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Computer Simulation of a Binary Polymer 
Mixture in Three Dimensions 

P. CIFRA,* F. E. KARASZ, and W. J. MACKNIGHT, Department of 
Polymer Science and Engineering, University of Massachusetts, 

Amherst, Massachusetts 01003 

Synopsis 

The behavior of a binary polymer mixture was simulated on a cubic lattice over both the 
miscibility and immiscibility regions. The number and distribution of interactions in the mixture 
were found to be different from the mean-field picture; however, the observed phase behavior 
agrees with that predicted by the mean-field theory and is not affected by the observed 
concentration fluctuations. The relationship between the phenomenological x parameter and the 
heterosegmental interaction energy was investigated. Polymer chains show nearly ideal behavior, 
even for strongly interacting mixtures; this simplifies the theoretical treatment of polymer 
mixtures analogous to homopolymer melts. 

INTRODUCTION 

Polymer blending is a useful means for preparing new polymeric materials. 
\.._, The thermodynamics of polymer mixing has been successfully. treated by the 

Flory-Huggins (FH) theory for a long time. As is well known this theory 
works well for dense systems of flexible chains, as opposed to dilute systems. 
It can explain both the UCST and LCST behavior observed in polymer 
mixtures by allowing the interaction parameter x to vary appropriately with 
temperature.1·2 The theory has been extended to mixtures formed by copol
ymers.1,a 

Here we present the results of a Monte-Carlo simulation of a dense binary 
polymer mixture. This method allows nonrandomness in mixing to arise from 
(1) energetic preferences present in the mixture and (2) correlations within the 
system due to the connectivity of segments, neither of which is accounted for 
in the mean-field treatment. In a previous two-dimensional simulation of the 
same system4 we observed deviations from mean-field behavior as well as a 
considerable expansion of the polymer chains in the miscibility region. Unlike 
two-dimensional dense systems, which show nonideality,5•6 three-dimensional 
dense systems of chains obey mean-field theory.7 Similarly, in the present 
work we observed the phase-separation transition to have a mean-field char
acter. In comparison with the two-dimensional case only a slight expansion of 
the chains was observed in the miscibility region; the behavior of the chains 
was nearly ideal. 

*Permanent address: Polymer Institute, Slovak Academy of Sciences 842 36 Bratislava, 
Czechoslovakia. 
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CALCULATION PROCEDURE 

A dense binary system of 484 flexible chains each consisting of 20 segments 
was simulated on a cubic lattice. The lattice consisted of 22 X 22 X 22 sites, 
9.09% of which were voids; periodic boundary conditions were imposed on the 
system, and estimates and comparisons indicated that finite size effects were 
minimal. Half of the self-avoiding chains were designated as type A and the 
second half as type B. In addition to the simple volume-exclusion interactions 
within and between chains, an interaction energy£ was included in the total 
energy ,0f the system whenever A and B segments occupied adjacent lattice 
sites. Using a negative, positive, or zero reduced interaction energy, £1 = £/kBT, 
we simulated a miscible, immiscible, or athermal system, respectively. In the 
athermal system individual chains have the properties of those in a one 
component homopolymer melt. Starting from an arbitrary configuration of 
the system, we applied 5 X 107 reptation moves to the chains, thereby obtain
ing equilibrium thermodynamic averages for each state.8 During the sampling, 
each chain move was accepted or rejected according to Metropolis' rules; 9 the 
properties of the system were monitored continuously to determine when the 
system had reached equilibrium. No hysteresis was observed in the phase 
transition, since sufficiently long equilibration times were permitted in each 
state. The number of heterocontacts per chain and the chain end-to-end 
distance were accumulated during the sampling as principal descriptors of the 
system. The end-to-end distance of both A and B chains could be sampled 
over the same thermodynamic average because of the equivalency of the '
chains in this system. 

Recently, results on analogous systems have been reported by Sariban and 
Binder.10 Using a grand canonical ensemble, they present results of calcula
tions of compositions of phases formed during phase separation and focus 
mainly on critical exponents and amplitudes in their system. In contrast in 
the present study we employ a canonical ensemble and present results in the 
form of heterocontacts in the system at a 1 : 1 component composition. 

RESULTS AND DISCUSSION 

We first calculated the equilibrium mean-square end-to-end separation in 
the homopolymer melt using £

1 = 0. The result, ( R2 ) = 30.04 in lattice 
spacing units, is in good agreement with the result of Olaj et al.,11 ( R 2 ) = 
29.62, corresponding to the volume fraction of chains, cf> = 1. The result of 
Okamotd-2 and that of de Vos and Bellemans13 when extrapolated to higher 
concentrations also agree with our value. 

