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Abstract

Let R D P diag.
0Im0
; 
1Im1

; : : : ; 
k�1Imk�1
/P �1 2 C

m�m and S� D

Q diag.
�.0/In0
; 
�.1/In1

; : : : ; 
�.k�1/Ink�1
/Q�1 2 C

n�n, where m0 Cm1 C

� � � C mk�1 D m, n0 C n1 C � � � C nk�1 D n, 
0, 
1, . . . , 
k�1 are distinct

complex numbers, and � W Zk ! Zk D f0; 1; : : : ; k � 1g. We say that A 2 C
m�n

is .R; S� /-commutative if RA D AS� . We characterize the class of .R; S� /-

commutative matrrices and extend results obtained previously for the case where


` D e2�i`=k and �.`/ D ˛` C � .mod k/, 0 � ` � k � 1, with ˛, � 2 Zk .

Our results are independent of 
0, 
1, . . . , 
k�1, so long as they are distinct; i.e.,

if RA D AS� for some choice of 
0, 
1, . . . , 

k�1

(all distinct), then RA D AS�

for arbitrary of 
0, 
1, . . . , 
k�1.
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1 Introduction

A matrix A D Œars�
n�1
r;sD0 2 Cn�n is said to be centrosymmetric if

an�r�1;n�s�1 D ars ; 0 � r; s � n � 1;

or centro-skewsymmetric if

an�r�1;n�s�1 D �ars; 0 � r; s � n � 1:

The study of such matrices is facilitated by the observation that A is centrosymmetric

(centro-skewsymmetric) if and only if JA D AJ (JA D �AJ ), where J is the flip

matrix, with ones on the secondary diagonal and zeroes elsewhere. Several authors

[2, 3, 4, 5, 8, 10, 13, 25] used this observation to show that centrosymmetric and centro-

skewsymmetric matrices can be written as A D P CP �1, where P diagonalizes J and

C has a useful block structure. We will discuss this further in Example 3.

Following this idea, other authors [6, 11, 12, 14, 24] considered matrices satisfying

RA D AR or RA D �AR, where R is a nontrivial involution; i.e., R D R�1 ¤ ˙I .

We continued this line of investigaton in [15, 16, 17, 19], and extended it in [18, 20],

defining A 2 Cm�n to be .R; S/-symmetric (.R; S/-skew symmetric) if RA D AS

(RA D �AS ), where R 2 Cm�m and S 2 Cn�n are nontrivial involutions. We showed

that a matrix A with either of these properties can be written as A D P CQ�1, where

P and Q diagonalize R and S respectively and C has a useful block form.

Chen [7] and Fasino [9] studied matrices A 2 Cn�n such that RAR� D ��A,

where R is a unitary matrix that satisfies Rk D I for some k � n and � D e2�i=k . In

[21] we studied matrices A 2 Cm�n such that RA D ��AS , where

R D P diag
�
Im0

; �Im1
; : : : ; �k�1Imk�1

�
P �1; (1)

S D Q diag
�
In0

; �In1
; : : : ; �k�1Ink�1

�
Q�1; (2)

m0 C m1 C � � � C mk�1 D m; n0 C n1 C � � � C nk�1 D n; (3)

and

˛; � 2 Zk D f0; 1; : : : ; k � 1g:

Finally, motivated by a problem concerning unilevel block circulants [22], in [23] we

considered matrices A 2 Cm�n such that RA D ��AS˛, with ˛; � 2 Zk . We called

such matrices .R; S; ˛; �/-symmetric, and showed that A has this property if and only

if

A D
k�1X

`D0

P˛`C�.mod k/F`
bQ` with F` 2 C

˛`C�. mod k/�n` ; 0 � ` � k � 1; (4)

which has useful computational and theoretical applications. (P0, . . . , Pk�1 and bQ0,

. . . , bQk�1 are defined in Section 2, specifically, (7)–(10).) The class of .R; S; ˛; �/-

symmetric matrices includes, for example, centrosymmetric, skew-centrosymmetric,
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R-symmetric, R-skew symmetric, .R; S/-symmetric, and .R; S/-skew symmetric ma-

trices, and block circulants ŒAs�˛r �r;sD0.

Having said this, we now propose that all the papers in our bibliography – including

our own – are based on an unnecessarily restrictive assumption; namely, that the spectra

of the matrices R and S that are used to define the symmetries consist of a set (usually

the complete set) of k-th roots of unity for some k � 2. In this paper we point out that

this assumption is irrelevant and present an alternative approach that eliminates this

requirement and exposes a wider class of generalized symmetries if k > 2. We extend

our results in [21] and [23] to this larger class of matrices.

