The Study of Safety Governance for Service Robots: On Open-Texture Risk

Yueh-Hsuan Weng, Peking University

Available at: https://works.bepress.com/weng_yueh_hsuan/30/
服务机器人安全监管问题初探——以开放组织风险为中心

姓名：翁岳暄
学号：1001110716
院系：法学院
专业：法学理论
研究方向：科技法学
导师姓名：强世功 教授

二0一四年五月
服务机器人安全监管问题初探—以开放组织风险为中心

摘要:
自工业革命以来“蒸汽机”乃至“微电机”陆续地融入人类社会之中，迄今人类和机械共存的时间已经超过两个世纪，同时法律形成一套固有的监管模式来应对“蒸汽机”以及“微电机”之机械安全性。另一方面，就来自日本与韩国官方预测，所谓“人类-机器人共存社会（The Human-Robot Co-Existence Society）”将在2020年至2030年之间形成，然而与现存于人类社会并提供服务的“微电机”相比，智能服务机器人的新风险主要来自于贴近人类并与人共存的机器自律行为之不确定性，或称“开放组织风险（Open-Texture Risk）”，这种科技风险的基本性质以及人机共存安全性所对应的风险监管框架对于将来发展人类-机器人共存前提之下的安全监管法制将是不可或缺的，因此本研究着眼于思考开放组织风险的基本性质，以及其如何应用在未来的人类-机器人共存之安全监管法制中，并且尝试厘清几个现存的开放性问题，期能为将来政府发展智能机器人产业所面临的结构性法制问题提供参考和借鉴作用。

本研究结构编排分为六个部分，第一章“绪论：迈向人类-机器人共存社会”、第二章“风险社会与机械安全”、第三章“非结构化环境与开放组织风险”、第四章“个案研究（一）：智能汽车、自动驾驶汽车安全监管问题研究”、第五章“个案研究（二）：“Tokku”机器人特区与科技立法研究”、第六章“结论”。

关键字：科技法学，风险社会学，机器人安全监管，开放组织风险，机器人法律
The Study of Safety Governance for Service Robots: On Open-Texture Risk

Yueh-Hsuan Weng
Supervised by Prof. Dr. Shigong Jiang

Abstract:
The emergence of steam and microelectrical machines in society gradually expanded since the era of the Industrial Revolution. Up until now, human beings have already co-existed with these machines for more than two centuries, and contemporary laws have developed preventative regulatory frameworks. These frameworks are based on risk assessments to supervise the safety of microelectrical machines which include automobiles, railway systems, elevators and industrial robots, etc.

Regulators, especially South Korea and Japan expect human-robot co-existence societies to emerge within the next decade. These next generation robots will be capable of adapting to complex, unstructured environments and interact with humans to assist them with tasks in their daily lives. Unlike heavily regulated industrial robots that toil in isolated settings, next generation robots will have relative autonomy, which raises a number of safety issues that will be the focus of this dissertation. The author’s purpose is to propose a theoretical legal framework on safety governance for service robots, and the core concerns are regulatory issues regarding the Open-Texture Risk.

Keywords: Technology Law, Risk Sociology, Robot Safety Governance, Open-Texture Risk, Robot Law
目 录

中文摘要 ... I
英文摘要 .. II
图 ... IX
表 ... XII

第一章 绪论：迈向人类-机器人共存社会 ... 1

1.1 人类-机器人共存社会所衍生的风险与法律 1
1.2 机器人：历史性的综述 ... 8
1.3 选题意义： “机器人法律” 的特殊性和普遍性 15
1.4 文献探讨 ... 25
 1.4.1 机器人与道德伦理 .. 25
 1.4.2 机器人与战争 .. 31
 1.4.3 机器人与劳动力 ... 36
 1.4.4 机器人与隐私、数据保护 ... 37
 1.4.5 机器人与安全监管 ... 41

第二章 风险社会与机械安全 ... 44

2.1 现代风险社会 .. 44
2.2 科技的全球化与风险治理 ... 47
2.3 机械安全 ... 50
 2.3.1 蒸汽机时代的人类-机械共存考察 .. 50
 2.3.2 微电机时代的人类-机械共存考察 .. 52
2.4 当代机械安全法制 ... 63
2.4.1 汽车安全法规 ... 63
2.4.2 铁路安全法规 ... 65
2.4.3 电梯安全法规 ... 68
2.4.4 工业机器人安全法规 ... 70

