \circ \cdots \circ \sigma_{j} \circ \sigma_{j+1}(\ell)} G_{\ell}^{(j+1)} \widehat{P}_{\ell} \quad \text { with } \quad G_{\ell}^{(j+1)}=G_{\sigma_{j+1}(\ell)} F_{\ell}^{(j+1)}
\end{aligned}
$$

This provides the basis for a straightforward induction proof of the assertion.
Corollary 2 If σ is a permutation, $A \in \mathbb{C}^{m \times m}$ is $\left(R, R_{\sigma}\right)$-commutative, and j is a positive integer, then A^{j} is $\left(R, R_{\sigma^{j}}\right)$-commutative; explicitly,

$$
\begin{equation*}
A^{j}=\sum_{\ell=0}^{k-1} P_{\sigma^{j}(\ell)} F_{\sigma^{(j-1)}(\ell)} \cdots F_{\sigma(\ell)} F_{\ell} \widehat{P}_{\ell} \tag{24}
\end{equation*}
$$

and

$$
R A=A R_{\sigma^{j}}=\sum_{\ell=0}^{k-1} \gamma_{\sigma^{j}(\ell)} P_{\sigma^{j}(\ell)} F_{\sigma^{(j-1)}(\ell)} \cdots F_{\sigma(\ell)} F_{\ell} \widehat{P}_{\ell}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

5 Generalized Inverses and Singular Value Decompostions

If A is an arbitrary complex matrix then A^{-}is a reflexive inverse of A if $A A^{-} A=A$ and $A^{-} A A^{-}=A^{-}$. The Moore-Penrose inverse A^{\dagger} of A is the unique matrix that satisfies the Penrose conditions

$$
\left(A A^{\dagger}\right)^{*}=A A^{\dagger}, \quad\left(A^{\dagger} A\right)^{*}=A A^{\dagger}, \quad A A^{\dagger} A=A, \quad \text { and } \quad A^{\dagger} A A^{\dagger}=A^{\dagger}
$$

Theorem 6 Suppose σ is a permutation and $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$-commutative, so

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell} \tag{25}
\end{equation*}
$$

by Theorem 2. Let $F_{0}^{-}, F_{1}^{-}, \ldots, F_{k-1}^{-}$be reflexive inverses of $F_{0}, F_{1}, \ldots, F_{k-1}$, and define

$$
\begin{equation*}
B=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-} \widehat{P}_{\sigma(\ell)} \tag{26}
\end{equation*}
$$

Then B is a reflexive inverse of A. Moreover, if P and Q are unitary, then

$$
\begin{equation*}
A^{\dagger}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*} \tag{27}
\end{equation*}
$$

Proof. From (9), (10), (22), (25), and (26),

$$
\begin{align*}
& A B=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{-} \widehat{P}_{\sigma(\ell)}, \quad B A=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-} F_{\ell} \widehat{Q}_{\ell}, \tag{28}\\
& A B A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{-} F_{\ell} \widehat{Q}_{\ell}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} \widehat{Q}_{\ell}=A \tag{29}
\end{align*}
$$

and

$$
\begin{equation*}
B A B=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-} F_{\ell} F_{\ell}^{-} \widehat{P}_{\sigma(\ell)}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-} \widehat{P}_{\sigma(\ell)}=B \tag{30}
\end{equation*}
$$

The last two equations show that B is a reflexive inverse of A. If P and Q are unitary and we redefine

$$
B=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*}
$$

then (28)-(30) become

$$
\begin{align*}
& A B=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*}, \quad B A=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} F_{\ell} Q_{\ell}^{*} \tag{31}\\
& A B A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{\dagger} F_{\ell} Q_{\ell}^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} Q_{\ell}^{*}=A
\end{align*}
$$

and

$$
B A B=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} F_{\ell} F_{\ell}^{-} P_{\sigma(\ell)}^{*}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*}=B
$$

Moreover, from (31)

$$
(A B)^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)}\left(F_{\ell} F_{\ell}^{\dagger}\right)^{*} P_{\sigma(\ell)}^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*}=A B
$$

and

$$
(B A)^{*}=\sum_{\ell=0}^{k-1} Q_{\ell}\left(F_{\ell}^{\dagger} F_{\ell}\right)^{*} Q_{\ell}^{*}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} F_{\ell} Q_{\ell}^{*}=B A
$$

Therefore $B=A^{\dagger}$, which implies (27).