2 Preliminary considerations

Throughout the rest of this paper,

R D P diag.
0Im0
; 
1Im1

; : : : ; 
k�1Imk�1
/P �1 2 C

m�m (5)

and

S D Q diag.
0In0
; 
1In1

; : : : ; 
k�1Ink�1
/Q�1 2 C

n�n; (6)

where 
0, 
1, . . . , 
k�1 are distinct complex numbers, except when there is an explicit

statement to the contrary. We define

R� D P diag
�

�.0/Im0

; 
�.1/Im1
; : : : ; 
�.k�1/Imk�1

�
P �1

and

S� D Q diag.
�.0/In0
; 
�.1/In1

; : : : ; 
�.k�1/Ink�1
/Q�1;

where � W Zk ! Zk .

We can partition

P D
�

P0 P1 � � � Pk�1

�
; Q D

�
Q0 Q1 � � � Qk�1

�
; (7)

P �1 D

2
6664

bP0

bP1

:::
bPk�1;

3
7775 and Q�1 D

2
6664

bQ0

bQ1

:::
bQk�1;

3
7775 ; (8)

where

Pr 2 C
m�mr ; bPr 2 C

mr �m; bPrPs D ırsImr ; 0 � r; s � k � 1; (9)

Qr 2 C
n�nr ; bQr 2 C

nr �n; and bQr Qs D ırsInr ; 0 � r; s � k � 1: (10)

We can now write

R D
k�1X

`D0


`P`
bP`; R� D

k�1X

`D0


�.`/P`
bP`; (11)

S D
k�1X

`D0


`Q`
bQ`; and S� D

k�1X

`D0


�.`/Q`
bQ`: (12)
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Definition 1 In general, if U 2 C
m�m, V 2 C

n�n, and A 2 C
m�n, we say that A is

.U; V /-commutative if UA D AV . In particular, we say that A 2 Cm�n is .R; S�/-

commutative if RA D AS� . If � is the identity (i.e., RA D AS ), we say that A is

.R; S/-commutative. If A, R 2 Cn�n and RA D AR, we say – as usual – that A

commutes with R.

3 Necessary and sufficient conditions for .R; S�/-commutativity

Theorem 1 A 2 Cm�n is .R; S�/-commutative if and only if

A D P
�
ŒCrs�

k�1
r;sD0

�
Q�1; where Crs 2 C

mr�ns (13)

and

Crs D 0 if r ¤ �.s/; 0 � r; s � k � 1: (14)

PROOF. Any A 2 Cm�n can be written as in (13) with C D P �1AQ partitioned as

indicated. If

D D diag
�

0Im0

; 
1Im1
; : : : ; 
k�1Imk�1

�

and

D� D diag
�

�.0/In0

; 
�.1/In1
; : : : ; 
�.k�1/Ink�1

�
;

then

RA D .PDP �1/.P CQ�1/ D PDCQ�1 D P
�
Œ
rCrs�

k�1
r;sD0

�
Q�1

and

AS� D .P CQ�1/.QD� Q�1/ D P CD� Q�1 D P
�
Œ
�.s/Crs�

k�1
r;sD0

�
Q�1:

Therefore RA D AS� if and only if .
r � 
�.s//Crs D 0, 0 � r; s � k � 1, which is

equivalent to (14), since 
0, 
1, . . . , 
k�1 are distinct.

The following theorem is a convenient reformulation of Theorem 1.

Theorem 2 A 2 Cm�n is .R; S�/-commutative if and only if

A D
k�1X

`D0

P�.`/F`
bQ` with F` 2 C

m�.`/�n` ; 0 � ` � k � 1; (15)

in which case

F` D bP�.`/AQ`; 0 � ` � k � 1; (16)

and

RA D AS� D
k�1X

`D0


�.`/P�.`/F`
bQ` (17)

for arbitrary 
0, 
1, . . . , 
k�1.
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PROOF. From (13), an arbitrary A 2 C
m�n can be written as

A D
k�1X

sD0

k�1X

rD0

Pr Crs
bQ`: (18)

From Theorem 1, A is .R; S� /-commutative if and and only if Crs D 0 if r ¤ �.s/, in

which case (18) reduces to (15) with F` D C�.`/;` 2 Cm�.`/�n` . From (10) and (15),

AQ` D P�.`/F`, 0 � ` � k � 1, so (9) with r D �.`/ implies (16). Eqns. (9)–(12)

and (15) imply (17).

Example 1 If � is the permutation

� D
�

0 1 2 3 4 5

1 3 4 0 2 5

�
D .0; 1; 3/.2; 4/.5/;

then (15) becomes

A D P1F0
bQ0 C P3F1

bQ1 C P4F2
bQ2 C P0F3

bQ3 C P2F4
bQ4 C P5F5

bQ5;

with

F0 2 C
m1�n0 ; F1 2 C

m3�n1 ; F2 2 C
m4�n2 ;

F3 2 C
m0�n3 ; F4 2 C

m2�n4 ; F5 2 C
m5�n5 ;

and

RA D AS� D 
1P1F0
bQ0C
3P3F1

bQ1C
4P4F2
bQ2C
0P0F3

bQ3C
2P2F4
bQ4C
5P5F5

bQ5

for arbitrary 
0, . . . , 
5.