2.5 综合讨论：微电机的风险监管框架 .. 77

第三章 非结构化环境与开放组织风险 ... 90

3.1 机器人时代的人类-机械共存考察 ... 90
 3.1.1 编年史：机器人与社会 - 1973 年至 2013 年 90
 3.1.2 新机器人学：机器人作为“第三的存在” 101

3.2 “开放组织风险”与风险增生 .. 111

3.3 风险监督 .. 114
 3.3.1 日本经济产业省 METI 下一代机器人安全监管政策 116
 3.3.2 国际标准化组织 ISO 13482 个人护理机器人的安全标准 123
 3.3.3 综合讨论：“第三的存在”服务机器人的风险监管框架（初期） 130

3.4 风险控制：由功能安全到“安全智能” .. 148
 3.4.1 风险控制与阿西莫夫的机器人三原则 152
 3.4.2 风险控制与“法定机械语言” .. 158

第四章 个案研究（一）：智能汽车、自动驾驶汽车安全监管研究 162

4.1 汽车的智能化 ... 162

4.2 政策视角下对智能汽车、自动驾驶汽车的安全监管分类 165

4.3 开放组织风险产生的汽车安全监管隐患 169
 4.3.1 “授权控制” - 自动驾驶汽车 170
 4.3.2 “共同控制” - 先进驾驶辅助系统 171

4.4 综合讨论： “黑匣子”事故记录器与汽车安全监管 177
第五章 个案研究（二）：“Tokku” 机器人特区与科技立法研究

5.1 什么是机器人开发与实证测试特区? ... 183
5.2 “Tokku” 机器人开发与实证测试特区之历史 .. 184
5.3 “Tokku” 机器人特区作为机器人与社会的中介 .. 193
5.4 个案研究：人型机器人伴随的法律问题... 195
 5.4.1 人型机器人与人类共存是否可能? ... 195
 5.4.2 关于福冈特区实证实验................................ .. 196
 5.4.3 早稻田大学高西研究室 人型机器人：WABIAN-2R .. 198
 5.4.4 关于 WABIAN-2R 在福冈电视塔的实证测试 .. 199
 5.4.5 早稻田大学高西研究室 泛用双足步行机械：WL-16RII 201
 5.4.6 关于 WL-16RII 在博多运河城的实证测试 ... 202
 5.4.7 综合讨论 ... 203

第六章 结论 .. 211

参考文献 .. 216

博士在读期间科研成果 ... 244

附录：专家访谈纪录 ... 248

7.1 ISO TC184/SC2 WG7 Gurvinder Virk 召集人与杨书评教授专访 248
7.2 UN 联合国人权理事会 Christof Heyns 特别报告员专访 267
7.3 欧盟 FP7 机器人法律项目共同主持人 Paolo Dario 教授专访 272
7.4 欧洲大学研究院 Giovanni Sartor 与 Giuseppe Contissa 教授专访 283
7.5 欧洲大学研究院 FSR 佛罗伦萨监管学院高级研究员何娴博士专访 295
7.6 德国维尔茨堡大学法学院 Eric Hilgendorf 教授专访 .. 302

致谢 ... 306
Contents

Abstract ... II
Lists of Figures ... IX
Lists of Tables .. XII

Chapter 1. Introduction: Toward the Human-Robot Co-Existence Society 1
 1.1 Research Background: Robots and Society ... 1
 1.2 Robots: A History .. 8
 1.3 Research Objectives ... 15
 1.4 Literature Review ... 25
 1.4.1 Robo-Ethics .. 25
 1.4.2 Robots and War ... 31
 1.4.3 Robots and the Labor Force ... 36
 1.4.4 Robots, Privacy and Data Protection ... 37
 1.4.5 Robots and Safety Governance ... 41

Chapter 2. Risk Society and Machine Safety .. 44
 2.1 Modern Risk Society ... 44
 2.2 The Globalization of Technology and Risk Regulation .. 47
 2.3 On Machine Safety ... 50
 2.3.1 The Survey of the Era of Steam Engine Machines .. 50
 2.3.2 The Survey of the Era of Microelectronic Machines ... 52
 2.4 Safety Regulations for Modern Machines ... 63
 2.4.1 Safety Regulations for Automobiles .. 63
 2.4.2 Safety Regulations for Railways ... 65
 2.4.3 Safety Regulations for Cage-Lifters ... 68
 2.4.4 Safety Regulations for Industrial Robots ... 70
Chapter 3. Unstructured Environments and the Open-Texture Risk

