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ABSTRACT: Phase transitions from miscibility to immiscibility were observed in simulations of binary polymer 
mixtures on a planar square lattice using reptation sampling techniques. The relationship between the 
phenomenological interaction parameter, x, and the true molecular interaction energy was followed, and the 
dependence of the number and distribution of heterocontacts in the mixture on the applied heterosegment 
interaction energy was determined. Deviations from the results of mean-field treatments, which overestimate 
the number of heterocontacts, were observed even for athermal mixtures. Kinetically driven hysteresis governed 
by a temperature equilibration time scale was examined for the phase transitions. An important prediction 
of expansion of the polymer chains in the miscibility region can be made on the basis of the results of chain 
end-to-end distance calculations. 

Introduction 
The subject of polymer blends has been studied exten­

sively1 mainly as a result of the potential applications of 
polymer blends as new materials. For each particular 
blend the question of miscibility and immiscibility arises. 
In general, miscibility is unusual for blends of high mo­
lecular weight polymers. The Gibbs free energy of mixing, 
which governs phase behavior, consists of three contribu­
tions: an exchange interaction term, the combinatorial 

t Permanent address: Polymer Institute, Slovak Academy of 
Sciences, 842 36 Bratislava, Czeckoslovakia. 

entropy of mixing, and a free volume term. The basic term 
is considered to be the exchange interaction term. A 
prerequisite for miscibility is that the energy of mixing be 
endothermic. The combinatorial entropy of mixing is very 
small due to the large size of polymeric molecules. The 
free volume term, which is unfavorable to mixing, also has 
a relatively small effect at low or moderate temperatures 
in polymer-polymer systems since differences in the sizes 
of the molecules, and hence differences in the free volumes 
are small, unlike polymer-solvent systems. It is highly 
desirable to follow in detail the number of favorable/un­
favorable heterocontacts in the mixture and also to de­
termine the distribution of unlike contacts. It should be 
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remembered, however, that the entropic and free volume 
contributions must not be underrated. The phase 
boundary is governed by a delicate balance and is deter­
mined not by the absolute values of the contributions to 
the free energy but by higher derivatives of aGmix as a 
function of composition. Thus small contributions in ab­
solute value can play an important role in phase behavior. 

With the aim of following the number of segment-seg­
ment interactions between polymer A and polymer B in 
an AB mixture, a Monte-Carlo (MC) simulation study is 
presented as an alternative to a mean-field approach such 
as the Flory-Huggins theory (FH). It should be mentioned 
that the interaction term described above has not changed 
appreciably with more modern treatments, except that 
volume fractions have been changed to effective site 
fractions and segment size differences in the mixture have 
been accounted for. 2•3 The interaction term seems to be 
the weakest link in all thermodynamic models of mixtures. 
A MC simulation of multichain polymer mixtures, on the 
other hand, does not suffer from the mean-field approx­
imation of random mixing, since unlike the FH theory, it 
takes into account the connectivity of segments within the 
chain. This treatment provides mean thermodynamic 
values and, more important, also provides the corre­
sponding local microstructure of the mixture in the form 
of snapshot pictures. These dual results are important 
especially in phase separation phenomena, since phase 
separation can be visually observed in the form of distinct 
A(B) domains. 