Example 2 If

� D
�

0 1 2 3 4 5

2 1 0 1 2 0

�

(which is not a permutation), then (15) becomes

A D P2F0
bQ0 C P1F1

bQ1 C P0F2
bQ2 C P1F3

bQ3 C P2F4
bQ4 C P0F5

bQ5;

with

F0 2 C
m2�n0 ; F1 2 C

m1�n1 ; F2 2 C
m0�n2 ;

F3 2 C
m1�n3 ; F4 2 C

m2�m4 ; F5 2 C
m0�n5 ;

and

RA D AS� D 
2P2F0
bQ0C
1P1F1

bQ1C
0P0F2
bQ2C
1P1F3

bQ3C
2P2F4
bQ4C
0P0F5

bQ5

for arbitrary 
0, . . . , 
5.
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Example 3 All results obtained by assuming that R and S are involutions (and there-

fore have eigenvalues 1 and �1) can just as well be obtained by assuming only that

R and S have the same two distinct eigenvalues, with possibly different multiplicities.

The original idea in this area of research has its origins in the observation that A is cen-

trosymmetric (skew-centrosymmetric) if and only if AJ D JA (AJ D �JA). Since

J 2 D I , these conditions can just as well be written as JAJ D A (JAJ D �A); how-

ever, this and the invertibility of J are irrelevant. To illustrate this, suppose n D 2r , in

which case

J D
�

P0 P1

� � Ir 0

0 �Ir

� �
P T

0

P T
1

�

(i.e., bP0 D P T
0 and bP1 D P T

1 ), where

P0 D 1p
2

�
Ir

Jr

�
and P1 D 1p

2

�
Ir

�Jr

�
:

Starting from this, it can be shown AJ D JA (or, equivalently, A is centrosymmetric)

if and only if

A D
�

P0 P1

� � B0 0

0 B1

��
P T

0

P T
1

�
D P0B0P T

0 C P1B1P T
1 (19)

with B0, B1 2 Cr�r . However, Theorem 2 implies that A has the form (19) if RA D
AR for some R of the form

R D
�

P0 P1

� � 
0Ir 0

0 
1Ir

��
P T

0

P T
1

�

with 
0 ¤ 
1, in which case

RA D AR D 
0P0B0P T
0 C 
1P1B1P T

1 :

for arbitrary 
0 and 
1.

According to the classical theorem, AJ D �JA (or, equivalently, A is skew-

centrosymmetric) if and only if

A D
�

P0 P1

� � 0 C1

C0 0

��
P T

0

P T
1

�
D P1C0

bP0 C P0C1
bP1 (20)

with C0, C1 2 Cr�r . Now let �.0/ D 1 and �.1/ D 0, so

R� D
�

P0 P1

� � 
1Ir 0

0 
0Ir

� �
P T

0

P T
1

�
:

Theorem 2 implies that A has the form (20) if and only if RA D AR� for some 
0 and


1 with 
0 ¤ 
1, in which case

RA D AR� D 
1P1C0
bP0 C 
0P0C1

bP1

for all 
0 and 
1.



.R; S� /-commutative matrices 7

Example 4 Let R D Œır;s�1.mod k/�
k�1
r;sD0 , which is the 1-circulant with first row

�
0 1 0 � � � 0

�
:

By the Ablow-Brenner theorem [1], C 2 Ck�k is an ˛-circulant C D Œcs�˛r.mod k/�
k�1
r;sD0

if and only if RC D CR˛ . Since

R D P diag.1; �; �2; : : : ; �k�1/P �

where

P D
�

p0 p1 � � � pk�1

�
with p` D 1p

k

2
666664

1

�`

�2`

:::

�.k�1/`

3
777775

; 0 � ` � k � 1;

and

R˛ D P diag.1; �˛ ; �2˛; : : : ; �.k�1/˛/P �;

the Ablow-Brenner theorem can be interpreted to mean that C is .R; R� /-commutative

with �.`/ D ˛` .mod k/, 0 � ` � k � 1. Therefore Theorem 2 implies that

C D
k�1X

`D0

p˛`.mod k/f`p�

` ;

where f0, f1, . . . , fk�1 are scalars. As a matter of fact, if

R D P diag.
0; 
1; : : : ; 
k�1/P �

with arbitrary 
0, 
1, . . . , 
k�1, then

RC D CR� D
k�1X

`D0


˛`.mod k/p˛`.mod k/f`p�

` :

Example 5 Let R and S be as in (1) and (2) and let �.`/ D ˛` C � .mod k/, so

S� D Q diag
�
��Im0

; �˛C�Im1
; : : : ; �.k�1/˛C�Imk�1

�
Q�1:

Then the .R; S; ˛; �/-symmetric matrix A in (4) is .R; S� /-commutative. More gen-

erally, if R and S are as in (5) and (6) and �.`/ D ˛` C � .mod k/, then

RA D AS� D
k�1X

`D0


˛`C�.mod k/P˛`C�.mod k/F`
bQ`

for arbitrary 
0, 
1, . . . , 
k�1.
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Renaming the variables in Theorem 2 yields the following theorem.

