Iowa State University

From the SelectedWorks of Wenyu Huang

2001

Dispersion of Potassium Nitrate and the Resulting Strong Basicity on Zirconia

Ying Wang Wenyu Huang Yuan Chun Jia Rong Xia Jian Hua Zhu

Dispersion of Potassium Nitrate and the Resulting Strong Basicity on Zirconia

Ying Wang, Wen Yu Huang, Yuan Chun, Jia Rong Xia, and Jian Hua Zhu*

Department of Chemistry, Nanjing University, Nanjing 210093, China Received March 9, 2000. Revised Manuscript Received October 24, 2000

A novel solid superbase is derived from zirconia-supported potassium nitrate. Dispersion and decomposition of potassium nitrate on zirconia were investigated and compared with that on alumina to explore the effect of the support on the preparation of solid strong bases. Spontaneous dispersion capacity of KNO_3 on ZrO_2 was found to be 8.1 K^+ nm $^{-2}$, very close to that of a vacant site on ZrO_2 . An unusually strong basicity was generated on ZrO_2 through decomposition of the loaded KNO_3 that began around 613 K, enhancing the catalytic activity of ZrO_2 in \emph{cis} -but-2-ene isomerization at 273 K. Moreover, KNO_3/ZrO_2 samples, except 34% KNO_3/ZrO_2 , possessed a base strength of $H_-=27.0$ that was characteristic of solid superbases.

Introduction

Preparation of solid superbases is a developing area attracting more and more attention because superbases possess high activity in various reactions under mild conditions and minimize the production of pollutants. However, most of the known superbases are inconvenient for industrial application because they are difficult to prepare¹ and are oxygen-sensitive.² Therefore, preparation of novel superbases becomes the key step for developing environmentally benign base catalytic processes. Recently, we reported a new method to prepare superbases by loading KNO₃ on zeolite KL³ or γ -Al₂O₃.⁴ No basicity formed on these composites in ambient conditions because the guest-host interaction could not make KNO₃ decompose so that CO₂ contamination from the atmosphere could be avoided in storage of KNO₃/ Al₂O₃ or KNO₃/KL inactivated. Those strong basic sites needed to be active centers only formed in the activation prior to reaction; therefore, they keep high efficiency in catalytic process.4 Further investigation revealed a relationship between loaded KNO3 and generated basicity over the composite: If the amount of KNO3 loaded was below the spontaneous dispersion threshold, it could be well dispersed and provoke a basic strength (H_{-}) of 18.4 on alumina. When the amount of KNO₃ was above the threshold, it only dispersed and decomposed during the evacuation at 873 K but generated some unusually strong basic sites with a strength (H_{-}) of 27.0. For another type of support, such as zeolite NaY and AlPO₄-5, KNO₃ was highly dispersed but difficult to decompose because of the lack of an octahedral vacant site in zeolite provided for insertion of the K⁺ ion.⁴

However, there are still many uncertainties existing around KNO₃-supported materials. It is unclear at what temperature the loaded KNO₃ begins to decompose. Moreover, is it possible to apply this method for creating superbasic sites on other oxides such as zirconia, which also have an octahedral vacant site in its structure? Is the resulting basicity on KNO₃/ZrO₂ the same as that on KNO₃/Al₂O₃? If not, what causes the difference? Zirconia is an important catalyst and carrier in industry, having both acidity-basicity and redox properties, and it plays an unusual role in the direct synthesis of dimethyl carbonate from CO2 and methanol owing to its especial properties.⁵ It is well-known that zirconia has surface acidity equivalent to about 100% H₂SO₄ after being modified with SO_4^{2-6-8} and it could be converted to a solid strong base by use of KF modification,9 but there is no open literature concerning the superbases based on ZrO₂. This prompts us to load KNO₃ onto ZrO₂ and to explore the dispersion and decomposition of KNO3 by use of XRD, XPS, and temperature-programmed decomposition (TPDE) methods.

Experimental Section

Samples of KNO₃/ZrO₂ were prepared in a "dry" impregnation process similar to that for KNO₃/Al₂O₃ .⁴ ZrO₂ (Toray Ltd., SA = 120 m² g⁻¹) and KNO₃ were ground at a given weight ratio in mortar to mix them, followed by the addition of 0.5 mL g⁻¹ distilled water. The paste was kneaded for 10 min, dried at 383 K for 12 h, and finally crushed to particles in 20–40 mesh. X-ray diffraction patterns of these samples were obtained with a Rigaku D/max-rA diffractometer employing Cu K α radiation, and the X-ray tube was operated at 50 kV

⁽¹⁾ Baba, T.; Handa, I.; Ono, Y. *J. Chem. Soc., Faraday Trans.***1994**, *90*, 187.

⁽²⁾ Tanabe, K.; Yoshii, N.; Hattori, H. J. Chem. Soc., Chem. Commun. 1971, 464.

⁽³⁾ Zhu, J. H.; Chun, Y.; Wang, Y.; Xu, Q. H. Mater. Lett. 1997, 33, 207

⁽⁴⁾ Zhu, J. H.; Wang, Y.; Chun, Y.; Wang, X. S. *J. Chem. Soc., Faraday Trans.***1998**, *94*, 1163.

⁽⁵⁾ Tomishige, K.; Sakaihori, T.; Ikeda, Y.; Fujimoto, K. Catal. Lett. $\mathbf{1999}$. 58, 225.