Corollary 3 If σ is a permutation, P and Q are unitary, and $A \in \mathbb{C}^{m \times n}$ is $\left(R, S_{\sigma}\right)$ commutative, then A^{\dagger} is $\left(S, R_{\sigma^{-1}}\right)$-commutative.

Proof. From (9)-(11), (22), and (27),

$$
S A^{\dagger}=A^{\dagger} R_{\sigma^{-1}}=\sum_{\ell=0}^{k-1} \gamma_{\ell} Q_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.
Remark 2 It is well known - and straightforward to verify - that if $G \in \mathbb{C}^{p \times q}$ and rank $G=q$, then $G^{\dagger}=\left(G^{*} G\right)^{-1} G^{*}$. Hence, (27) implies the folllowing corollary.

Corollary 4 In addition to the assumptions of Theorem 6, suppose that $\operatorname{rank}\left(F_{\ell}\right)=n_{\ell}$, $0 \leq \ell \leq k-1$ (or, equivalently, $\operatorname{rank}(A)=n$). Then

$$
A^{\dagger}=\sum_{\ell=0}^{k-1} Q_{\ell}\left(F_{\ell}^{*} F_{\ell}\right)^{-1} F_{\ell}^{*} P_{\sigma(\ell)}^{*}
$$

Theorem 7 Suppose σ is a permutation, P and Q are unitary, and A is $\left(R, S_{\sigma}\right)$ commutative and therefore of the form

$$
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} Q_{\ell}^{*}
$$

by Theorem 2. Let

$$
F_{\ell}=\Omega_{\ell} \Gamma_{\ell} \Phi_{\ell}^{*}, \quad 0 \leq \ell \leq k-1
$$

with

$$
\Omega_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times m_{\sigma(\ell)}}, \quad \Gamma_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times n_{\ell}}, \quad \text { and } \quad \Phi_{\ell} \in \mathbb{C}^{n_{\ell} \times n_{\ell}}, \quad 0 \leq \ell \leq k-1
$$

be singular value decompositions of $F_{\ell}, 0 \leq \ell \leq k-1$. Let

$$
\Omega=\left[\begin{array}{llll}
P_{\sigma(0)} \Omega_{0} & P_{\sigma(1)} \Omega_{1} & \cdots & P_{\sigma(k-1)} \Omega_{k-1}
\end{array}\right]
$$

and

$$
\Phi=\left[\begin{array}{llll}
Q_{0} \Phi_{0} & Q_{1} \Phi_{1} & \cdots & Q_{k-1} \Phi_{k-1}
\end{array}\right]
$$

Then

$$
A=\Omega \operatorname{diag}\left(\Gamma_{0}, \Gamma_{1}, \ldots, \Gamma_{k-1}\right) \Phi^{*}
$$

is a singular value decomposition of A, except that the singular values are not necessarily arranged in decreasing order. Thus, for $0 \leq \ell \leq k-1$, each singular value of F_{ℓ} is a singular value of A with an associated left singular vector in the column space of $P_{\sigma(\ell)}$ and a right singular vector in the column space of Q_{ℓ}.

We invoke the first equality in (22) repeatedly in the proof of the following theorem.

Theorem 8 Suppose σ is a permutation, P is unitary, and $A \in \mathbb{C}^{m \times m}$ is $\left(R, R_{\sigma}\right)$ commutative, so

$$
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} P_{\ell}^{*}
$$

by Theorem 2. Then:
(i) A is Hermitian if and only if $=F_{\sigma(\ell)}^{*} P_{\sigma^{2}(\ell)}^{*}=F_{\ell} P_{\ell}^{*}, 0 \leq \ell \leq k-1$.
(ii) A is normal if and only if $F_{\sigma(\ell)}^{*} F_{\sigma(\ell)}=F_{\ell} F_{\ell}^{*}, 0 \leq \ell \leq k-1$.
(iii) A is $E P$ (i.e., $A A^{\dagger}=A^{\dagger} A$) if and only if $F_{\sigma(\ell)}^{\dagger} F_{\sigma(\ell)}=F_{\ell} F_{\ell}^{\dagger}, 0 \leq \ell \leq k-1$.