Theorem 3 If � W Zk ! Zk; then B 2 Cn�m is .S; R�/-commutative if and only if

B D
k�1X

`D0

Q�.`/G`
bP` with G` 2 C

n�.`/�m` ; 0 � ` � k � 1; (21)

in which case

G` D bQ�.`/BP`; 0 � ` � k � 1;

and

SB D BR� D
k�1X

`D0


�.`/Q�.`/G`
bP`

for arbitrary 
0, 
1, . . . , 
k�1.

4 General Results

Remark 1 If � or � is a permutation of Zk , we can replace ` by �.`/ or ` by �.`/

in a summation
Pk�1

`D0, as in the proof of the following theorem, where “ı” denotes

composition; i.e., � ı �.`/ D �.�.`// and � ı �.`/ D �.�.`//. Also,

bP�.r/P�.s/ D ırsIm�.r/
and bQ�.r/Q�.s/ D ırsIn�.r/

; 0 � r; s � k � 1; (22)

if and only if � and � are permutations. We will use this frequently without specifically

invoking it.

Theorem 4 Suppose A 2 Cm�n is .R; S� /-commutative and B 2 Cn�m is .S; R�/-

commutative: ThenW (a) AB is .R; R�ı�/-commutative if � is a permutation and (b) BA

is .S; S�ı�/-commutative if � is a permutation:

PROOF. From Theorems 2 and 3, our assumptions imply that A is as in (15) and B is

as in (21). If � is a permutation then replacing ` by �.`/ in (15) yields

A D
k�1X

`D0

P�.�.`//F�.`/
bQ�.`/:

From this, (21), and (22),

AB D
k�1X

`D0

P�.�.`//F�.`/G`
bP`;

so (9) and (11) imply that

R.AB/ D .AB/R�ı� D
k�1X

`D0


�.�.`//P�.�.`//F�.`/G`
bP`;
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which proves (a).

If � is a permutation, replacing ` by �.`/ in (21) yields

B D
k�1X

`D0

Q�.�.`//G�.`/
bP�.`/:

From this, (15), and (22),

BA D
k�1X

`D0

Q�.�.`//G�.`/F`
bQ`;

so (10) and (12) imply that

S.BA/ D .AB/S�ı� D
k�1X

`D0


�.�.`//Q�.�.`//G�.`/F`
bQ`;

which proves (b).

Corollary 1 If � is a permutation; A 2 Cm�n is .R; S�/-commutative; and B 2 Cn�m

is .S; R��1/-commutative; then AB commutes with R and BA commutes with S:

Theorem 5 Suppose j > 1 and Aj 2 Cm�m is .R; R�j
/-commutative; where �j is a

permutation if j > 1: Then A1A2 � � � Aj is .R; R�1ı�2ı���ı�j /-commutativeI specifically;

if

Aj D
k�1X

`D0

P�j .`/F
.j /

`
bP`; (23)

then

A1A2 D
k�1X

`D0

P�1ı�2.`/F
.1/

�2.`/
F

.2/

`
bP`;

A1A2A3 D
k�1X

`D0

P�1ı�2ı�3.`/F
.1/

�2ı�3.`/
F

.2/

�3.`/
F

.3/

`
bP`;

and; in general;

A1A2 � � � Aj D
k�1X

`D0

P�1ı�2ı���ı�j .`/F
.1/

�2ı���ı�j .`/
F

.2/

�3ı���ı�j .`/
� � � F .j �1/

�j .`/
F

.j /

`
bP`:

PROOF. To minimize complicated notation, suppose

Bj D
k�1X

`D0

P�1ı�2ı���ı�j .`/G
.j /

`
bP`
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for some j � 1. Since �j C1 is a permutation, we can replace ` by �j C1.`/ to obtain

Bj D
k�1X

`D0

P�1ı�2ı���ı�j ı�j C1.`/G�j C1.`/
bP�j C1.`/:

Therefore, from (23) with j replaced by j C 1,

Bj Aj C1 D
 

k�1X

`D0

P�1ı�2ı���ı�j ı�j C1.`/G�j C1.`/
bP�j C1.`/

! 
k�1X

`D0

P�j C1.`/F
.j C1/

`
bP`

!

D
k�1X

`D0

P�1ı�2ı���ı�j ı�j C1.`/G
.j C1/

`
bP` with G

.j C1/

`
D G�j C1.`/F

.j C1/

`
:

This provides the basis for a straightforward induction proof of the assertion.

