Skip to main content
Article
Megaphylogeny Resolves Global Patterns of Mushroom Evolution
Nature Ecology & Evolution (2019)
  • Torda Varga, Hungarian Academy of Sciences
  • Krisztina Krizsán, Hungarian Academy of Sciences
  • Csenge Földi, Hungarian Academy of Sciences
  • Bálint Dima, Eötvös Loránd University
  • Marisol Sánchez-García, Clark University
  • Santiago Sánchez-Ramírez, University of Toronto
  • Gergely J. Szöllősi, Eötvös Loránd University
  • János G. Szarkándi, University of Szeged
  • Viktor Papp, Szent István University
  • László Albert, Hungarian Mycological Society
  • William B. Andreopoulos, US Department of Energy Joint Genome Institute
  • Claudio Angelini
  • Vladimír Antonín, Moravian Museum
  • Kerrie W. Barry, US Department of Energy Joint Genome Institute
  • Neale L. Bougher, Western Australian Herbarium
  • Peter Buchanan, Manaaki Whenua—Landcare Research
  • Bart Buyck, Sorbonne Université
  • Viktória Bense, Hungarian Academy of Sciences
  • Pam Catcheside, State Herbarium of South Australia
  • Mansi Chovatia, US Department of Energy Joint Genome Institute
  • Jerry Cooper, Manaaki Whenua—Landcare Research
  • Wolfgang Dämon
  • Dennis Desjardin, San Francisco State University
  • Péter Finy
  • József Geml, Naturalis Biodiversity Center
  • Sajeet Haridas, US Department of Energy Joint Genome Institute
  • Karen Hughes, University of Tennessee, Knoxville
  • Alfredo Justo, Clark University
  • Dariusz Karasiński, W. Szafer Institute of Botany, Polish Academy of Sciences
  • Ivona Kautmanova, Slovak National Museum
  • Brigitta Kiss, Hungarian Academy of Sciences
  • Sándor Kocsubé, University of Szeged
  • Heikki Kotiranta, Finnish Environment Institute
  • Kurt M. LaButti, US Department of Energy Joint Genome Institute
  • Bernardo E. Lechner, Universidad de Buenos Aires
  • Kare Liimatainen, The Jodrell Laboratory, Royal Botanic Gardens
  • Anna Lipzen, US Department of Energy Joint Genome Institute
  • Zoltán Lukács
  • Sirma Mihaltcheva, US Department of Energy Joint Genome Institute
  • Louis N. Morgado, University of Oslo
  • Tuula Niskanen, The Jodrell Laboratory, Royal Botanic Gardens
  • Machiel E. Noordeloos, Naturalis Biodiversity Center
  • Robin A. Ohm, Utrecht University
  • Beatriz Ortiz-Santana, Center for Forest Mycology Research, Northern Research Station
  • Clark Ovrebo, University of Central Oklahoma
  • Nikolett Rácz, University of Szeged
  • Robert Riley, US Department of Energy Joint Genome Institute
  • Anton Savchenko, University of Helsinki & University of Tartu
  • Anton Shiryaev, Russian Academy of Sciences
  • Karl Soop, Swedish Museum of Natural History
  • Viacheslav Spirin, University of Helsinki
  • Csilla Szebenyi, University of Szeged
  • Michal Tomšovský, Mendel University in Brno
  • Rodham E. Tulloss, Herbarium Rooseveltensis Amanitarum & The New York Botanical Garden
  • Jessie Uehling, University of California, Berkeley
  • Igor V. Grigoriev, University of California, Berkeley
  • Csaba Vágvölgyi, University of Szeged
  • Tamás Papp, University of Szeged
  • Francis M. Martin, Institut National de la Recherche Agronomique
  • Otto Miettinen, University of Helsinki
  • David S. Hibbett, Clark University
  • László G. Nagy, Hungarian Academy of Sciences
Abstract
Mushroom-forming fungi (Agaricomycetes) have the greatest morphological diversity and complexity of any group of fungi. They have radiated into most niches and fulfil diverse roles in the ecosystem, including wood decomposers, pathogens or mycorrhizal mutualists. Despite the importance of mushroom-forming fungi, large-scale patterns of their evolutionary history are poorly known, in part due to the lack of a comprehensive and dated molecular phylogeny. Here, using multigene and genome-based data, we assemble a 5,284-species phylogenetic tree and infer ages and broad patterns of speciation/extinction and morphological innovation in mushroom-forming fungi. Agaricomycetes started a rapid class-wide radiation in the Jurassic, coinciding with the spread of (sub)tropical coniferous forests and a warming climate. A possible mass extinction, several clade-specific adaptive radiations and morphological diversification of fruiting bodies followed during the Cretaceous and the Paleogene, convergently giving rise to the classic toadstool morphology, with a cap, stalk and gills (pileate-stipitate morphology). This morphology is associated with increased rates of lineage diversification, suggesting it represents a key innovation in the evolution of mushroom-forming fungi. The increase in mushroom diversity started during the Mesozoic-Cenozoic radiation event, an era of humid climate when terrestrial communities dominated by gymnosperms and reptiles were also expanding.
Publication Date
March 18, 2019
DOI
10.1038/s41559-019-0834-1
Citation Information
Torda Varga, Krisztina Krizsán, Csenge Földi, Bálint Dima, et al.. "Megaphylogeny Resolves Global Patterns of Mushroom Evolution" Nature Ecology & Evolution Vol. 3 (2019) p. 668 - 678
Available at: http://works.bepress.com/william-andreopoulos/2/