Proof. Since R is unitary, Theorems 2 and 6 imply that

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} P_{\ell}^{*}, A^{*}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{*} P_{\sigma(\ell)}^{*}, \text { and } A^{\dagger}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*} \tag{32}
\end{equation*}
$$

Replacing ℓ by $\sigma(\ell)$ in the second sum in (32) yields

$$
A^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\sigma(\ell)}^{*} P_{\sigma^{2}(\ell)}^{*}
$$

and comparing this with the first sum in (32) yields (i).
From (32),

$$
\begin{equation*}
A A^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{*} P_{\sigma(\ell)}^{*} \tag{33}
\end{equation*}
$$

and

$$
A^{*} A=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{*} F_{\ell} P_{\ell}^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\sigma(\ell)}^{*} F_{\sigma(\ell)} P_{\sigma(\ell)}^{*}
$$

Comparing the second sum here with (33) yields (ii).
From (33),

$$
\begin{equation*}
A A^{\dagger}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} F_{\ell}^{\dagger} P_{\sigma(\ell)}^{*} \tag{34}
\end{equation*}
$$

and

$$
A^{\dagger} A=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{\dagger} F_{\ell} P_{\ell}^{*}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\sigma(\ell)}^{\dagger} F_{\sigma(\ell)} P_{\sigma(\ell)}^{*}
$$

Comparing the second sum here with (34) yields (iii).

6 Solving $A z=w$ and the least-squares problem

Throughout this section σ is a permutation and $A \in \mathbb{C}^{m \times n}$ is (R, S_{σ})-commutative, and can therefore be written as in (15).

If $z \in \mathbb{C}^{n}$ and $w \in \mathbb{C}^{m}$, we write

$$
\begin{equation*}
z=Q u=\sum_{\ell=0}^{k-1} Q_{\ell} u_{\ell} \quad \text { and } \quad w=P v=\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell} \tag{35}
\end{equation*}
$$

with $u_{\ell} \in \mathbb{C}^{n_{\ell}}$ and $v_{\ell} \in \mathbb{C}^{m_{\ell}}, 0 \leq \ell \leq k-1$.
Theorem 9 If (35) holds then
(a) $A z=w \quad$ if and only if
(b) $\quad F_{\ell} u_{\ell}=v_{\sigma(\ell)}, \quad 0 \leq \ell \leq k-1$.

Proof. From (10), (15), and (35),

$$
\begin{align*}
A z-w & =\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} u_{\ell}-\sum_{\ell=0}^{k-1} P_{\ell} v_{\ell}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} u_{\ell}-\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} v_{\sigma(\ell)} \\
& =\sum_{\ell=0}^{k-1} P_{\sigma(\ell)}\left(F_{\ell} u_{\ell}-v_{\sigma(\ell)}\right) \tag{37}
\end{align*}
$$

so (36)(b) implies (36)(a). From (22) and (37),

$$
F_{\ell} u_{\ell}-v_{\sigma(\ell)}=\widehat{P}_{\sigma(\ell)}(A z-w), \quad 0 \leq \ell \leq k-1
$$

so (36)(a) implies (36)(b). $\quad \square$
Since $F_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times n_{\ell}}, 0 \leq \ell \leq k-1$, (36) implies the following theorem.
Theorem $10 A$ is invertible if and only if $m_{\sigma(\ell)}=n_{\ell}$ and F_{ℓ} is invertible, $0 \leq \ell \leq$ $k-1$ (which, from (3), implies that $m=n$). In this case,

$$
\begin{equation*}
A^{-1}=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-1} \widehat{P}_{\sigma(\ell)} \tag{38}
\end{equation*}
$$

and the solution of $A z=w$ is

$$
z=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{-1} v_{\sigma(\ell)}
$$

Moreover, A^{-1} is $\left(S, R_{\sigma^{-1}}\right)$-commutative; specifically,

$$
S A^{-1}=A^{-1} R_{\sigma^{-1}}=\sum_{\ell=0}^{k-1} \gamma_{\ell} Q_{\ell} F_{\ell}^{-1} \widehat{P}_{\sigma(\ell)}
$$

for arbitrary $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{k-1}$.

If $m=n$ and $R=S$ (so A is $\left(R, R_{\sigma}\right)$-commutative), then (38) becomes

$$
A^{-1}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{-1} \widehat{P}_{\sigma(\ell)}
$$

In this case,

$$
A^{-j}=\sum_{\ell=0}^{k-1} P_{\ell} F_{\ell}^{-1} F_{\sigma(\ell)}^{-1} \cdots F_{\sigma^{j-1}(\ell)}^{-1} \widehat{P}_{\sigma^{j}(\ell)}
$$

which can be verified by simply multiplying the right hand side by A^{j} as written in (24).