Corollary 2 If � is a permutation; A 2 Cm�m is .R; R� /-commutative; and j is a

positive integer; then Aj is .R; R�j /-commutativeI explicitly,

Aj D
k�1X

`D0

P�j .`/F� .j �1/.`/ � � � F�.`/F`
bP` (24)

and

RA D AR�j D
k�1X

`D0


�j .`/P�j .`/F� .j �1/.`/ � � � F�.`/F`
bP`

for arbitrary 
0, 
1, . . . , 
k�1.

5 Generalized Inverses and Singular Value Decompos-

tions

If A is an arbitrary complex matrix then A� is a reflexive inverse of A if AA�A D A

and A�AA� D A�. The Moore-Penrose inverse A� of A is the unique matrix that

satisfies the Penrose conditions

.AA�/� D AA�; .A�A/� D AA�; AA�A D A; and A�AA� D A�:

Theorem 6 Suppose � is a permutation and A 2 Cm�n is .R; S�/-commutative; so

A D
k�1X

`D0

P�.`/F`
bQ`; (25)

by Theorem 2. Let F �

0 ; F �

1 ; . . . ; F �

k�1
be reflexive inverses of F0; F1; . . . ; Fk�1; and

define

B D
k�1X

`D0

Q`F �

`
bP�.`/: (26)
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Then B is a reflexive inverse of A: Moreover; if P and Q are unitary, then

A� D
k�1X

`D0

Q`F
�

`
P �

�.`/: (27)

PROOF. From (9), (10), (22), (25), and (26),

AB D
k�1X

`D0

P�.`/F`F �

`
bP�.`/; BA D

k�1X

`D0

Q`F �

` F`
bQ`; (28)

ABA D
k�1X

`D0

P�.`/F`F �

` F`
bQ` D

k�1X

`D0

P�.`/F`
bQ` D A; (29)

and

BAB D
k�1X

`D0

Q`F �

` F`F �

`
bP�.`/ D

k�1X

`D0

Q`F �

`
bP�.`/ D B: (30)

The last two equations show that B is a reflexive inverse of A. If P and Q are unitary

and we redefine

B D
k�1X

`D0

Q`F
�

`
P �

�.`/;

then (28)–(30) become

AB D
k�1X

`D0

P�.`/F`F
�

`
P �

�.`/; BA D
k�1X

`D0

Q`F
�

`
F`Q�

` ; (31)

ABA D
k�1X

`D0

P�.`/F`F
�

`
F`Q�

` D
k�1X

`D0

P�.`/F`Q�

` D A;

and

BAB D
k�1X

`D0

Q`F
�

`
F`F �

` P �

�.`/ D
k�1X

`D0

Q`F
�

`
P �

�.`/ D B:

Moreover, from (31)

.AB/� D
k�1X

`D0

P�.`/.F`F
�

`
/�P �

�.`/ D
k�1X

`D0

P�.`/F`F
�

`
P �

�.`/ D AB

and

.BA/� D
k�1X

`D0

Q`.F
�

`
F`/�Q�

` D
k�1X

`D0

Q`F
�

`
F`Q�

` D BA:

Therefore B D A�, which implies (27).
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Corollary 3 If � is a permutation; P and Q are unitary; and A 2 C
m�n is .R; S�/-

commutative; then A� is .S; R��1/-commutative:

PROOF. From (9)–(11), (22), and (27),

SA� D A�R��1 D
k�1X

`D0


`Q`F
�

`
P �

�.`/

for arbitrary 
0, 
1, . . . , 
k�1.

Remark 2 It is well known – and straightforward to verify – that if G 2 Cp�q and

rank G D q, then G� D .G�G/�1G�. Hence, (27) implies the folllowing corollary.

Corollary 4 In addition to the assumptions of Theorem 6; suppose that rank.F`/ D n`;

0 � ` � k � 1 .or; equivalently; rank.A/ D n/: Then

A� D
k�1X

`D0

Q`.F �

` F`/�1F �

` P �

�.`/:

Theorem 7 Suppose � is a permutation; P and Q are unitary; and A is .R; S�/-

commutative and therefore of the form

A D
k�1X

`D0

P�.`/F`Q�

` ;

by Theorem 2: Let

F` D ˝`�`˚�

` ; 0 � ` � k � 1;

with

˝` 2 C
m�.`/�m�.`/ ; �` 2 C

m�.`/�n` ; and ˚` 2 C
n`�n` ; 0 � ` � k � 1;

be singular value decompositions of F`; 0 � ` � k � 1: Let

˝ D
�

P�.0/˝0 P�.1/˝1 � � � P�.k�1/˝k�1

�

and

˚ D
�

Q0˚0 Q1˚1 � � � Qk�1˚k�1

�

Then

A D ˝ diag.�0; �1; : : : ; �k�1/˚�

is a singular value decomposition of A; except that the singular values are not neces-

sarily arranged in decreasing order: Thus, for 0 � ` � k � 1, each singular value of