Simulation Technique 
Multichain configurations were generated on a planar 

square 22 X 22 lattice. The system was formed by 22 
chains each comprising 20 segments, and periodic bound­
ary conditions were imposed on the lattice. To rule out 
undesirable interferences, the lattice with periodic 
boundary conditions should be larger than the correlation 
length within one chain, i.e., its end-to-end distance. This 
was satisfied when the end-to-end distance of the chains 
was essentially less than 10 lattice sites for all the systems 
investigated. A system of self-avoiding chains was treated 
as a binary mixture. A fraction of the chains was desig­
nated as type A and the remainder as B depending on the 
mixture composition. The composition was changed over 
the whole composition range when necessary. In addition 
to simple volume exclusion interactions within and be­
tween the chains, an interaction energy, E, was applied 
between segments A and B and was taken into account 
whenever A and B segments occupied adjacent lattice sites. 
If the reduced interaction energy, E' = E/ k8 T, was equal 
to zero, the system represented an athermal homopolymer 
melt. With a negative (positive) value of E' miscible (im­
miscible) blends could be simulated. Void lattice sites 
occupying 9.09% of the system permitted the use of the 
usual reptation sampling technique.4 As an initial arbitrary 
configuration, the parallel extended, "all-trans" chains in 
register was used. All runs began with an initial inter­
mixing and equilibration period with the condition E' = 0 
imposed. Each thermodynamic state was then obtained 
after equilibration by 106 reptation trial moves for each 
value of E'. In special cases, to observe hysteresis, the 
number of moves was lower, 3 X 105• Trial moves were 
accepted or rejected according to the Metropolis rules,5 i.e., 
a move was unconditionally accepted if the energy change, 
M, was negative and accepted with probability p = 
exp(-M / k 8 T) if the energy change was positive. When 
the move was rejected, the original configuration was 
counted once more in the averaging. The energy change 
was given by M = (N ABnew - N ABold)E, where N ABnew and 
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NABotd are the total numbers ofheterocontacts present in 
the mixture before and after the move, respectively. The 
number of heterocontacts in the system per chain, NAB• 
was accumulated during sampling as the key descriptor 
of the state of the system. After a sufficiently large number 
of moves was performed, the properties of the system 
reached an equilibrium established by the balance of the 
entropy and the applied interaction energy E'. All con­
figuration-dependent properties, such as the end-to-end 
distance, were calculated by using the usual techniques and 
collected in thermodynamic averages according to the 
Metropolis rules. 

The generation of multichain configurations in dense 
systems is a difficult problem. Until now the reptation 
technique was mainly employed to solve this problem. 
Recently Mansfield's method6 of bond breaking and re­
forming has been used7 for a totally occupied lattice of 
chains. This method, however, introduces a molecular 
weight distribution into the system. Reptation moves have 
also been criticized, and moves where local kink jumps are 
performed are considered to be more representative of the 
system from the point of view of chain dynamics. How­
ever, we are interested in equilibrium properties and have 
used reptation moves only to generate different configu­
rations. Nevertheless, this method still remains the only 
appropriate method for examining dense multichain sys­
tems. 

Recently the MC reptation technique was used for the 
first time to simulate the kinetics of spinodal decompo­
sition of a two-dimensional polymer mixture.8 For the 
present system this regime was traversed by using long 
equilibration times to obtain the equilibrium properties 
and also to include both immiscibility and miscibility re­
gions. 

Results and Discussion 
To ensure that the algorithm used in this analysis is 

correct, we first calculated the mean-square end-to-end 
distance of the chains in a homopolymer melt by using E' 
= 0. Our result, (R2) = 39.2 ± 0.8, is in good agreement 
with the value, (R2 ) = 40.4 (in lattice spacing units), ob­
tained by Wall et al.9 for a square lattice of chains com­
prising 21 segments at a concentration (volume fraction) 
equal to 0.9. 

Distribution of Interactions: Comparison with 
Mean-Field Results. The number of unlike contacts per 
chain, NAB• in the blend as a function of the applied A-B 
interaction energy E', is shown in Figure 1 for the compo­
sition A/B = 1/1 in the blend. A diffuse transition of 
sigmoidal, second-order shape can be observed. In the 
miscibility region, where E' < 0, the mixture is characterized 
by a large number of A-B contacts, while in the immis­
cibility region, where E' > 0, unlike contacts are rare and 
the components phase separate. The microstructures of 
mixtures that correspond to three representative states on 
the transition curve are shown in Figure 2. It is imme­
diately obvious that the mixing is nonrandom even in an 
athermal mixture where E' = 0 and depends on the applied 
interaction energy. 