⁽⁶⁾ Umansky, B.; Engelhardt, J.; Hall, W. K. *J. Catal.* **1991**, *127*, 128.

⁽⁷⁾ Adeeva, V.; de Haan, J. W.; Janchen, J.; Lei, G. D.; Schunemann, G.; van de Ven, L. J. M.; Sachtler, W. M. H.; Santen, R. A. *J. Catal.* **1995**, *151*, 364.

⁽⁸⁾ Yamaguchi, T.; Tanabe, K. Mater. Chem. Phys. 1986, 16, 67.

⁽⁹⁾ Zhu, J. H.; Hattori, H.; Kita, H. Chin. Chem. Lett. 1995, 6, 1005.

and 150 mA for measuring samples. X-ray photoelectron spectra (XPS) were recorded with a V.G. Escalab MK II system equipped with a hemispherical electron analyzer, and C(1s) (285.0 eV) was taken as a reference to calculate the binding energy (E_b) .

TPDE of supported KNO₃ was carried out in a flow reactor. 10 A sample of 5 mg was heated in a flow of N₂ (30 mL min⁻¹) from 298 to 873 K at a rate of 8 K min⁻¹. The NO_x (x < 2) liberated in the process was converted to NO_2 by passing NO_x through a CrO₃ tube and the product was detected by the colorimetric method (CM), 11 representing the amount of KNO₃ decomposed. For determination of the NO₂ in the liberated gas product, the CrO_3 tube was removed so that the NO_x (x < 2) was invisible. A TPDE-MS experiment was carried out in the procedure described previously. ¹² In a CO₂-TPD experiment, a 50-mg sample was heated in a flow of He (99.999%) at a rate of 8 K min-1 to 873 K and kept at 873 K for 2 h to decompose KNO₃. Prior to adsorption of CO₂ (99.999%) at 298 K, blank TPD was carried out from 298 to 873 K to confirm no desorption occurred. After the physical adsorbed CO2 was purged by a He flow at 298 K for 1-2 h, CO₂-TPD was performed at the rate of 8 K min⁻¹ up to 873 K, and the CO₂ liberated was detected by an "on-line" Varian 3700 chromatograph.4 When the CO₂-TPD experiment was finished, the sample was shaken in 0.02 M aqueous HCl (5 mL), and the remaining acid was then titrated with standard base (0.02 M aqueous NaOH) to measure the total basicity of the sample. The basic strength of the KNO₃/ZrO₂ sample was measured by use of a Hammett indicator in a manner similar to that described previously.3

Dehydrogenation of propa-2-nol at 673 K and isomerization of *cis*-but-2-ene at 273 K were employed to evaluate catalytic properties of KNO₃/ZrO₂. The former reaction was carried out in a conventional flow reactor with a WHSV of 1.88 h⁻¹.4 A 50-mg portion of the catalyst was activated at 873 K for 2 h in a flow of N2 prior to reaction. Nitrogen was used as the carrier gas, and the total pressure was 0.1 MPa while the partial pressure of propa-2-nol was 9.1 kPa. Reaction products were analyzed by an on-line Varian 3700 gas chromatograph equipped with a Porapak T column (Φ 3 \times 4000 mm) and a TCD, and analysis data were normalized by using a HP3390A integrator. A glass closed recirculation reactor, connected to a conventional vacuum line and to a GC, was employed for the isomerization of butene at $273\ K.^{12}$ The catalyst was evacuated under $\approx 10^{-3}$ Pa at an elevated temperature for 2 h prior to reaction. The reaction mixture was occasionally separated by a 5-m column packed with VZ-7 that operated at room temperature and was analyzed by an on-line gas chromatograph equipped with TCD, and the initial ratio of trans-but-2-ene to but-1-ene (t-B/1-B) in the products was obtained by extrapolation to zero conversion.

Results and Discussion

A. Dispersion and Decomposition of KNO₃ on **Zirconia.** The zirconia used as the support was a porous material with a pore volume of 0.23 mL g⁻¹ and an average pore size of 6.66 nm. Two crystal phases, monoclinic baddeleyite and tetragonal form, existed in the ZrO₂, and the former had an intensity stronger than the latter. Figure 1 shows XRD patterns of ZrO₂ heated at various temperatures in air. A monoclinic phase developed as the temperature increased while the tetragonal phase disappeared after calcination at 973 K, giving proof that tetragonal crystal in ZrO₂ is a metastable phase. Figure 1 also shows the effect of heat treatment on a 20% KNO₃/ZrO₂ sample. Calcination at

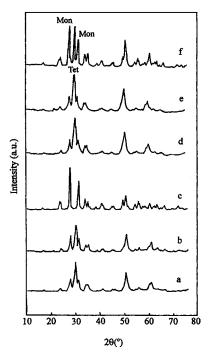


Figure 1. XRD patterns of ZrO₂ (a) dried at 383 K, calcined at (b) 773 K and (c) 973 K, and 20% KNO₃/ZrO₂ (d) dried at 383 K, calcined at (e) 773 K and (f) 973 K.

773 K caused no change in the relative intensity of the monoclinic phase, but calcination at 973 K made the phase develop quickly. However, the metastable tetragonal crystalline phase was maintained to a great degree, even when the sample was heated at 973 K, similar to the stabilization of tetragonal crystal after the incorporation of Ca²⁺ in ZrO₂. ¹³ Those Ca²⁺ ions were assumed to occupy the position of Zr4+ and formed an O²⁻ vacancy; therefore, these K⁺ ions were inferred to occupy the position of octa-coordinated Zr⁴⁺, which is more stable than the hepta-coordinated Zr⁴⁺ because of the interaction of K salt with zirconia.