F` is a singular value of A with an associated left singular vector in the column space

of P�.`/ and a right singular vector in the column space of Q`:

We invoke the first equality in (22) repeatedly in the proof of the following theorem.
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Theorem 8 Suppose � is a permutation; P is unitary; and A 2 C
m�m is .R; R� /-

commutative; so

A D
k�1X

`D0

P�.`/F`P �

` ;

by Theorem 2: ThenW
(i) A is Hermitian if and only if D F �

�.`/
P �

�2.`/
D F`P �

`
; 0 � ` � k � 1:

(ii) A is normal if and only if F �

�.`/
F�.`/ D F`F �

`
; 0 � ` � k � 1:

(iii) A is EP .i:e:; AA� D A�A/ if and only if F
�

�.`/
F�.`/ D F`F

�

`
; 0 � ` � k � 1:

PROOF. Since R is unitary, Theorems 2 and 6 imply that

A D
k�1X

`D0

P�.`/F`P �

` ; A� D
k�1X

`D0

P`F �

` P �

�.`/; and A� D
k�1X

`D0

P`F
�

`
P �

�.`/: (32)

Replacing ` by �.`/ in the second sum in (32) yields

A� D
k�1X

`D0

P�.`/F
�

�.`/P
�

�2.`/
;

and comparing this with the first sum in (32) yields (i).

From (32),

AA� D
k�1X

`D0

P�.`/F`F �

` P �

�.`/ (33)

and

A�A D
k�1X

`D0

P`F �

` F`P �

` D
k�1X

`D0

P�.`/F
�

�.`/F�.`/P
�

�.`/:

Comparing the second sum here with (33) yields (ii).

From (33),

AA� D
k�1X

`D0

P�.`/F`F
�

`
P �

�.`/ (34)

and

A�A D
k�1X

`D0

P`F
�

`
F`P �

` D
k�1X

`D0

P�.`/F
�

�.`/
F�.`/P

�

�.`/;

Comparing the second sum here with (34) yields (iii).

6 Solving A´ D w and the least-squares problem

Throughout this section � is a permutation and A 2 Cm�n is .R; S� /-commutative,

and can therefore be written as in (15).
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If ´ 2 C
n and w 2 C

m, we write

´ D Qu D
k�1X

`D0

Q`u` and w D P v D
k�1X

`D0

P`v`; (35)

with u` 2 Cn` and v` 2 Cm` , 0 � ` � k � 1.

Theorem 9 If (35) holds then

(a) A´ D w if and only if (b) F`u` D v�.`/; 0 � ` � k � 1: (36)

PROOF. From (10), (15), and (35),

A´ � w D
k�1X

`D0

P�.`/F`u` �
k�1X

`D0

P`v` D
k�1X

`D0

P�.`/F`u` �
k�1X

`D0

P�.`/v�.`/

D
k�1X

`D0

P�.`/

�
F`u` � v�.`/

�
; (37)

so (36)(b) implies (36)(a). From (22) and (37),

F`u` � v�.`/ D bP�.`/.A´ � w/; 0 � ` � k � 1;

so (36)(a) implies (36)(b).

Since F` 2 Cm�.`/�n` , 0 � ` � k � 1, (36) implies the following theorem.

Theorem 10 A is invertible if and only if m�.`/ D n` and F` is invertible; 0 � ` �
k � 1 .which; from (3); implies that m D n/: In this case;

A�1 D
k�1X

`D0

Q`F �1
`
bP�.`/ (38)

and the solution of A´ D w is

´ D
k�1X

`D0

Q`F �1
` v�.`/:

Moreover; A�1 is .S; R��1/-commutativeI specifically;

SA�1 D A�1R��1 D
k�1X

`D0


`Q`F �1
`
bP�.`/

for arbitrary 
0; 
1; . . . ; 
k�1:
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If m D n and R D S (so A is .R; R� /-commutative), then (38) becomes

A�1 D
k�1X

`D0

P`F �1
`
bP�.`/:

In this case,

A�j D
k�1X

`D0

P`F �1
` F �1

�.`/ � � � F �1
�j �1.`/

bP�j .`/;

which can be verified by simply multiplying the right hand side by Aj as written in

(24).

Before turning to the least squares problem for A, we review some elementary facts

about the least squares problem for a matrix G 2 Cp�q and a given u 2 Cp ; i.e., find

v 2 Cq such that

kGv � uk D min
�2Cq

kG� � uk;

where k � k is the 2-norm. An arbitrary v 2 Cp�q can be written as

v D G�u C G.v � G�u/;

so

kGv � uk2 D k.GG� � Ip/uk2 C kG.v � G�u/k2;

since

ŒG.v � G�u/��.GG� � Ip/u D ŒGG�G.v � G�/u��.GG� � Ip/u

D ŒG.v � G�u/��GG�.GG� � Ip/u

and

G�.GG� � Ip/ D G�GG� � G� D 0:

Hence,

min
�2Cq

kG� � uk D k.GG� � I /uk;

and this minimum is attained with a given v if and only if v D G�uCh where Gh D 0.