Interaction and Temperature Dependence. Ac­
cording to the FH theory, the free energy of mixing per 
unit volume of binary polymer system is given as 

aGmix/RT =(<PA/NA) In <l>A + (</>s/Ns) In </>s + X<l>A<l>B 
(1) 

where </>i is the site fraction of the components and Ni is 
the degree of polymerization. The simplest interpretation 
of the Flory interaction parameter, x, is as an interaction 
interchange energy, aEAB = EAB - 1/2(EAA +EBB), since X = 
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Figure 1. Transition curve constructed from the dependence of 
the number of unlike contacts present in the system per chain, 
NAB, on the reduced interaction energy e'. 
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Figure 2. Snapshot picture of the mixture corresponding to three 
states on the transition curve shown in Figure 1: a, e' = O; b, e' 
= -0.5; c, e' = 0.5, representing athermal, miscible, and immiscible 
regimes and taken after a long equilibration time. 

AEAB z/2kT, where z is the coordination number of the 
lattice. Experimental data suggest, however, that x should 
be interpreted as the free energy 

x(T) =a+ fJ/T (2) 

where a and fJ are constants. This was the first evidence 
that x is not a real molecular parameter but rather is an 
effective phenomenological parameter. Obviously a mo­
lecular interpretation of such a parameter is complex. 
Since the MC simulation used in this study is a numerical 
experiment performed on the molecular level, the pheno­
menological interaction free energy from eq 1 can be 
compared to the corresponding interaction term based on 
the true molecular parameter, E' 

AGmtfRT = X<l>A<l>B = 22E'NAB(E')/N (3) 

where N AB(E') is the mean number of A-B contacts per 
chain in the mixture at the applied energy, E', and N is the 
total number of lattice sites in the system. The principal 
differences in the description of the interactions by the two 
corresponding expressions in eq 3 are obvious. The clas-
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Figure 3. Dependence of calculated x parameter (text, eq 3) on 
the actual molecular constant e', representing the strength of a 
heterosegmental A-B interaction. 

sical treatment assumes random mixing of the components, 
and thus the number of contacts is constant and is not 
dependent on the strength of the interactions. The x 
parameter accounts for changes of AGint coming from 
changes in interaction strength. In contrast, MC simula­
tions which match the interaction on a molecular level 
better reflect the behavior of the system by changes in 
NAB(E') as a function of the true molecular constant E'. A 
molecular interpretation of x in terms of our results is 
described in Figure 3, where x is plotted as a function of 
E'. It can be seen that in the region of miscibility xis a 
linear function of the interaction energy E' because the 
polymers are well intermixed. On the other hand, an in­
crease in the A-B repulsion in the immiscibility region to 
higher positive values of E' has little effect on x since the 
polymers are segregated in their own domains. The value 
of x would increase with increasing E' only if the polymers 
were also intermixed in this region. This is reflected in 
the fact that different immiscible blends have small pos­
itive values of x with only small differences. According 
to our results for this planar system, it seems that there 
exists a limiting positive value, Xmm beyond which x 
cannot increase. 

Xmax ~ 0.3 (4) 

A transition curve (Figure 1) can also be regarded in 
terms of an inverse temperature dependence at a fixed 
value of E. It is obvious from Figure 1 that increasing 
temperature tends to minimize the effect of the interac­
tions (either favorable or unfavorable), and at T - oo, 

systems with different interaction energies behave as 
athermal systems, E' = 0. This inverse temperature de­
pendence, phenomenologically observed as eq 2, has its 
origin in the Boltzmann factors which weigh each partic­
ular multichain configuration. It should be noted also that 
this transition can be described as UCST behavior pre­
ceeded by a spinodal decomposition mechanism. It arises 
from a combination of the mixing entropy and the free 
energy of interaction (the free volume term is absent) and 
proceeds from a homogeneous mixture where small con­
centration fluctuations are enlarged by uphill diffusion 
characteristic of spinodal decomposition. 

The exact position of the transition is in the vicinity of 
E' = 0.05. The shape is asymmetrical. In order to reach 
the phase separation regime from the transition point, a 
AE' of ~0.5 is needed; whereas to homogenize the system 
from the transition, a change of AE' of ~ 1.5 is required. 
This reflects the known tendency toward coil segregation 
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Figure 4. Number of unlike contacts in the mixture, per chain, 
NAB• as a function of blend composition cf> for three different 
interactions: ('Y), E' = -0.5; (e), E' = 0.0; (a), E' = 0.5. The solid 
curve represents results obtained by using the FH theory. 

in planar dense systems10•11 that has to be overcome during 
intermixing. 