Figure 2 shows the XRD patterns of KNO₃/ZrO₂. The samples 7.5% KNO₃/ZrO₂ and 14% KNO₃/ZrO₂ had XRD patterns almost identical to that of ZrO2, characterized by the peaks at 2θ of 30.2° , 50.2° , and 60.2° , representing the tetragonal form of zirconia.¹⁴ When the amount of KNO₃ rose over 20 wt %, its characteristics emerged in the patterns near 2θ of 23.6° , 29.4° , and 33.8° , respectively, though parts of them were overlapped by the XRD peaks of ZrO₂, representing the residual phase of KNO₃. On the basis of these results, it is clear that the spontaneous dispersion capacity of KNO₃ on ZrO₂ is about 14 wt % because the loaded KNO3 can be well dispersed and no distortion occurred in the structure of ZrO₂. The corresponding surface concentration of K⁺ for the dispersion capacity was 8.1 nm⁻², close to the surface concentration of the vacant site on ZrO₂ (8.6 nm⁻²).¹⁵ Vacant sites play an important role in the interaction between guest ions and support because the K⁺ ion of KNO₃ can penetrate the site of alumina during the preparation of KNO₃/Al₂O₃,^{4,12} accelerating dissociated dispersion and decomposition of KNO3 to form

⁽¹⁰⁾ Shen, B.; Chun, Y.; Zhu, J. H.; Wang, Y.; Wu, Z.; Xia, J. R.; Xu, Q. H. *Physchemcomm.* **1999**, 3.(11) Saltzman, B. E. *Anal. Chem.* **1954**, *26*, 1949.

⁽¹²⁾ Yamaguchi, T.; Zhu, J. H.; Wang, Y.; Komatsu, M.; Ookawa, M. Chem. Lett. 1997, 989.

⁽¹³⁾ Duwez, P.; Brown, F. H. J. Am. Ceram. Soc. 1952, 35, 109.

⁽¹⁴⁾ JCPDS file number 17-0932.

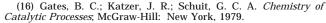
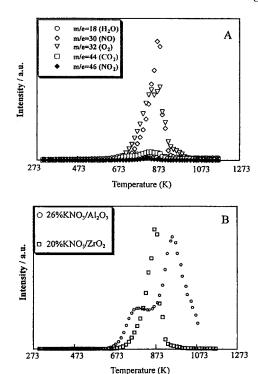

⁽¹⁵⁾ Liu, Z.; Dong, L.; Ji, W.; Chen, Y. J. Chem. Soc., Faraday Trans. **1998**. 94. 1137.

Figure 2. XRD patterns of ZrO_2 (a) before and after being loaded with KNO_3 of (b) 7.5 wt %, (c) 14 wt %, (d) 20 wt %, (e) 25 wt %, (f) 30 wt %, (g) 34 wt % and dried at 383 K.


20 (°)

strong basic species in the activation process. A close relationship is thus observed between the amount of KNO_3 spontaneously dispersed and the vacant sites on Al_2O_3 . 4 Because such a relationship also existed with KNO_3/ZrO_2 , dissociated dispersion of KNO_3 seemed to occur on zirconia. Different from KNO_3/Al_2O_3 samples where $K_2[Al(NO_3)_5]$ formed because of intensive interactions between KNO_3 and alumina, 4 no crystallized compound such as K_2ZrO_3 formed, even the loading amount of KNO_3 reached 34 wt % or the sample of 20% KNO_3/ZrO_2 was calcined at 773 K. One of the reasons for the difference was the intrinsic feature of ZrO_2 having smaller vacancies in its structure compared with those of $\gamma\text{-}Al_2O_3$. 16

Table 1 demonstrates the decomposition of KNO_3 loaded on ZrO_2 revealed by the TPDE-CM method. KNO_3 began to thermally decompose at 753 K, 10,17 and it started to decompose in the range of 613–683 K after being supported on zirconia, higher than that on Al_2O_3 (433–554 K) and zeolite NaY (510 K), KL (513 K), and mesoporous materials MCM-41 (507 K). 10 Among the products of KNO_3 decomposition, NO_2 was the only one detected below 673 K. In the case of KNO_3 loaded below

⁽¹⁷⁾ Shen, B.; Chun, Y.; Zhu, J. H.; Xia, J. R.; Wang, Y.; Xu, Q. H. *Chin. J. Inorg. Chem.* **1999**, *15*, 351.

Figure 3. TPDE profile of (A) 27% KNO₃/ZrO₂ and (B) NO desorbed from 20% KNO₂/ZrO₂ and 26% KNO₃/Al₂O₃ samples.

the spontaneous dispersion threshold (14 wt %), NO2 was the dominant product during the TPDE process. If the amount exceeded the threshold, the proportion of NO_x (x < 2) was close to that of NO_2 , especially over 773 K, except for the 34% KNO₃/ZrO₂ sample. The 34% KNO₃/ZrO₂ sample showed the highest temperature to start KNO3 decomposition (683 K) and the smallest decomposition percentage (1.8%) among the KNO₃/ZrO₂ samples. Consulting the XRD results mentioned above, it is obvious that well-dispersed KNO3 can be easily decomposed owing to the interaction with ZrO₂, while for those KNO₃ that formed several layers on a support, a higher temperature is therefore needed. On the other hand, interaction of KNO₃ with ZrO₂ was proven to be weaker than that with Al₂O₃. KNO₃ began to decompose at 403 K on the 4% KNO₃/Al₂O₃ sample and about half (46%) decomposed in the TPDE process.¹⁷ However, KNO₃ started to decompose at 548 K on the sample of 2.8% KNO₃/ZrO₂ with the same K⁺ ion concentration (1.4 K⁺ nm⁻²), and the decomposition percentage was about one-fifth (21%).