Before turning to the least squares problem for A, we review some elementary facts about the least squares problem for a matrix $G \in \mathbb{C}^{p \times q}$ and a given $u \in \mathbb{C}^{p}$; i.e., find $v \in \mathbb{C}^{q}$ such that

$$
\|G v-u\|=\min _{\xi \in \mathbb{C}^{q}}\|G \xi-u\|
$$

where $\|\cdot\|$ is the 2-norm. An arbitrary $v \in \mathbb{C}^{p \times q}$ can be written as

$$
v=G^{\dagger} u+G\left(v-G^{\dagger} u\right)
$$

so

$$
\|G v-u\|^{2}=\left\|\left(G G^{\dagger}-I_{p}\right) u\right\|^{2}+\left\|G\left(v-G^{\dagger} u\right)\right\|^{2}
$$

since

$$
\begin{aligned}
{\left[G\left(v-G^{\dagger} u\right)\right]^{*}\left(G G^{\dagger}-I_{p}\right) u } & =\left[G G^{\dagger} G\left(v-G^{\dagger}\right) u\right]^{*}\left(G G^{\dagger}-I_{p}\right) u \\
& =\left[G\left(v-G^{\dagger} u\right)\right]^{*} G G^{\dagger}\left(G G^{\dagger}-I_{p}\right) u
\end{aligned}
$$

and

$$
G^{\dagger}\left(G G^{\dagger}-I_{p}\right)=G^{\dagger} G G^{\dagger}-G^{\dagger}=0
$$

Hence,

$$
\min _{\xi \in \mathbb{C}^{q}}\|G \xi-u\|=\left\|\left(G G^{\dagger}-I\right) u\right\|
$$

and this minimum is attained with a given v if and only if $v=G^{\dagger} u+h$ where $G h=0$. In this case, $\|v\|^{2}=\left\|G^{\dagger} u\right\|^{2}+\|h\|^{2}$ since

$$
h^{*} G^{\dagger} u=h^{*} G^{\dagger} G G^{\dagger} u=\left(G^{\dagger} G h\right)^{*} G^{\dagger} u=0
$$

so $v_{0}=G^{\dagger} u$ is the unique solution of (37) with minimal norm, and is therefore called the optimal solution. From Remark 2, $v_{0}=\left(G^{*} G\right)^{-1} G^{*} u$ if $\operatorname{rank}(G)=q$. If P is unitary then (37) implies that

$$
\|A z-w\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell} u_{\ell}-v_{\sigma(\ell)}\right\|^{2}
$$

so the least squares problem for A and a given w reduces to k independent least squares problems for $F_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times n_{\ell}}$ and a given $v_{\sigma(\ell)} \in \mathbb{C}^{m_{\sigma(\ell)}}, 0 \leq \ell \leq k-1$. Therefore,

$$
\|A z-w\|=\min _{\zeta \in \mathbb{C}^{n}}\|A \zeta-w\|
$$

if and only if

$$
z=\sum_{\ell=0}^{k-1} Q_{\ell}\left(F_{\ell}^{\dagger} v_{\sigma(\ell)}+h_{\ell}\right)
$$

where $F_{\ell} h_{\ell}=0,0 \leq \ell \leq k-1$. If Q is also unitary, then

$$
\|z\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell}^{\dagger} v_{\sigma(\ell)}+h_{\ell}\right\|^{2}=\sum_{\ell=0}^{k-1}\left\|F_{\ell}^{\dagger} v_{\sigma(\ell)}\right\|^{2}+\sum_{\ell=0}^{k-1}\left\|h_{\ell}\right\|^{2}
$$

so the unique optimal (least norm) solution of the least squares problem is

$$
z=\sum_{\ell=0}^{k-1} Q_{\ell} F_{\ell}^{\dagger} v_{\sigma(\ell)}
$$

which can be written as

$$
z=\sum_{\ell=0}^{k-1} Q_{\ell}\left(F_{\ell}^{*} F_{\ell}\right)^{-1} F_{\ell}^{*} v_{\sigma(\ell)} \quad \text { if } \operatorname{rank}\left(F_{\ell}\right)=n_{\ell}, \quad 0 \leq \ell \leq k-1
$$

or, equivalently, if $\operatorname{rank}(A)=n$.