Concentration Dependence. Figure 4 shows the con­
centration dependence of the number of unlike contacts 
in the system for different values of the interaction energy, 
E' = -0.5, 0.0, and 0.5. It can be seen that not even the 
curve corresponding to an athermal mixture fits the pre­
dictions of the FH theory according to which the number 
of unlike contacts in the system is (Nz/2}<f>A<f>B. As already 
mentioned, the FH theory assumes the same number of 
contacts for mixtures with different interactions. Devia­
tions from the FH description of the concentration de­
pendence of the interaction term are often treated by in­
troducing an empirical concentration dependence: 

X = Xo + X1 cP + X2cP2 + ... (5) 

If the deviations are known to arise from differences in the 
sizes of the A,B segments, then the concentration depen­
dence of x is given by12 

x = µ/(1 - 'YcP) 'Y = 1- <12/<11 (6) 

where µ is related to the interchange energy and ai is the 
interacting surface area of segment i. If a1 = a2, the simple 
FH relation is recovered. Deviations from the mean-field 
results observed here are evidence of nonrandom mixing 
in the polymer mixtures. This "nonrandomness" is obvious 
from the snapshot pictures (Figure 2). Instead of the mean 
concentration, given simply by the site fractions of the 
components, a local concentration different from the mean 
value applies. This local concentration arises from two 
effects: the effect of the interactions, t ~ 0, and the effect 
of the connectivity of the segments into chains. Recently 
Howe and Coleman13 made calculations on the distribution 
of unlike contacts in miscible polymer blends. They found 
positive deviations from the FH prediction for attractive 
A-B interactions and negative deviations for repulsive 
interactions, similar to our observation (Figure 4). How­
ever, for an athermal mixture, e' = 0, Howe and Coleman 
obtained the FH result since their treatment is mean-field 
in nature using a random mixing rule. As can be seen in 
the figure, for athermal mixtures the FH mean-field theory 
overestimates the number of unlike contacts. In reality 
of screening of the interactions arising from the connec­
tivity of the segments into chains takes place. Our ob-
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servation is in accordance with the reported effect of 
segregation of polymer chains in two-dimensional dense 
systems10•11 since it implies that interchain contacts are 
decreased in favor of intrachain contacts. 

Kinetically Driven Hysteresis. In general, a decrease 
in the number of samples thermodynamically averaged in 
the MC method leads to a larger scatter in the obtained 
results. If the number of reptation moves performed for 
one state is decreased, but not enough to increase the 
scatter in the data, some systematic deviations can be seen. 
Figure 5 shows the results of a run for which the ther­
modynamic states are changed stepwise, each calculated 
from 3 X 105 trial moves only. It can be seen that the 
system proceeds from the miscible to the immiscible region 
and vice versa by different thermodynamic pathways from 
those used previously. Figure 6 depicts another run under 
the same conditions close to the transition. 

We now consider how the system undergoes a transition 
from either of the regimes by thermally induced movement 

~\ 

~ 

of the chains, each properly weighted by the probability ~ 
given by the Boltzmann factor with an interaction energy 
and a gradual change in the A-B interaction. If the system 
lies within the immiscibility region and the domains are 
already formed, it is difficult to change the morphology. 
Namely, if repulsion between the phases is decreased 
slightly, thermal movement of the chains is still more likely 
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to occur within a given domain and is not likely to cross 
the interface between the domains which would lead to an 
increase in unfavorable contact energy. Thus the majority 

~ of the moves occur within a domain, which has no effect 
on the transformation of the blend morphology into that 
of a homogeneous miscible blend. In the overall region, 
E' > 0, intradomain moves are more likely to occur than 
moves crossing the domain boundary. It is only after the 
attractive energy region, E' < 0, is entered that interdomain 
moves become more probable than intradomain moves and 
the morphology can be changed more rapidly. Thus if the 
thermodynamic parameters of the blend are changed and 
the system is allowed to equilibrate at given conditions for 
a short time, we can in this way proceed from state to state 
and finally reach the miscible region. However, the 
morphology cannot reflect fast changes in the thermody­
namic parameters; it lags behind the true equilibrium 
thermodynamic state, and we proceed to the miscibility 
region in a path which depends on the thermal equili­
bration time scale. 