To gain a deeper insight into the decomposition of KNO₃ on zirconia, the TPDE-MS technique was employed and Figure 3 shows the profiles of the KNO₃/ ZrO₂ and KNO₃/Al₂O₃ samples. NO appeared on the spectrum of 27% KNO₃/ZrO₂ near 673 K, and it became predominant in the 723-973 K range with a maximum near 863 K. These NO species could be tentatively divided into two parts. One seemed derived from NO₂ during the mass detection process because the profile of O₂ had a development tendency similar to that of NO. Another might be that originally formed in KNO₃ decomposition because the mass signal of NO was much stronger than that of O₂ in the range of 823-873 K. NO₂ and CO₂ were also observed in the spectrum of 27% KNO₃/ZrO₂, but both were minor components. The former had an unclear weak peak at 813 K while the

Table 1. Decomposition of KNO₃ Loaded on Zirconia

sample		7.5% KNO ₃ /ZrO ₂	14% KNO ₃ /ZrO ₂	20% KNO ₃ /ZrO ₂	27% KNO ₃ /ZrO ₂	34% KNO ₃ /ZrO ₂
amount of KNO ₃		0.743	1.386	1.980	2.673	3.366
loaded (mmol g ⁻¹)						
	Amount	of NO ₂ or NO _x $(x < 2)$	Detected at Differe	nt Temperatures (r	nmol g^{-1})	
473-573 K	$NO_X (X \le 2)$	0	0	0	0	0
NO_2	0	0	0	0	0	
573-673 K	$NO_X (x < 2)$	0	0	0	0	0
NO_2	0.004	0.003	0.004	0.001	0.004	
673-773 K	$NO_X (x < 2)$	0.002	0.001	0.024	0.006	0
NO_2	0.007	0.005	0.036	0.002	0.004	
773-873 K	NOx $(x < 2)$	0.006	0.039	0.077	0.053	0.017
NO_2	0.121	0.110	0.010	0.045	0.037	
temperature at wh	nich KNO ₃	613	623	613	613	683
starts to decon	npose (K)					
amount of KNO ₃ to be		0.140	0.158	0.151	0.107	0.062
decomposeda (1	mmol g ⁻¹)					
percentage of KNO ₃ to		18.8	11.4	7.6	4.0	1.8
be decompos						

^a Based on the amount of NO_x (x < 2) and NO_2 detected.

Table 2. XPS Analysis Data of Zirconia-Supported **Potassium Nitrate**

amount of KNO ₃ loaded(wt %)	7.5	14.0	20.0	27.0	34.0
surface composition (by XPS)					
K (at. %)	3.39	3.91	3.93	5.96	8.21
O (at. %)	68.11	69.22	70.73	69.12	65.92
Zr (at. %)	28.49	26.87	25.35	24.92	20.93
N (at. %)	0	0	0	0	4.94
N/K ratio	0	0	0	0	0.60
K/Zr ratio	0.11	0.21	0.16	0.20	0.39
K/Zr ratio calculated	0.10	0.20	0.31	0.45	0.63

latter appeared around 673 K with a small peak near 823 K. Part of the loaded KNO₃ seemed to decompose on the sample in the drying process, generating some basic sites and adsorbing CO₂ from the atmosphere. Two differences were found in this experiment. Only one peak near 873 K was observed in the NO profile of 20% KNO₃/ZrO₂ or 27% KNO₃/ZrO₂, while the NO profile of 26% KNO₃/Al₂O₃ contained two evolution peaks at about 773 and 823 K (Figure 3B), resulting from the decomposition of K₂Al(NO₃)₅ and KNO₃ crystalline. ¹² In addition, the decomposition of KNO₃ finished at about 973 K on KNO₃/ZrO₂ whereas it continued up to 1073 K on KNO₃/Al₂O₃. The lack of crystallized compound like K₂ZrO₃ on KNO₃/ZrO₂ could explain the absence of NO evolution below 773 K, but the reason decomposition of KNO₃ finished near 973 K instead of 1073 K was unclear. Reduced defects were reported to exist on zirconia¹⁸ and redox could accelerate decomposition of KNO₃, 10 but a picture of the mechanism cannot be drawn and further investigation is desirable.