7 The eigenvalue problem

Throughout this section $A \in \mathbb{C}^{m \times m}$ is $\left(R, R_{\sigma}\right)$-commutative, and can therefore be written as

$$
\begin{equation*}
A=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} \widehat{P}_{\ell} \quad \text { where } \quad F_{\ell} \in \mathbb{C}^{m_{\sigma(\ell)} \times m_{\ell}} \quad 0 \leq \ell \leq k-1 \tag{39}
\end{equation*}
$$

and σ is a permutation.
An arbitrary $z \in \mathbb{C}^{m}$ can be written as

$$
z=\sum_{\ell=0}^{k-1} P_{\ell} u_{\ell} \quad \text { with } \quad u_{\ell} \in \mathbb{C}^{m_{\ell}}, \quad 0 \leq \ell \leq k-1
$$

Therefore (9) and (39) imply that

$$
\begin{equation*}
A z-\lambda z=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)} F_{\ell} u_{\ell}-\lambda \sum_{\ell=0}^{k-1} P_{\ell} u_{\ell}=\sum_{\ell=0}^{k-1} P_{\sigma(\ell)}\left(F_{\ell} u_{\ell}-\lambda u_{\sigma(\ell)}\right) \tag{40}
\end{equation*}
$$

hence, $A z=\lambda z$ if and only if

$$
F_{\ell} u_{\ell}=\lambda u_{\sigma(\ell)}, \quad 0 \leq \ell \leq k-1 .
$$

We first consider the case where σ is the identity. The next three theorems are essentially restatements of results from [21], recast so as to be consistent with viewpoint that we have taken in this paper.

Let ζ_{ℓ} denote the column space of P_{ℓ} and let $\zeta=\cup_{\ell=0}^{k-1} \zeta_{\ell}$.
Theorem 11 If A commutes with R then λ is an eigenvalue of A if and only if λ is an eigenvalue of one or more of the matrices $F_{0}, F_{1}, \ldots, F_{k-1}$. Assuming this to be true, let

$$
S_{A}(\lambda)=\left\{\ell \in\{0,1, \ldots, k-1\} \mid \lambda \text { is an eigenvalue of } F_{\ell}\right\} .
$$

If $\ell \in S_{A}(\lambda)$ and $\left\{u_{\ell}^{(1)}, u_{\ell}^{(2)}, \cdots, u_{\ell}^{\left(d_{\ell}\right)}\right\}$ is a basisfor the set $\left\{u_{\ell} \in \mathbb{C}^{m_{\ell} \times m_{\ell}} \mid F_{\ell} u_{\ell}=\lambda u_{\ell}\right\}$, then $P_{\ell} u_{\ell}^{(1)}, P_{\ell} u_{\ell}^{(2)}, \ldots, P_{\ell} u_{\ell}^{\left(d_{\ell}\right)}$ are linearly independent λ-eigenvectors of A. Moreover,

$$
\bigcup_{\ell \in S_{A}(\lambda)}\left\{P_{\ell} u_{\ell}^{(1)}, P_{\ell} u_{\ell}^{(2)}, \cdots, P_{\ell} u_{\ell}^{\left(d_{\ell}\right)}\right\}
$$

is a basis for the λ-eigenspace of A. Finally, A is diagonalizable if and only if F_{0}, F_{1}, \ldots, F_{k-1} are all diagonalizable. In this case, A has m_{ℓ} linearly independent eigenvectors in $\bigodot_{\ell}, 0 \leq \ell \leq k-1$.

It seems useful to consider the case where A is diagonalizable more explicitly.
Theorem 12 Suppose a diagonalizable matrix A commutes with R and and $F_{\ell}=$ $\Omega_{\ell} D_{\ell} \Omega_{\ell}^{-1}$ is a spectral decomposition of $F_{\ell}, 0 \leq \ell \leq k-1$. Let

$$
\Omega=\left[\begin{array}{llll}
P_{0} \Omega_{0} & P_{1} \Omega_{1} & \cdots & P_{k-1} \Omega_{k-1}
\end{array}\right]
$$

Then

$$
A=\Omega\left(\bigoplus_{s=0}^{k-1} D_{\ell}\right) \Omega^{-1}
$$

with

$$
\Omega^{-1}=\left[\begin{array}{c}
\Omega_{0}^{-1} \widehat{P}_{0} \\
\Omega_{1}^{-1} \widehat{P}_{1} \\
\vdots \\
\Omega_{k-1}^{-1} \widehat{P}_{k-1}
\end{array}\right]
$$

is a spectral decomposition of A.
Remark 3 It is well known that commuting diagonalizable matrices are simultaneouly diagonalizable. Theorem 12 makes this explicit, since since $\Omega R \Omega^{-1}$ and $\Omega A \Omega^{-1}$ are both diagonal.