~ 

~ 

On leaving the miscibility region and decreasing the 
attractive A-B energy, A(B) domains should be formed. 
The moving chains, however, avoid forming domains since 
domain formation leads to a decrease in the favorable 
mixing energy. Only a small fraction of moves is spent in 
transforming the morphology in the direction of phase 
separation. This situation changes again when E' changes 
sign and the interaction becomes unfavorable. The frac­
tion of moves resulting in a change in morphology becomes 
larger than that of moves which retain the morphology. 
Of course, domain formation and breakup occur simulta-
neously leading to diffuse transitions. These obvious rules, 
well matched by the MC routine used here, lead to hys­
teresis in phase separation behavior (Figures 5 and 6). This 
hysteresis is kinetically driven and is characteristic of 
phenomena which are generally reported as a dependence 
on "thermal history" of the polymer sample. However, it 
is important to differentiate this case from observations 
of thermal history caused by Tg viscosity behavior. In the 
present case all mixtures are liquids of flexible chains. 

To ensure that well defined thermodynamic states were 
obtained, calculations corresponding to two successive 
complete cycles of the hysteresis loop (Figure 6) were 
performed. The two cycles produced equivalent results; 
thus the thermodynamic states produced correspond to 
well-defined local free energy minima even though they 
do not correspond to a true thermodynamic equilibrium. 

In a recent report on MC simulation of spinodal de­
composition in polymer films, Baumgiirtner8 suggested that 
in the late stages of decomposition a mechanism of evap­
oration and condensation of small "droplets" may apply. 
According to the above arguments this is not very probable. 
Instead we suggest the following mechanism: at late stages 
of decomposition, domains are large and contain several 
chains. It is highly improbable that single chains or small 
droplets evaporate, cross the unfavorable region, and fi­
nally condense to another domain of the same kind. 
However, there must be other types of motion in the 
mixture for which the reptation of a single chain cannot 
account, and this is a thermally activated translation of 
entire domains. This type of motion is assumed to be 
slower but does not require as large an activation energy. 
Whenever slowly moving domains of the same kind come 
into contact, it is probable that they irreversibly fuse into 
one larger domain, thus decreasing the unfavorable A-B 
boundary. This mechanism probably prevails in the latter 
stages of decomposition and accounts for the fusion of 
microdomains into definite macrophases. 
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Figure 7. Mean-square end-to-end distance of chains as a 
function oft', calculated for the blend composition, A/B = 1/1. 

Expansion of Coils in the Miscibility Region. It is 
well-understood that in dense systems long flexible chains 
can be described by Gaussian distributions with ideal 
behavior. This was first suggested by Flory14 and later 
shown by MC simulations15 and SANS measurements16 as 
well as by other theoretical arguments.10 In two-dimen­
sional systems, however, peculiarities have been observed. 
While an ideal exponent, 11 = 0.5, for chain dimensions has 
been observed, the observed pre-exponential factor11 is 
larger than that of ideal unperturbed chains, (R2 ) / (R2 ) 0 
= 2.1 ± 0.1. Another interesting feature is the segregation 
of polymer coils in polymer films. In this paper we present 
a new peculiarity in coil size related to the interchain 
interaction in blends. 