In this case, kvk2 D kG�uk2 C khk2 since

h�G�u D h�G�GG�u D .G�Gh/�G�u D 0;

so v0 D G�u is the unique solution of (37) with minimal norm, and is therefore called

the optimal solution. From Remark 2, v0 D .G�G/�1G�u if rank.G/ D q. If P is

unitary then (37) implies that

kA´ � wk2 D
k�1X

`D0

kF`u` � v�.`/k2;
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so the least squares problem for A and a given w reduces to k independent least squares

problems for F` 2 Cm�.`/�n` and a given v�.`/ 2 Cm�.`/ , 0 � ` � k � 1. Therefore,

kA´ � wk D min
�2Cn

kA� � wk

if and only if

´ D
k�1X

`D0

Q`.F
�

`
v�.`/ C h`/;

where F`h` D 0, 0 � ` � k � 1. If Q is also unitary, then

k´k2 D
k�1X

`D0

kF
�

`
v�.`/ C h`k2 D

k�1X

`D0

kF
�

`
v�.`/k2 C

k�1X

`D0

kh`k2;

so the unique optimal (least norm) solution of the least squares problem is

´ D
k�1X

`D0

Q`F
�

`
v�.`/;

which can be written as

´ D
k�1X

`D0

Q`.F �

` F`/�1F �

` v�.`/ if rank.F`/ D n`; 0 � ` � k � 1;

or, equivalently, if rank.A/ D n.

7 The eigenvalue problem

Throughout this section A 2 Cm�m is .R; R� /-commutative, and can therefore be

written as

A D
k�1X

`D0

P�.`/F`
bP` where F` 2 C

m�.`/�m` 0 � ` � k � 1; (39)

and � is a permutation.

An arbitrary ´ 2 Cm can be written as

´ D
k�1X

`D0

P`u` with u` 2 C
m` ; 0 � ` � k � 1:

Therefore (9) and (39) imply that

A´ � �´ D
k�1X

`D0

P�.`/F`u` � �

k�1X

`D0

P`u` D
k�1X

`D0

P�.`/.F`u` � �u�.`//I (40)
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hence, A´ D �´ if and only if

F`u` D �u�.`/; 0 � ` � k � 1:

We first consider the case where � is the identity. The next three theorems are es-

sentially restatements of results from [21], recast so as to be consistent with viewpoint

that we have taken in this paper.

Let C` denote the column space of P` and let C D [k�1
`D0

C`.

Theorem 11 If A commutes with R then � is an eigenvalue of A if and only if � is an

eigenvalue of one or more of the matrices F0; F1; . . . , Fk�1: Assuming this to be true;

let

SA.�/ D
˚
` 2 f0; 1; : : : ; k � 1g

ˇ̌
� is an eigenvalue of F`

	
:

If ` 2 SA.�/ and fu.1/

`
; u

.2/

`
; � � � ; u

.d`/

`
g is a basis for the set

˚
u` 2 Cm`�m`

ˇ̌
F`u` D �u`

	
;

then P`u
.1/

`
; P`u

.2/

`
; . . . ; P`u

.d`/

`
are linearly independent �-eigenvectors of A: Moreover;

[

`2SA.�/

fP`u
.1/

`
; P`u

.2/

`
; � � � ; P`u

.d`/

`
g

is a basis for the �-eigenspace of A: Finally; A is diagonalizable if and only if F0; F1;

. . . ; Fk�1 are all diagonalizable: In this case; A has m` linearly independent eigenvec-

tors in C`; 0 � ` � k � 1:

It seems useful to consider the case where A is diagonalizable more explicitly.

Theorem 12 Suppose a diagonalizable matrix A commutes with R and and F` D
˝`D`˝�1

`
is a spectral decomposition of F`; 0 � ` � k � 1: Let

˝ D
�

P0˝0 P1˝1 � � � Pk�1˝k�1

�

Then

A D ˝

 
k�1M

sD0

D`

!
˝�1

with

˝�1 D

2
6664

˝�1
0
bP0

˝�1
1
bP1

:::

˝�1
k�1

bPk�1

3
7775

is a spectral decomposition of A:

Remark 3 It is well known that commuting diagonalizable matrices are simultaneouly

diagonalizable. Theorem 12 makes this explicit, since since ˝R˝�1 and ˝A˝�1 are

both diagonal.



18 William F. Trench

The original version of the following theorem, which dealt with centrosymmetric

matrices, is due to Andrew [2, Theorem 6]. The proof is practically identical to An-

drew’s original proof.