We then performed the calculation for the binary mixture using a nonzero 
£

1
• The results are shown in Figure 1, where the average number of heterocon-

tacts per chain NAB is plotted as a function of £
1

• One can see a diffuse 
mixing/unmixing transition where a large number of heterocontacts corre
sponds to a miscible system and a small number of heterocontacts corresponds 
to an immiscible system, in which the chains are separated into domains. The 
center of the transition occurs at a critical value of the interaction energy, 
£~ = 0.05. The transition is narrower in comparison with the two-dimensional 
case discussed previously. This occurs because three-dimensional chains have 
additional contacts available, each making a contribution £' to the total '----
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Fig. 1. Transition curve showing the dependence of NAB and x on ('; (D) the value for the 

athennal system obtained from FH theory. 

energy of the system. The transition is sharp in the immiscibility region where 
the system undergoes phase separation into domains. It is more diffuse in the 

"-..-- miscibility region where intermixing of A and B chains provides space for 
continuous changes in properties with an increasing attractive A-B interac
tion. 

For the a thermal mixture, £ = 0, a value of NAB = 15.35 was obtained, 
which is a little smaller than that predicted from the FH theory, NAB= 18.17. 
The latter was obtained using N( z - 2)'1>A'1>B for the total number of hetero
contacts in the system, where N is the total number of sites in the mixture; z 
is the lattice coordination number, z = 6; and !/>; is the volume fraction of 
component i. Our value was obtained starting from two different initial 
configurations corresponding to NAB= 10 and 20; 15.35 was the limiting value 
approached from either side, a further indication that hysteresis was absent in 
this simulation. 

Using the results presented above, there are two representations for the 
total A/B interaction free energy, aFint· One is the mean-field expression 
from FH theory, which assumes that the number of heterocontacts is propor
tional to the product of the volume fractions of A and B. The other expression 
stems from our approach where the total number of contacts depends on E'. 

For each£' we have a corresponding number of heterocontacts, NAB(E') per 
chain. Equating the two expressions for aFint• we obtain a relationship 
between the phenomenological x parameter and the true molecular constant 
£': 

(1) 

where aFmJRT is related to the free energy per unit volume of the system, 
and nch is the total number of chains in the system. The dependence of x on 

\.._ £
1 is also depicted in Figure 1. The dependence is linear in the miscible regime 
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Fig. 2. Mean square end-to-end distance (R2 ) and the square of the expansion coefficient a2 

are shown as a function of('. 

and is thereby analogous to two-dimensional systems; however, in the immis
cible region saturation occurs as the chains become segregated into domains, 
and x asymptotically approaches a maximum of 0.25 with increasing£'. Thus 
the calculated Xmax in this work is close to 0.3, which was observed for the 
planar square lattice; 4 therefore, the estimates are not very sensitive to the '-_ 
lattice approximation or change of dimensionality. The existence of an upper 
positive limit of Xmax is consistent with the fact that large positive x 
parameters are not observed in real polymer mixtures, whereas negative 
values are common. Using eq. (1), the value of Xe which corresponds to the 
critical value, £~ = 0.05, is found to be 0.11. This agrees with the value 
Xe = 2/p = 0.1 predicted from FH theory; p is the degree of polymerization 
of both types of chains. 

We have also investigated the dependence of coil dimension on £'. As 
mentioned above, the size of the chains for £' = 0 agrees with the value fol'. the 
homopolymer melt. The dependence of (R2 ) and the square of the expansion 
coefficient a 2 on £ 1 are shown in Figure 2; a2 = (R2)/(R2),·-o· As £

1 increases 
beyond zero, (R2) decreases only slightly below the athermal value as chains 
are repelled from the A-B domain interfaces. Still larger£' values result in an 
increasing number of chains aggregating into domains in which each chain 
then experiences a homopolymer melt-like environment. With decreasing£' in 
the £

1 < 0 region, the favorable A-B interaction causes the chains to expand 
monotonically. The largest calculated value here for a is 1.07, which corre
sponds to x = - 2.81. The chain expansion in the miscible region is thus less 
pronounced than that for the two-dimensional system; the perturbation of the 
chain dimensions by the A-B interaction in the three dimensional case is thus 
small, and the chain behavior is more nearly ideal. 

We conclude that the Monte-Carlo simulation results differ somewhat from 
those of the mean-field approximation of random mixing in the region in
vestigated. However, the observed concentration fluctuations have no effect 
on the observed phase-separation transition, which is accurately described by '~ 
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the mean-field theory. The observation that chains behave nearly ideally over 
a broad range of interactions implies a considerable simplification in the 
theoretical treatment of such systems. Powerful techniques such as the ran
dom phase approximation can, therefore, be used for mixtures of strongly 
interacting polymers. 

The computations were performed using the IBM 3090/400 Supercomputer Facility at Cornell 
University. We thank AFOSR 86-0100 for support. 
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