The end-to-end distances of a chain in a binary polymer 
mixture of composition A/B = 1/1 for a range of values 
of E' was calculated. Since the A,B chains are of the same 
length, at this composition all chains in the system can be 
included in a single thermodynamic average. The resulting 
dependence of (R2 ) on E' is shown in Figure 7. For a 
homopolymer melt, as can be seen in the figure, the above 
larger preexponential factor is obtained 

(R2 ) / (R2 ) 0 = 2.06 ± 0.07 E' = 0 (7) 

where the ideal dimension (R2 ) 0 is 19. For the immisci­
bility region, E' > 0, the mean dimensions are basically the 
same as for the homopolymer melt. Most of the chains 
are within their own domains equivalent to a homopolymer 
melt. Changes in E' have an effect only at the A/B in­
terface. The chains are forced to return to their own 
phases at the boundary and this restriction leads to a 
slightly smaller mean dimension in the immiscible blend 
relative to the homopolymer melt. 

In contrast, a pronounced change in dimensions can be 
seen in the miscibility regions, E' < 0. In this case A chains 
act as a good solvent for B chains and vice versa. This 
leads to an expansion of coils of both kinds. This excluded 
volume effect should really be defined as the effect of a 
good solvent, i.e., as an intermolecular effect since simple 
volume exclusion operates within the chains and the effect 
of E' is the interchain effect. The approximate limiting 
expansion in miscible blends relative to the ideal unper­
turbed dimensions for the A,B chains is given by 

a 2 = (R2 ) / (R2 ) 0 = 4.84 ± 0.32 E' ~ -1.5 (8) 

Negative Volume of Mixing in the Miscibility Re­
gion. Miscible blends are known to exhibit negative 
volumes of mixing. This tendency toward contraction 
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Figure 8. Morphology of system in the miscibility regime, E' = 
-1.7. Note large void caused by favorable A-B interaction and 
interpreted as contraction (i.e. negative mixing volume) of the 
blend. 

prevails at high temperatures, or equivalently, low den­
sities. Phenomena arising from differences in the equation 
of state parameters, such as LCST behavior, cannot be 
explained in terms of an incompressible lattice. However, 
even in such a lattice it can be shown that a negative 
volume of mixing in blends in caused by favorable inter­
actions. 

Figure 8 shows the equilibrium situation in a miscible 
blend having an attractive energy, E' = -1.7. From Figure 
1 it can be seen that this value lies within the miscibility 
region. In the left region of Figure 8 there is a large void 
containing almost all empty lattice sites permitted in the 
system. For an athermal blend, the voids are randomly 
distributed in the lattice. In contrast, in a miscible blend 
the voids are expelled from the system and are collected 
into a single large void thus favoring the formation of A-B 
contacts. This behavior is not random and is observed 
systematically in the attractive energy regime. The void 
is not longer an integral part of the system and represents 
a negative volume of mixing. Since it is known that solid 
polymers can have substantial free volume, the negative 
volume of mixing accompanying the process of close 
packing of chains in a mixture of miscible polymers can 
be quite large. However, in this treatment we cannot 
account for the temperature dependence of the negative 
volume of mixing. As the temperature increases, the void 
space diminishes since increasing temperature tends to 
minimize the effect of the A-B interactions as expected, 
but the lattice does not expand with increasing tempera­
ture. 

Conclusion 
The results obtained in this study enable us to make the 

following conclusions. 
The number of heterocontacts, which to a large extent 

determines the phase behavior in a polymer mixture, does 
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not follow random mixing even for the athermal case. 
Depending on the heterosegment A-B interaction energy, 
chains can form morphologies in which the different chains 
are segregated in different domains. In the case of miscible 
blends, some ordering is observed in which the chains tend 
to lie along each other in an alternating A,B pattern and 
thereby maximize interactions. 

The mean-field approximation underestimates the 
number of heterocontacts in the mixture by not taking the 
connectivity of segments within the chains into account. 

The phenomenological x parameter is linear with the 
heterosegment interaction energy E' in the miscible region. 
In the immiscible region x cannot change with € to higher 
positive values because of poor intermixing of the com­
ponents; there appears to be an upper limiting value, Xmax 
~ 0.3. 

Kinetically driven hysteresis, related to the temperature 
equilibration time scale, may lead to phenomena often 
reported as a dependence on "thermal history". 

An important prediction of chain expansion in miscible 
polymer blends based on calculations of mean square 
end-to-end distances may lead to further experimental 
investigations of this problem. • 
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