3.1 The Survey of the Era of Next-Generation Robots

3.1.1 The Chronicle of Robots and Society – From 1973 to 2013

3.1.2 New Robotics: Robots as a “Third Existence”

3.2 The “Open-Texture Risk” and Risk Proliferation

3.3 Risk Monitoring

3.3.1 METI’s Safety Governance Policy for Next-Generation Robots

3.3.2 ISO’s new ISO 13482 Safety Standard for Personal Care Robots

3.3.3 Summary

3.4 Risk Control: From Functional Safety to “Safety Intelligence”

3.4.1 Risk Control and Asimov’s Three Laws of Robotics

3.4.2 Risk Control and “Legal Machine Language”

Chapter 4. Case Study 1: Smart- & Robo-Cars and their Safety Governance

4.1 The Intelligentization of Automobiles

4.2 Safety Governance and a Classification for Smart- and Robo-Cars

4.3 The Regulation Gaps Caused by the Open-Texture Risk

4.3.1 “Authorized Control” – Autonomous Robo-Cars

4.3.2 “Shared Control” – ADAS and Smart Cars

4.4 Summary: “Black-Box” Data Event Recorder and Safety Governance

Chapter 5. Case Study 2: Tokku RT Special Zone and Legislation

5.1 What is the “Tokku RT Special Zone”?

5.2 The History of the “Tokku” RT Special Zone

5.3 “Tokku” RT Special Zone as an Interface for Robots and Society

5.4 Case Study: Legal Impacts to Bipedal Humanoid Robots

5.4.1 The Coexistence of Humanoids & Humans: A Promising Future?
5.4.2 The Fukuoka Experiment ... 196
5.4.3 Waseda University Takanishi Lab’s Humanoid: WABIAN-2R 198
5.4.4 WABIAN-2R and the Experiment in the TNC-TV-Building 199
5.4.5 Waseda University’s Multi-Purposes Biped Machine - WL-16RRI 201
5.4.6 WL-16RII and the Experiment in Downtown Fukuoka 202
5.4.7 Discussion ... 203

Chapter 6. Conclusion .. 211

References ... 216

Curriculum Vitae .. 244

Appendix: Special Interviews on “Robot Law” ... 248

7.1 ISO 13482’s Prof. Gurvinder Virk and Prof. Shuping Yang 248
7.2 UN Special Rapporteur – Prof. Christof Heyns 267
7.3 European FP7 Project: ROBOLAW’s Prof. Paolo Dario 272
7.4 EUI’s Prof. Giovanni Sartor and Dr. Giuseppe Contissa 283
7.5 EUI – Florence School of Regulation’s Dr. Xian He 295
7.6 Wuerzburg Law School’s Prof. Eric Hilgendorf 302

Acknowledgements .. 306
图 1. “ワセダロボットの歩み” 加藤研究室におけるバイオメカニズム研究 - 12
图 2. 世界第一部人型机器人 - 早稻田大学的 WABOT-1 (1973) 1
图 3. 曾在筑波国际科学博览会展示的早稻田大学 WABOT-2 机器人 (1985) ... 16
图 4. 机器人法律框架：兼具特殊性与普遍性 ... 17
图 5. 研究范围：机器人安全监管问题 ... 22
图 6. Maslow’s Hierarchy of Needs Pyramid .. 41
图 7. ISO 14121 风险评估流程（转载自 ISO/IEC Guide 51） 61
图 8. 日本汽车监管法律体系 ... 63
图 9. 汽车制造业生产线流程图 ... 73
图 10. 微电机的风险监管框架 .. 80
图 11. ISO 框架下的可容忍风险 .. 81
图 12. 风险与成本的对应关系 ... 82
图 13. 从“心理安全”、“物理安全”到“人类-机器人共存的新安全性” 89
图 14. 机器人智能金字塔 .. 104
图 15. 机器人智能的两道分水岭 ... 109
图 16. 机器人作为“第三的存在” ... 110
图 17. 欧盟 FP7 科技框架计划“机器人法律”项目 115
图 18. 日本经济产业省“机器人政策报告书（第一版）” - 2004 年 117
图 19. 移动仆从机器人（图片来自 ISO/FDIS 13482）.................................124
图 20. 身体辅助机器人（图片来自 ISO/FDIS 13482）.................................124
图 21. 载人机器人（图片来自 ISO/FDIS 13482）.................................124
图 22. 机器人与机器装备·个人护理机器人的安全要求（草案）- 201X 年......125
图 23. 个人护理机器人的空间和区域...126
图 24. 自主载人机器人的空间和区域...130
图 25. 身体辅助机器人的空间和区域...126
图 26. 移动仆从机器人的空间和区域...126
图 27. “第三的存在”服务机器人的风险监管框架（初期）...........................132
图 28. 服务机器人安全监管：风险监督模式..134
图 29. 开放组织风险之增生...148
图 30. 风险监督的有限性...149
图 31. 以安全智能作为监管手段的风险控制模式......................................151
图 32. 汽车电子控制系统的发展演进过程..165
图 33. Fukuoka Special Zones for Robot Development and Test (1).................187
图 34. Fukuoka Special Zones for Robot Development and Test (2)...............188
图 35. 早稻田大学高西研究室 福冈机器人特区研究报告书.........................198
图 36. 早稻田大学高西研究室 人型机器人：WABIAN-2R............................199
图 37. 实验场地：福冈塔与 TNC 电视大楼...200
图 38. 早稻田大学高西研究室 汊用双足行走机械：WL-16RII (1)...............202
图 39. 早稻田大学高西研究室 汊用双足行走机械：WL-16RII (2)...............203
图 40. WL-16RII 的实证测试地点分布图：福冈市区.................................204
图 41. WABIAN-2R walked on the bumpy surface with tiles angled 2 to 5 degrees (forward-axis) down (Experimental Site No. 7) (1)208