The original version of the following theorem, which dealt with centrosymmetric matrices, is due to Andrew [2, Theorem 6]. The proof is practically identical to Andrew's original proof.

Theorem 13

(i) If A commutes with R and λ is an eigenvalue of A, then the λ-eigenspace of S has a basis in \smile.
(ii) If A has n linearly independent eigenvectors in φ, then A commutes with R.

Proof. (i) See Theorem 11. (ii) If $z \in \mathcal{C}$ then $R z=\gamma_{\ell} z$ for some $\ell \in \mathbb{Z}_{k}$. If $A z=\lambda z$ and $R z=\gamma_{\ell} z$, then

$$
R A z=\lambda R z=\lambda \gamma_{\ell} z \quad \text { and } \quad A R z=\gamma_{\ell} A z=\gamma_{\ell} \lambda z ;
$$

hence, $R A z=A R z$. Now suppose that A has n linearly independent eigenvectors $\left\{z_{1}, z_{2}, \ldots, z_{n}\right\}$ in \mathcal{C}. Then we can write an arbitrary $z \in \mathbb{C}^{n}$ as $z=\sum_{i=1}^{n} a_{i} z_{i}$. Since $R A z_{i}=A R z_{i}, 1 \leq i \leq n$, it follows that $R A z=A R z$. Therefore $A R=R A$. \square

For the remainder of this section we assume that A is $\left(R, R_{\sigma}\right)$-commutative and σ is a permutation other than the identity.

The following theorem shows that finding the null space of A reduces to finding the null spaces of $F_{0}, F_{1}, \ldots, F_{k-1}$.

Theorem 14 If A is $\left(R, R_{\sigma}\right)$-commutative and σ is a permutation then $A z=0$ if and only if $z=\sum_{\ell=0}^{k-1} P_{\ell} u_{\ell}$, where

$$
\begin{equation*}
F_{\ell} u_{\ell}=0, \quad 0 \leq \ell \leq k-1 ; \tag{41}
\end{equation*}
$$

hence, the null space if A is independent of σ (so long as σ is a permutation).
Proof. Clearly, (41) implies that $A z=0$ without any assumption on σ. For the converse, note from (22) and (40) that if σ is a permutation then $\widehat{P}_{\sigma(\ell)} A z=F_{\ell} u_{\ell}$, $0 \leq \ell \leq k-1$, so $A z=0$ implies (41).

Henceforth we assume that $\lambda \neq 0$. In this case, suppose that σ has p orbits \mathcal{O}_{0}, $\ldots, \mathcal{O}_{p-1}$. If $p=1$, then σ is a k-cycle and $\mathbb{Z}_{k}=\left\{\sigma^{j}(0) \mid 0 \leq j \leq k-1\right\}$. In any case, if $\ell_{r} \in \mathcal{O}_{r}, 0 \leq r \leq p-1$, then $\mathbb{Z}_{k}=\mathcal{O}_{0} \cup \cdots \cup \mathcal{O}_{p-1}$, where

$$
\mathcal{O}_{r}=\left\{\sigma^{j}\left(\ell_{r}\right) \mid 0 \leq j \leq k_{r}-1\right\}, \quad 0 \leq r \leq p-1
$$

and $k_{0}+\cdots+k_{p-1}=k$. It is important to note that

$$
\begin{equation*}
\sigma^{k_{r}}\left(\ell_{r}\right)=\ell_{r}, \quad 0 \leq r \leq p-1 \tag{42}
\end{equation*}
$$

and $k_{0}, k_{1}, \ldots, k_{p-1}$ are respectively the smallest positive integers for which these equalities hold. In Example $1, p=3, \mathcal{O}_{0}=\{0,1,3\}, \mathcal{O}_{1}=\{2,4\}, \mathcal{O}_{2}=\{5\}$, so $k_{0}=3, k_{1}=2, k_{3}=1, \mathbb{Z}_{6}=\mathcal{O}_{0} \cup \mathcal{O}_{1} \cup \mathcal{O}_{2}$, and we may choose $\ell_{0}=0, \ell_{1}=2$, and $\ell_{2}=5$.