Table 2 lists XPS data of KNO₃/ZrO₂. For those supported KNO₃ samples <14 wt %, the surface K/Zr ratio measured by XPS was close to the theoretical value. When the amount of KNO3 exceeded 14 wt %, the surface K/Zr ratio was only about half the theoretical value. Similar phenomena were found on KNO₃/Al₂O₃ samples and attributed to heterogeneous distribution of KNO3 because most of the loaded KNO3 located in the pore of the support.4 Besides, no N(1s) signal was observed on KNO₃/ZrO₂ samples except for 34% KNO₃/ ZrO_2 in the range of 410–390 eV where N(1s) of NaNO₃ or NH₄NO₃ was reported¹⁹ and no Auger signal of

Figure 4. K(2p) and N(1s) signals on the XPS spectra of the powder sample of (a) 14% KNO₃/ZrO₂ and (b) 27% KNO₃/ZrO₂ and the pellet sample of (c) 27% KNO₃/ZrO₂.

nitrogen at all. The N(1s) peak appeared on the XPS spectrum of 34% KNO₃/ZrO₂ and the surface N/K ratio became 0.60 as seen in Table 2, close to that of KNO₃ (0.68). The absence of the N(1s) signal on XPS spectra has been reported on KNO₃/Al₂O₃, ⁴ KNO₃/SiO₂, KNO₃/ NaY, KNO₃/KL, and KNO₃/AlPO₄⁵⁻.10 These phenomena cannot be simply attributed to the detection limitation because no such phenomenon was found in K(2p) signals on the XPS spectra (Figure 4). Assuming the dispersed species kept the form of KNO₃, there should be a similar concentration of N species on the sample as K species and they should be detected by an XPS test like that reported on the LiNbO₃-adsorbed NO.²⁰ The state of KNO₃ supported on ZrO₂ seems to be changed, probably because of the influence of X-ray radiation. To check this possibility, a 27% KNO₃/ZrO₂ sample prepared as a pellet instead of in powder form was used for the XPS test, and as expected the N(1s) signal appeared with considerable intensity as shown in Figure

K2p N1s C1s ntensity (a.u.) 275 285 305 295 390 400 410 E_b(eV) E_b(eV)

⁽¹⁸⁾ Daturi, M.; Binet, C.; Bernal, S.; Omil, J. A. P.; Lavalley, J. C. J. Chem. Soc., Faraday Trans. 1998, 94, 1143.

⁽¹⁹⁾ Folksson, B. Acta Chem. Scand. 1973, 27, 287.

⁽²⁰⁾ Tabata, K.; Kamada, M.; Chosom, T.; Nagasawa, Y. J. Chem. Soc., Faraday Trans. 1998, 94, 2213.

Figure 5. CO₂-TPD spectrum of (a) ZrO_2 , (b) 7.5% KNO₃/ ZrO_2 , (c) 14% KNO₃/ ZrO_2 , (d) 20% KNO₃/ ZrO_2 , (e) 20% KNO₃/ ZrO_2 but purged with CO₂, (f) 27% KNO₃/ ZrO_2 , (g) 34% KNO₃/ ZrO_2 , and (h) KNO₃ unsupported.

Temperature (K)

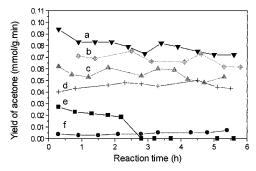
4. Radiation of X-ray seems to induce the decomposition of KNO_3 dispersed on a support, even at ambient temperature; therefore, no nitric but only potassium species remained on the surface of composite-loaded KNO_3 .

(B) Basicity and Basic Catalytic Properties of KNO₃/ZrO₂ Samples. Figure 5 shows CO₂-TPD spectra of KNO₃/ZrO₂ samples after activation. ZrO₂ had a weak basicity and there were three CO₂-TPD peaks around 349, 388, and 421 K on its spectrum. After supported KNO₃ and activation at 873 K, one new peak of CO₂ desorption emerged on 7.5% KNO₃/ZrO₂ while three appeared around 475, 790, and 873 K on the 14% KNO₃/ ZrO₂ sample. The evaluation rate of CO₂ increased on the sample of 20% KNO₃/ZrO₂ above 593 K and gave rise to a peak maximum at 873 K with a shoulder near 833 K. Further addition of KNO₃ on ZrO₂ lowered the maximum temperature of CO₂ desorption from 873 to 823 K, accompanied with a decayed intensity as observed on the 27% KNO₃/ZrO₂ sample. A new peak of CO2-TPD emerged around 643 K on 34% KNO3/ZrO2 while the amount of CO₂ desorbed near 873 K further decreased as seen in Figure 5, owing to the cover of basic sites by the exceeded KNO₃. The introducing manner of CO₂ affected the results of CO₂-TPD. No CO₂ desorbed below 473 K on the samples of ZrO₂-supported KNO₃ more than 14 wt % when the CO₂ was injected in the amount of 400 mL g⁻¹. However, if the sample of 20% KNO₃/ZrO₂ was purged with CO₂ for 2 min prior to the TPD process, desorption of CO₂ below 473 K appeared and indicated the existence of weak basic sites. For comparison KNO₃ was also activated and adsorbed CO₂

under the same conditions. Only one CO_2 desorption near 873 K was observed, resulting from the thermal decomposition of KNO_3 and formation of K_2O species. Consulting these results, most of the strong basic sites on KNO_3/ZrO_2 desorbing CO_2 around 873 K can be attributed to the K_2O extra-fine particles formed on the composites.