Theorem 13

(i) If A commutes with R and � is an eigenvalue of A; then the �-eigenspace of S

has a basis in C .

(ii) If A has n linearly independent eigenvectors in C ; then A commutes with R.

PROOF. (i) See Theorem 11. (ii) If ´ 2 C then R´ D 
`´ for some ` 2 Zk . If A´ D �´

and R´ D 
`´, then

RA´ D �R´ D �
`´ and AR´ D 
`A´ D 
`�´I

hence, RA´ D AR´. Now suppose that A has n linearly independent eigenvectors

f´1; ´2; : : : ; ´ng in C . Then we can write an arbitrary ´ 2 Cn as ´ D
Pn

iD1 ai ´i .

Since RA´i D AR´i , 1 � i � n, it follows that RA´ D AR´. Therefore AR D RA.

For the remainder of this section we assume that A is .R; R�/-commutative and �

is a permutation other than the identity.

The following theorem shows that finding the null space of A reduces to finding

the null spaces of F0, F1, . . . , Fk�1.

Theorem 14 If A is .R; R� /-commutative and � is a permutation then A´ D 0 if and

only if ´ D
Pk�1

`D0 P`u`; where

F`u` D 0; 0 � ` � k � 1I (41)

hence; the null space if A is independent of � .so long as � is a permutation/:

PROOF. Clearly, (41) implies that A´ D 0 without any assumption on � . For the

converse, note from (22) and (40) that if � is a permutation then bP�.`/A´ D F`u`,

0 � ` � k � 1, so A´ D 0 implies (41).

Henceforth we assume that � ¤ 0. In this case, suppose that � has p orbits O0,

. . . , Op�1. If p D 1, then � is a k-cycle and Zk D
˚
�j .0/

ˇ̌
0 � j � k � 1

	
. In any

case, if `r 2 Or , 0 � r � p � 1, then Zk D O0 [ � � � [ Op�1, where

Or D
˚
�j .`r /

ˇ̌
0 � j � kr � 1

	
; 0 � r � p � 1;

and k0 C � � � C kp�1 D k. It is important to note that

�kr .`r / D `r ; 0 � r � p � 1; (42)

and k0, k1, . . . , kp�1 are respectively the smallest positive integers for which these

equalities hold. In Example 1, p D 3, O0 D f0; 1; 3g, O1 D f2; 4g, O2 D f5g, so

k0 D 3, k1 D 2, k3 D 1, Z6 D O0

S
O1

S
O2, and we may choose `0 D 0, `1 D 2,

and `2 D 5.
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To solve the eigenvalue problem, we rearrange the terms in ´ D
Pk�1

`D0 P`u` as

´ D
p�1X

rD0

´r with ´r D
kr�1X

j D0

P�j .`r /u�j .`r /; 0 � r � p � 1; (43)

and rearrange the terms in (39) as

A D
p�1X

rD0

Ar with Ar D
kr �1X

j D0

P�j C1.`r /F�j .`r /
bP�j .`r /; 0 � r � p � 1: (44)

Since (9) implies that ArAs D 0 if r ¤ s, we can replace (44) by

A D A0 ˚ A1 ˚ � � � ˚ Ap�1I

hence, A´ D �´ if and only if

Ar ´r D �´r ; 0 � r � p � 1:

Therefore, the eigenvalue problem for A reduces to p independent eigenvalue problems

for A0, A1, . . . , Ap�1.

From (43) and (44), Ar´r D �´r if and only if

kr�1X

j D0

P�j C1.`r /F�j .`r /u�j .`r / D �

kr �1X

j D0

P�j .`r/u�j .`r / D �

kr �1X

j D0

P�j C1.`r /u�j C1.`r/;

which is equivalent to

F�j .`r/u�j .`r / D �u�j C1.`r /; 0 � j � kr � 1: (45)

If kr D 1 then �.`r / D `r and (44) becomes F`r
u`r

D �u`r
; hence, if .�; u`r

/ is

an eigenpair of F`r
then ´r D P`r

u`r
is �-eigenvector of A.

If kr > 1 then (42) and (44) imply that

Gru`r
D �ku`r

; where Gr D F�kr �1.`r / � � � F�.`r/F`r
2 C

m`r �m`r :

Therefore, if � is a nonzero eigenvalue of Gr and � D e2�i=kr , then �1=k , �1=k�, . . . ,

�1=k�kr�1 are distinct eigenvalues of Ar (and therefore of A). If � is any one of these

eigenvalues, then the corresponding eigenvector ´r of Ar (and therefore of A) is given

by (43), where u�j .`r /, 1 � j � kr�1, can be computed recursively from (44) as

u�j .`r / D 1

�
F�j �1.`r /u�j �1.`r/; 1 � j � kr � 1:
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