To solve the eigenvalue problem, we rearrange the terms in $z=\sum_{\ell=0}^{k-1} P_{\ell} u_{\ell}$ as

$$
\begin{equation*}
z=\sum_{r=0}^{p-1} z_{r} \quad \text { with } \quad z_{r}=\sum_{j=0}^{k_{r}-1} P_{\sigma^{j}\left(\ell_{r}\right)} u_{\sigma^{j}\left(\ell_{r}\right)}, \quad 0 \leq r \leq p-1 \tag{43}
\end{equation*}
$$

and rearrange the terms in (39) as

$$
\begin{equation*}
A=\sum_{r=0}^{p-1} A_{r} \quad \text { with } \quad A_{r}=\sum_{j=0}^{k_{r}-1} P_{\sigma^{j+1}\left(\ell_{r}\right)} F_{\sigma^{j}\left(\ell_{r}\right)} \widehat{P}_{\sigma^{j}\left(\ell_{r}\right)}, \quad 0 \leq r \leq p-1 \tag{44}
\end{equation*}
$$

Since (9) implies that $A_{r} A_{s}=0$ if $r \neq s$, we can replace (44) by

$$
A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{p-1}
$$

hence, $A z=\lambda z$ if and only if

$$
A_{r} z_{r}=\lambda z_{r}, \quad 0 \leq r \leq p-1
$$

Therefore, the eigenvalue problem for A reduces to p independent eigenvalue problems for $A_{0}, A_{1}, \ldots, A_{p-1}$.

From (43) and (44), $A_{r} z_{r}=\lambda z_{r}$ if and only if
$\sum_{j=0}^{k_{r}-1} P_{\sigma^{j+1}\left(\ell_{r}\right)} F_{\sigma^{j}\left(\ell_{r}\right)} u_{\sigma^{j}\left(\ell_{r}\right)}=\lambda \sum_{j=0}^{k_{r}-1} P_{\sigma^{j}\left(\ell_{r}\right)} u_{\sigma^{j}\left(\ell_{r}\right)}=\lambda \sum_{j=0}^{k_{r}-1} P_{\sigma^{j+1}\left(\ell_{r}\right)} u_{\sigma^{j+1}\left(\ell_{r}\right)}$,
which is equivalent to

$$
\begin{equation*}
F_{\sigma^{j}\left(\ell_{r}\right)} u_{\sigma^{j}\left(\ell_{r}\right)}=\lambda u_{\sigma^{j+1}\left(\ell_{r}\right)}, \quad 0 \leq j \leq k_{r}-1 \tag{45}
\end{equation*}
$$

If $k_{r}=1$ then $\sigma\left(\ell_{r}\right)=\ell_{r}$ and (44) becomes $F_{\ell_{r}} u_{\ell_{r}}=\lambda u_{\ell_{r}}$; hence, if $\left(\lambda, u_{\ell_{r}}\right)$ is an eigenpair of $F_{\ell_{r}}$ then $z_{r}=P_{\ell_{r}} u_{\ell_{r}}$ is λ-eigenvector of A.

If $k_{r}>1$ then (42) and (44) imply that

$$
G_{r} u_{\ell_{r}}=\lambda^{k} u_{\ell_{r}}, \quad \text { where } \quad G_{r}=F_{\sigma^{k r-1}\left(\ell_{r}\right)} \cdots F_{\sigma\left(\ell_{r}\right)} F_{\ell_{r}} \in \mathbb{C}^{m_{\ell_{r}} \times m_{\ell_{r}}} .
$$

Therefore, if v is a nonzero eigenvalue of G_{r} and $\zeta=e^{2 \pi i / k_{r}}$, then $v^{1 / k}, v^{1 / k} \zeta, \ldots$, $\nu^{1 / k} \zeta^{k_{r}-1}$ are distinct eigenvalues of A_{r} (and therefore of A). If λ is any one of these eigenvalues, then the corresponding eigenvector z_{r} of A_{r} (and therefore of A) is given by (43), where $u_{\sigma^{j}\left(\ell_{r}\right)}, 1 \leq j \leq k_{r-1}$, can be computed recursively from (44) as

$$
u_{\sigma^{j}\left(\ell_{r}\right)}=\frac{1}{\lambda} F_{\sigma^{j-1}\left(\ell_{r}\right)} u_{\sigma^{j-1}\left(\ell_{r}\right)}, \quad 1 \leq j \leq k_{r}-1
$$

