Skip to main content
Article
CAM-EULAG: A Non-Hydrostatic Atmospheric Climate Model with Grid Stretching
Acta Geophysica
  • Babutunde J. Abiodun, University of Cape Town
  • William Gutowski, Iowa State University
  • Abayomi Abatan, Iowa State University
  • Joseph Prusa, Teraflux Corporation
Document Type
Article
Disciplines
Publication Version
Published Version
Publication Date
12-1-2011
DOI
10.2478/s11600-011-0032-2
Abstract

This study evaluates the capability of a non-hydrostatic global climate model with grid stretching (CEU) that uses NCAR Community Atmospheric Model (CAM) physics and EULAG dynamics. We compare CEU rainfall with that produced by CAM using finite volume dynamics (CFV). Both models simulated climate from 1996 to 2000, using the same parameterization schemes.

CEU and CFV both simulate well the observed global rainfall pattern. However, with same grid, CEU performs better than CFV in simulating the annual cycles of precipitation over our target region of West Africa. The reason is that it simulates African easterly jet and monsoon circulations better than CFV. CEU simulations with horizontal grid stretching to 0.5° are markedly better than those using CAM’s standard 2.0°×2.5° grid.

Comments

This article is from Acta Geophysica 59 (2016): 1158-1167, doi:10.2478/s11600-011-0032-2. Posted with permission.

Rights
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)
Copyright Owner
Institute for Geophysics, Polish Academy of Sciences
Language
en
File Format
application/pdf
Citation Information
Babutunde J. Abiodun, William Gutowski, Abayomi Abatan and Joseph Prusa. "CAM-EULAG: A Non-Hydrostatic Atmospheric Climate Model with Grid Stretching" Acta Geophysica Vol. 59 Iss. 6 (2011) p. 1158 - 1167
Available at: http://works.bepress.com/william-gutowski/70/