图 42. WABIAN-2R walked on the bumpy surface with tiles angled 2 to 5 degrees (forward-axis) down (Experimental Site No. 7) (2)208

图 43. WABIAN-2R walked on the bumpy surface with tiles angled 2 to 5 degrees (forward-axis) down (Experimental Site No. 7) (3)209

图 44. WL-16RII carried a person to climb steps in Hakata Riverain shopping mall ...211
表 1. 功能安全 vs. 安全智能 ...151
表 2. 阿西莫夫机器人三原则的三大问题 ...158
表 3. 早稻田大学高西研究室 人型机器人：WABIAN-2R 规格表200
表 4. 早稻田大学高西研究室 汐用双足步行机械：WL-16RII 规格表203
谨以此文献给我的家人
壹．绪论：迈向人类-机器人共存社会

1.1 人类-机器人共存社会所衍生的风险与法律

微软创办人比尔·盖茨（Bill Gates）坚信“家家户户拥有一部机器人（A Robot in Every Home）”的荣景终将到来 ¹，而对于“个人服务机器人（Personal Robots）”而言现在的时间点恰似1980年代PC个人计算机开始普及之前的黎明期。与目前总数达到140万之谱的工业机器人相比，虽然服务机器人的数量并不算多但却快速地成长之中。根据IFR国际机器人联合会（International Federation of Robotics）统计，1998年迄今总计有12万6000部服务机器人投入个人或家事服务应用，光是在2012年度全球售出的服务机器人数量为1万6067部之多。²

日本与韩国官方预测所谓“人类-机器人共存社会（The Human-Robot Co-Existence Society）”将在2020年至2030年之间形成 ³ ⁴，美国与日本机器人学家甚至不约而同地指出这样的社会中人类与机器人的关系可能以“与人共存的服务机器人”和“与人类合而为一的机器人身躯”两种方式呈现。⁵ ⁶ 尽管下一代机器人科技（Next Generation Robots）藉由其本身的“自律性”和“劳力替代性”可望有效地提升对于高龄社会老年人的生活辅助、灾区救难搜索、残障人士电子假肢等应用，但它同时也将带来许多新的社会问题。例如原本对于社交型机

⁶ Rodney Brooks 著、蔡承志译（2003）《我们都是机器人-人机合一的大时代》, 台北：究竟出版社
机器人开发，“社会接受度(Social Acceptability)”一词代表的意义是较为产品导向的，即谈论使用者与产品之间的关系。但是在人类-机器人共存的趋势下机器人社会接受度的定义也开始产生转变，更深入地涉及到伦理、安全与法律等议题。日本机器人学家森政宏（Masashi Mori）在1970年代曾经提出“恐怖谷(The Uncanny Valley)”假说，他认为人类对于仿人机器人会随着机器人仿真度提高而增加对机器人的兴趣，但是当机器人过于逼真酷似人类时, 人类对机器人将瞬间产生一种莫名的嫌恶感使得原本对机器人的喜好在一瞬间跌落谷底。

从伦理面来看, 将恐怖谷因素纳入机器人开发的考虑对于其社会接受度将有直接的影响。此外, 机器人社会接受度也必须面临人类劳动力被替代的矛盾问题。“机器人会抢走人类的工作吗?” 2011年8月富士康公司宣布在未来三年内将生产百万部工业机器人并部署于工厂组装业务, 同年11月该公司总裁郭台铭明确表示2012年富士康将以日产千台的速度生产30万台工业机器人，并且投入单调、高危险的工作, 该言论曾在中国社会内部引起一阵广泛讨论。