Table 3 shows the basicity of the KNO₃/ZrO₂ sample activated at 873 K. The values in the experimental data of the basicity of KNO₃/ZrO₂ were always smaller than the corresponding calculated values, supposing all the KNO₃ converted to K₂O. With these samples in which loaded KNO₃ exceeded 14 wt %, the detected basicity maintained the value 1.35 mmol g⁻¹, very close to the calculated value of 14% KNO₃/ZrO₂ (1.39 mmol g⁻¹). In contrast, the basicity of KNO₃/AlO₃ kept increasing as the amount of KNO₃ rose from 4 to 39 wt %, closely matching the corresponding calculated value. In our opinion, incomplete decomposition of KNO₃ loaded on ZrO₂ results in these differences. Only a part of the loaded KNO₃ could be decomposed during activation, if it had interaction with the carrier or not. If the KNO₃ molecule entered the vacant sites of zirconia, it would be dispersed dissociately and decomposed in the activation process to form basic sites. For those not having interaction with the support, they still kept the original property and needed a high temperature for decomposition. Consequently, the maximum basicity of KNO₃/ZrO₂ is close to the calculated value of 14% KNO₃/ZrO₂ because the KNO₃ that exceeded the spontaneous dispersion threshold cannot contact and have interaction with the support.4

Table 3 lists different basicities of KNO₃/ZrO₂ measured by titration and CO₂-TPD methods. With the sample of 7.5% KNO₃/ZrO₂, the value determined by CO₂-TPD (0.06 mmol g⁻¹) was about one-sixth of that by titration (0.35 mmol g⁻¹); for the 14% KNO₃/ZrO₂ sample the corresponding values were 0.14 and 1.14 $mmol\ g^{-1}$ and the former was about one-eighth of the latter. Another obvious difference could be observed with the 34% KNO₃/ZrO₂ sample where the data measure by CO_2 -TPD (0.08 mmol g^{-1}) was only onesixteenth of that by titration (1.38 mmol g^{-1}). Similar disagreeing results were also found with KNO₃/Al₂O₃ as shown in Table 3 and are attributed to the overlapping structure of basic species formed on the sample.⁴ In such an overlapping structure the basic species covered by upper layers was not exposed to CO₂, but would react with an acidic agent if the top layers were resolved in an aqueous titration process. Consequently, the data of CO₂-TPD just designate the amount of basic sites exposed at the top of the overlapped structure while titration data represent the total basicity of the composite; no doubt the former is smaller than the


Figures 6 and 7 show catalytic behaviors of KNO_3/ZrO_2 in the decomposition of propa-2-nol. Catalytic decomposition of propa-2-nol is usually utilized to evaluate the acidic or basic properties of a solid because propa-2-nol can be dehydrated on an acidic site or dehydrogenated over a basic site. $^{21-24}$ KNO_3 exhibited

⁽²¹⁾ Pines H.; Haag, W. O. J. Am. Chem. Soc. 1960, 82, 2471.
(22) Noller, H.; Ritter, G. J. Chem. Soc., Faraday Trans. 1 1984, 80, 275.

Table 3. Basicity of KNO₃/ZrO₂ and KNO₃/Al₂O₃ Samples

	amount of KNO ₃	calculated basicity	measured basicity (mmol g ⁻¹)				base strength
sample	loaded (K ⁺ nm ⁻²)	(A) $(\text{mmol } g^{-1})^a$	(B)	(C)	B/C	C/A	(H_{-})
ZrO_2	0		0.04	0.04	1.00		≤15.0
7.5% KNO ₃ /ZrO ₂	4.0	0.74	0.06	0.35	0.17	0.47	27.0
14% KNO ₃ /ZrO ₂	8.1	1.39	0.14	1.14	0.12	0.82	27.0
20% KNO ₃ /ZrO ₂	12.4	1.98	0.15	1.35	0.11	0.68	27.0
27% KNO ₃ /ZrO ₂	18.4	2.67	0.12	1.38	0.09	0.52	27.0
34% KNO ₃ /ZrO ₂	25.6	3.37	0.08	1.36	0.06	0.40	≤18.4
γ -Al ₂ O ₃	0	0					
4% KNO ₃ /Al ₂ O ₃	1.4	0.40	0.19	0.39	0.49	0.98	18.4
13% KNO ₃ /Al ₂ O ₃	4.6	1.29	0.25	1.06	0.24	0.82	27.0
29% KNO ₃ /Al ₂ O ₃	13.8	2.87	0.27	2.87	0.09	1.00	27.0
39% KNO ₃ /Al ₂ O ₃	18.5	3.86	0.17	3.62	0.05	0.94	27.0

^a All of the loaded KNO₃ was assumed to decompose and convert to base such as KOH.

Figure 6. Yield of acetone on the ZrO₂ sample loaded with KNO₃ of (a) 14 wt %, (b) 27 wt %, (c) 7.5 wt %, (d) 34 wt %, (e) 0 wt %, and (f) KNO₃ unsupported in the decomposition of 2-propanol at 673 K.

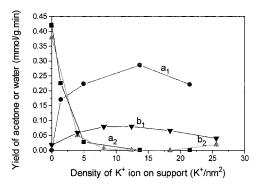


Figure 7. Yield of acetone and water in the decomposition of 2-propanol at 673 K on KNO₃/Al₂O₃ and KNO₃/ZrO₂ via the density of potassium ions loaded. (a) Yield of acetone on KNO₃/ Al₂O₃. (b) Yield of acetone on KNO₃/ZrO₂. (c) Yield of water on KNO₃/Al₂O₃. (d) Yield of water on KNO₃/ZrO₂.

both low activity and low acetone selectivity in the reaction at 673 K; only 2% of the reactant converted and the yield of acetone was about 0.005 mmol (g min)⁻¹ (Figure 6). Acetone appeared in the reaction products on ZrO₂ within a 2-h run, but disappeared soon as the reaction prolonged. In contrast, the water yield on ZrO₂ was stable and high (0.38 mmol (g min)⁻¹) as shown in Figure 7 in that the acid sites of ZrO₂ played a predominant role in propa-2-nol decomposition. After 7.5 wt % KNO3 was loaded, the acetone yield on ZrO2 was doubled to about 0.06 mmol (g min)-1; meanwhile, the water yield decreased dramatically to 0.05 mmol