References

[1] C. M. Ablow, J. L. Brenner, Roots and canonical forms for circulant matrices, Trans. Amer. Math. Soc. 107 (1963) 360-376.
[2] A. L. Andrew, Eigenvectors of certain matrices, Linear Algebra Appl. 7 (1973) 151-162.
[3] A. L. Andrew, Solution of equations involving centrosymmetric matrices, Technometrics 15 (1973) 405-407.
[4] A. L. Andrew, Centrosymmetric matrices, SIAM Review 40 (1998) 697-698.
[5] A. Cantoni, F. Butler, Eigenvalues and eigenvectors of symmetric centrosymmetric matrices, Linear Algebra Appl. 13 (1976), 275-288.
[6] H.-C. Chen, A. Sameh, A matrix decomposition method for orthotropic elasticity problems, SIAM J. Matrix Anal. Appl. 10 (1989), 39-64.
[7] H.-C. Chen, Circulative matrices of degree θ, SIAM J. Matrix Anal. Appl. 13 (1992) 1172-1188.
[8] A. R. Collar, On centrosymmetric and centroskew matrices, Quart. J. Mech. Appl. Math. 15 (1962) 265-281.
[9] D. Fasino, Circulative properties revisited: Algebraic properties of a generalization of cyclic matrices, Italian J. Pure Appl. Math 4 (1998) 33-43.
[10] I. J. Good, The inverse of a centrosymmetric matrix, Technometrics 12 (1970) 925-928.
[11] G. L. Li, Z. H. Feng, Mirrorsymmetric matrices, their basic properties, and an application on odd/even decomposition of symmetric multiconductor transmission lines, SIAM J. Matrix Anal. Appl. 24 (2002) 78-90.
[12] I. S. Pressman, Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices, Linear Algebra Appl. 284 (1998) 239258.
[13] W. C. Pye, T. L. Boullion, T. A. Atchison, The pseudoinverse of a centrosymmetric matrix, Linear Algebra Appl. 6 (1973) 201-204.
[14] D. Tao, M. Yasuda, A spectral characterization of generalized real symmetric centrosymmetric and generalized real symmetric skew-centrosymmetric matrices, SIAM J. Matrix Anal. Appl. 23 (2002) 885-895.
[15] W. F. Trench, Characterization and properties of matrices with generalized symmetry or skew symmetry, Linear Algebra Appl. 377 (2004) 207-218.
[16] W. F. Trench, Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry Linear Algebra Appl. 380 (2004) 199-211.
[17] W. F. Trench, Hermitian, Hermitian R-symmetric, and Hermitian R-skew symmetric Procrustes problems, Linear Algebra Appl. 387 (2004) 83-98.
[18] W. F. Trench, Minimization problems for (R, S)-symmetric and (R, S)-skew symmetric matrices, Linear Algebra Appl. 389 (2004) 23-31.
[19] W. F. Trench, Hermitian, Hermitian R-symmetric, and Hermitian R-skew symmetric Procrustes problems, Linear Algebrs Appl. 387 (2004) 83-98.
[20] W. F. Trench, Characterization and properties of (R, S)-symmetric, (R, S) skew symmetric, and (R, S)-conjugate matrices, SIAM J. Matrix Anal. Appl. 26 (2005) 748-757.
[21] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries, Linear Algebra Appl. 429, Issues 8-9 (2008) 2278-2290.
[22] W. F. Trench, Properties of unilevel block circulants, Linear Algebra Appl. 430 (2009) 2012Ǘ2025.
[23] W. F. Trench, Characterization and properties of matrices with k-involutory symmetries II, Linear Algebra Appl. 432, (2010) 2282-2797.
[24] M. Yasuda, A Spectral Characterization of Hermitian Centrosymmetric and Hermitian Skew-Centrosymmetric K-Matrices; SIAM Journal on Matrix Analysis and Applications, Volume 25, No. 3 (2003) pp 601-605.
[25] J. R. Weaver, Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors, American Mathematical Monthly 92 (1985) 711-717.

[^0]: *e-mail:wtrench@trinity.edu

