Architecture and Systems Ecology: Thermodynamic Principles of Environmental Building Design, in three parts

William Braham, *University of Pennsylvania*
Modern buildings are both wasteful machines that can be made more efficient and instruments of the massive, metropolitan system engendered by the power of high-quality fuels. A comprehensive method of environmental design must reconcile the techniques of efficient building design with the radical urban and economic reorganization that we face. Over the coming century, we will be challenged to return to the renewable resource base of the eighteenth-century city with the knowledge, technologies, and expectations of the twenty-first-century metropolis.

This book explores the architectural implications of systems ecology, which extends the principles of thermodynamics from the nineteenth-century focus on more efficient machinery to the contemporary concern with the resilient self-organization of ecosystems.

Written with enough technical material to explain the methods, it does not include in-text equations or calculations, relying instead on the energy system diagrams to convey the argument. Architecture and Systems Ecology has minimal technical jargon and an emphasis on intelligible design conclusions, making it suitable for architecture students and professionals who are engaged with the fundamental issues faced by sustainable design.

The energy systems language provides a holistic context for the many kinds of performance already evaluated in architecture—from energy use to material selection and even the choice of building style. It establishes the foundations for environmental principles of design that embrace the full complexity of our current situation. Architecture succeeds best when it helps shape, accommodate, and represent new ways of living together.

William W. Braham FAIA is a Professor of Architecture at the University of Pennsylvania, where he is Director of the Master of Environmental Building Design. He received an engineering degree from Princeton University and an M. Arch and Ph.D. Arch. from the University of Pennsylvania. Braham is the director of the TC Chan Center, a faculty research unit on energy and environment in the built environment. Recent projects include the Sustainability Plan, Carbon Footprint, and Carbon Reduction Action Plan for the university. His publications include Rethinking Technology (2006), Energy and Architecture (2013), and Energy Accounts (2016).

SUSTAINABLE ARCHITECTURE

Cover image: © William W. Braham and Jill Sornson Kurtz

ISBN: 978-1-138-84607-4

Routledge titles are available as eBook editions in a range of digital formats
Architecture and Systems Ecology
Thermodynamic principles of environmental building design, in three parts

William W. Braham
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of figures</td>
<td>ix</td>
</tr>
<tr>
<td>List of tables</td>
<td>xvii</td>
</tr>
<tr>
<td>Preface</td>
<td>xix</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>Wealth and power</td>
<td>4</td>
</tr>
<tr>
<td>Synergy and correalism</td>
<td>5</td>
</tr>
<tr>
<td>Glass walls</td>
<td>8</td>
</tr>
<tr>
<td>Ecotopia</td>
<td>16</td>
</tr>
<tr>
<td>1 Environments of maximum power</td>
<td>21</td>
</tr>
<tr>
<td>Accounting for a living, self-organizing environment</td>
<td>22</td>
</tr>
<tr>
<td>Thermodynamics of living systems</td>
<td>24</td>
</tr>
<tr>
<td>Limitations of efficiency: the roles of entropy and exergy</td>
<td>26</td>
</tr>
<tr>
<td>Bioenergetics</td>
<td>31</td>
</tr>
<tr>
<td>Maximum power</td>
<td>39</td>
</tr>
<tr>
<td>Hierarchies of production and e(m)ergy</td>
<td>41</td>
</tr>
<tr>
<td>Material cycles and the pulsing of systems</td>
<td>49</td>
</tr>
<tr>
<td>System principles in the built environment</td>
<td>54</td>
</tr>
<tr>
<td>Self-organization</td>
<td>54</td>
</tr>
</tbody>
</table>
Contents

2 Buildings in three parts 61
Three aspects of buildings: site, shelter, setting 62
The Ellis House 66

3 Building-as-shelter 69
Building construction 70
 Accounting 72
 Disposal and recycling 76
 Layers and longevities of construction 79
Climate modification 80
 Bioclimatic approach 82
 Mechanical approach 90
 Ventilation and waste processing 98
 Illumination: windows and lamps 104
 Wasting waste heat 110
A thermodynamic minimum 115

4 Building-as-setting for the work of living 125
Material services 127
 Water supply 130
 Wastewater treatment 132
 Food supply 135
 Supplies and solid waste 136
Concentrated power 139
 Fuels 141
 Electricity 145
 Information 147
 Currency 150
The work of living 152
Contents

5 Building-as-site in urban and economic locations 161
 Spatial hierarchies: urban self-organization 163
 Evaluating location 179
 Design for location 183
 Social and economic hierarchies 183
 Cultural evolution 186
 The common good 192
 The slow and the fast of location 192

6 Design of thermodynamic narratives 199
 Design methods at multiple (or at least three) scales 204
 Shelter 206
 Setting 207
 Site 208
 Thermodynamic principles for environmental building design: a conclusion 210
 Three points of leverage 211
 Building well 212

Appendix A: Energy systems language 215
Appendix B: E[m]ergy synthesis of the Ellis House 219
Index 247