KNO₃/ZrO₂ catalysts show stable activity and acetone selectivity in the 6-h run without any tendency toward deactivation. For instance, the propa-2-nol conversion on 14% KNO₃/ZrO₂ was 25.3% at 6 h, similar to that at 1.5 h (26.9%). Besides, the 6-h reaction changed the color of the catalyst from white to slightly gray, which means little coke formed during the run. For the sample 27% KNO₃/ZrO₂ the color became brown after an 8-h run but the activity still remained constant; the conversion at 8 h (21.4%) was close to the value at 1.5 h (22.6%). Unlike those solid acid catalysts on which heavy coke quickly formed to provoke deactivation in the reaction, 25 a solid base like KNO3/ZrO2 has a strong ability to repel coking in the catalytic process, which will be important for industry because the cost of regeneration can be thus reduced.

In the isomerization of *cis*-but-2-ene at 273 K probing the strong basicity of the sample, ³ ZrO₂ showed very weak activity while KNO₃ was inactive. Loading KNO₃ onto ZrO₂ dramatically generated high activity for this reaction, as shown in Figure 8, and among them the 14% KNO₃/ZrO₂ sample exhibited the highest activity. No gaseous hydrocarbon other than butenes could be detected in the reaction mixtures and the skeletal isomerization could not be observed. KNO₃/ZrO₂ samples are more active than KNO_3 -modified zeolite KL in this reaction. For instance, the initial reaction rate of 7.5% KNO₃/ZrO₂ (3.83 mmol (g min)⁻¹) was about 70 times

⁽g min)⁻¹ because acid sites and propa-2-nol dehydration were suppressed. Dispersion of KNO₃ with 14 wt % on ZrO₂ completely suppressed both acid sites and the dehydration of propa-2-nol because no water was detected in the reaction products (Figure 7). In contrast, the acetone yield rose over 0.08 mmol (g min)⁻¹ because more basic sites formed on the 14% KNO₃/ZrO₂ sample. Further addition of KNO₃ on ZrO₂ produced no more basic activity for this reaction, and a decayed yield of acetone (curve b in Figure 6) emerged on the sample of 27% KNO₃/ZrO₂. As the loading amount of KNO₃ increased to 34 wt %, water was detected again in the product accompanied with a low yield of acetone (curve d in Figure 6). The re-appearance of dehydrating active sites on the 34% KNO₃/ZrO₂ sample should be attributed to the exceeded KNO₃ because propa-2-nol was preferentially dehydrated over KNO3 as mentioned above.

⁽²³⁾ Hathaway, P. E.; Davis, M. E. J. Catal. 1989, 116, 263. (24) Zhu, J. H.; Dong, J. L.; Xu, Q. H. React. Kinet. Catal. Lett. 1998, 63. 67.

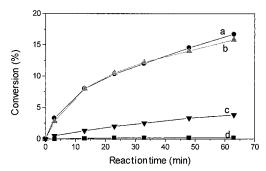


Figure 8. Isomerization of cis-but-2-ene on (a) 14% KNO₃/ ZrO₂, (b) 20% KNO₃/ZrO₂ (c) 39% KNO₃/ZrO₂, and (d) ZrO₂ at 273 K.

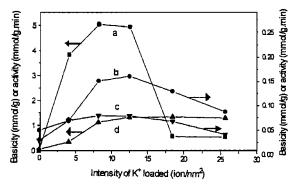


Figure 9. Basicity of KNO₃/ZrO₂ via the amount of KNO₃ loaded. (a) Initial activity in cis-but-2-ene isomerization at 273 K. (b) Amount of CO₂ desorbed in the TPD process. (c) Amount of acetone formed in propa-2-nol dehydrogenation at 673 K. (d) Basicity determined by use of titration.

higher than that of 21% KNO₃/KL (0.05 mmol (g min)⁻¹).³ This difference results from the composition of the support because the presence of silicon in zeolite hinders the formation of a strong basic site.²⁶ In addition, Figure 9 demonstrates the relation between basicity and catalytic activity of KNO₃/ZrO₂ samples. The basicity characterized by the amount of acetone formed in propa-2-nol dehydrogenation coincides with that represented by the amount of CO₂ desorbed in CO₂-TPD because only those sites are accessible to reactants and are particularly important for catalysis. Among these basic sites only part of them with strong basicity can catalyze the isomerization of *cis*-but-2-ene at 273 K; for instance, the proportion is about 12% on the sample of 7.5% KNO₃/ZrO₂ estimated from the CO₂-TPD spectrum in Figure 5. Although the catalytic sites were only about 0.007 mmol/g, they were highly active in isomerizing cis-but-2-ene, even at 273 K, and provoked an initial rate of 3.8 mmol (gmin)⁻¹, which means about nine reactant molecules can be converted on one site per second.

Both double-bond migration and cis-trans isomerization of butene seemed to take place over KNO₃/ZrO₂ samples because the initial ratio of trans-but-2-ene to but-1-ene (t-B/1-B) in products was above the unit that is higher than that for the solid base.²⁷ One may argue if the residual weak acidic sites provoke a high t-B/1-B initial ratio; however, this possibility is excluded considering the dehydration activity of KNO₃/ZrO₂ samples. ZrO₂ exhibited high activity while 20% KNO₃/ZrO₂ was inactive for propa-2-nol dehydration, but a high ratio of t-B/1-B was observed on the latter instead of the former in the isomerization at 273 K. A high t-B/1-B ratio in the products of cis-but-2-ene isomerization was also observed on CaO evacuated at 1173 K²⁸ and KNO₃/ Al₂O₃⁴ along with KNO₃/KL.³ This strange phenomenon had been attributed to the existence of superbasic sites because *cis*-but-2-ene could be directly isomerized to trans-but-2-ene on these sites at 273 K.²⁸ On the basis of these facts, two conclusions can be tentatively made. First, the main active sites for isomerization of cis-but-2-ene at 273 K are derived from the decomposition products of KNO₃, whether in the form of K₂O ultrafine particles or the K-O-Zr structure in the composite, instead of residual acid sites. Second, superbasic sites exist on the KNO₃/ZrO₂ sample.

Titration with a Hammett indicator confirmed the existence of superbasic sites on KNO₃/ZrO₂ samples. Unlike ZrO₂ showing weak basic properties with a strength of $H_{-} \leq 15$, the composites derived from KNO₃ and ZrO_2 possess strong basic sites with $H_-=27.0$ except for 34% KNO₃/ZrO₂ on which only a strength of $H_{-} \leq 18$ exists (Table 3). According to the definition of Tanabe,²⁹ these KNO₃/ZrO₂ samples with the basic strength of $H_{-}=27.0$ can be regarded as superbases. The structure of a superbasic site is unknown at present. Although a relationship between superbasicity and overlapped structure of basic species has been suggested and supported by some experimental evidence,4 further study is still desirable to explore the superbasic sites in detail. Discovering superbasicity on KNO₃/ZrO₂ is practically important for industry. These new basic materials are convenient in storage because the interaction between KNO3 and ZrO2 is not strong enough to decompose all KNO₃ at ambient temperature. Besides, the activation temperature for KNO₃/ZrO₂ (873 K) is much lower than that for the superbase derived from CaO and SrO (973-1173 K²⁸), expanding the way to prepare superbases at low costs.

A comparison of KNO₃/ZrO₂ and KNO₃/Al₂O₃ reveals the complex role of a carrier for supporting KNO₃. (1) Generation of superbasicity on the composite-loaded KNO₃ depends on the vacant sites in the structure of the carrier indeed, and both alumina and zirconia possess a superbasicity with $H_{-} = 27.0$ after loaded KNO₃. In contrast, no superbasicity was observed on zeolite Y, X, ZSM-5, β , and mordenite, even though they supported KNO₃ and were activated,³ because of the lack of vacant sites in the framework.4 (2) The surface state of the carrier strongly influences the final basicity of solid bases derived from supported KNO₃. The hydroxyl group on alumina and zirconia has different acidity³⁰ owing to the chemical feature of Al³⁺ or Zr⁴⁺ ions in the oxide carrier, resulting in a different function for the decomposition of KNO3 along with catalysis in propa-2-nol dehydrogenation (Figure 7). Although the detail mechanism on the effect of the support needs to be explored, selection or synthesis of a suitable carrier

⁽²⁶⁾ Zhu, J. H.; Chun, Y.; Qin, Y.; Xu, Q. H. Microporous Mesoporous Mater. 1998, 24, 19.

⁽²⁷⁾ Foster, N. F.; Cvetanovic, R. J. J. Am. Chem. Soc. 1960, 82, 4274.

⁽²⁸⁾ Lizuka, T.; Endo, Y.; Hattori, H.; Tanabe, K. Chem. Lett. 1976, 803.

⁽²⁹⁾ Tanabe, K.; Noyori, R. Chokyo-san, Chokyo-enki; Kodansha: Tokyo, 1980.

⁽³⁰⁾ Cornet, D.; Burwell, R. L., Jr. J. Am. Chem. Soc. 1968, 90, 2489.

material is the key step for supporting KNO₃ to prepare a novel superbase.

4. KNO₃/
selectivity in

Conclusions

- 1. The loading of KNO₃ of 7-27 wt % on ZrO_2 can form superbasic sites with $H_-=27.0$.
- 2. A vacant site in the structure of ZrO_2 is crucial for dissociated dispersion and decomposition of KNO_3 to form a basic site so that the spontaneous dispersion capacity of KNO_3 on ZrO_2 is close to the number of vacant sites in ZrO_2 . As a result, 14% KNO_3/ZrO_2 appears to have the highest basicity and catalytic activity.
- 3. $\dot{K}NO_3/ZrO_2$ can catalyze a reaction in mild conditions and exhibits high activity for *cis*-but-2-ene isomerization, even at 273 K, because of its unusually strong basicity.

- 4. KNO_3/ZrO_2 samples show stable activity and selectivity in a catalytic reaction such as decomposition of propa-2-nol at a relatively high temperature because they have the ability to repel coking.
- 5. With a similar density of potassium ions loaded, KNO₃/ZrO₂ samples possess a smaller basicity and catalytic activity than that of KNO₃/Al₂O₃ because of the smaller vacancies and weaker acidity of the surface hydroxyl group in the former carrier.

Acknowledgment. We are grateful to the Chinese Education Ministry and International Rotary Society (Japan) as well as the Analysis Center of Nanjing University for their financial supports and to Professor T. Yamaguchi in Ehime University (Japan) for his help.

CM000213N