2013年5月23日联合国人权理事会任命的法外处决、即决处决和任意处决问题特别报告员海恩斯（Christof Heyns）发布一份来自联合国对于无人机的调查报告。该报告指出军用机器人正由远程遥控操作转向自我决策的进程，但是目前却没有任何法律来约束这一类军用无人机的开发，因此他呼吁以美国为首等持有无人机国家应先行暂停国内无人机的使用与开发项目, 待相关法制完善后再投入军事应用。

不可否认，机器人科技投入军事用途的确对战术、运输乃至补给

都产生了十分显着的效用，例如Atlas人型机器人\(^{12}\) 以其前身PETMAN机器人\(^{13}\)为基础，被用来协助紧急情况下进行搜索与救灾以及在人类无法存活的环境中执行任务；BigDog犬型机器人则可克服各种崎岖地形运送补给物资\(^{14}\); The BEAR机器人可以在战场上紧急抱起并带走受伤兵员\(^{15}\); MQ-1“捕食者（Predator）”无人机则同时具备执行高空观测与打击等任务之能力。\(^{16}\) 一份美军2010年的报告，甚至规划在未来5年内用机器人来替代美国军队体系1/3的人力\(^{17}\); 而据联合国引述巴基斯坦政府之统计数据表示自2004年至今美军无人机在巴基斯坦境内实施打击已经造成2200余死伤人数。\(^{18}\) 另一份来自皮尤在2012年面向全球的调查则显示对于无人机袭击的认可度分别由美国的62%、英国的44%、印度的32%、日本的21%、俄罗斯的17%与埃及的6%\(^{20}\), 从此结果也可看出目前社会对于无人机的接受度

\(^{22}\) 储信艳 (2013) 一个无人机杀手的告白, 北京：新京报 B10 版（2013年11月3日）
仍然非常分歧。潜水艇在一战时期也曾经处于类似今日无人机的情况，即社会接受度分歧且缺乏监管法制，潜水艇在当时甚至被称作“没有绅士风度的武器”，船员若被捕即以海盗论处。24

机器人社会接受度的持续发展随即面临另一个问题就是与现存法律体系的冲突。完善的法制固然有助于促进机器人社会接受度的发展，但是法律与社会接受度两者之间的关系并不总是相辅相成，在一些情况下法律反而可能是社会接受度发展上的障碍。如果法律对于机器人科技未能及时做出妥协并进行调整的话，那么它将无从进一步推广深入社会之中。其实汽车的智能化也是机器人科技的一个显著应用，2009年法国ROBOSOFT公司曾经推出一款无人自动驾驶车25，但由于违反维也纳道路公约第7条的规定，即要求每一部车辆都必须有个驾驶才可允许上路26，所以当时在欧洲无法销售投入于公共道路使用。同一时期谷歌所开发的无人自动驾驶车却自2010年至2012年陆续获得内华达27、佛罗里达28 与加利福尼亚29 三州的法律承认允许事前申请的测试目的之户外道路测试使用。由此可见法律对于服务机器人科技投入日常生活应用及其社会接受度的推广影响之重大。

除了汽车之外，民用无人机进入一般民众生活区域的应用也将出现行政机关

在法律上如何采取监管的新问题。依照美国联邦航空管理局（FAA - Federal Aviation Agency）规定，空域被分为A至G不等的监管层，距离地表1万8千英尺到6万英尺的是供商用民航机使用的A类监管层；至于BCD类监管层则属机场周围空域，依照城市和机场的不同而做出区分，700英尺至1200英尺的低空空域则属于G类监管层。以往低空的G类监管层并不受到政府监管，同时也缺乏相关法律规范，然而自从亚马逊在2013年宣布考虑将民用无人机用为送货工具之后，这个法制化需求才逐渐开始受到重视。

经过十余年投入使用后DaVinCi微创机器人手术系统却出现了许多法律争议。首先，在行政安全监管方面Intuitive Surgical公司在2013年7月接到来自FDA食品药品监督管理局警告函令，表示该公司并未善尽通报机械使用不良事件以及部件改良的义务，未来预计将面临来自政府方面对于该系统市场营销、成本效益和安全性方面更严格的审查。

NBC在2013年6月的新闻报道中也指出美国食品药品监督管理局从2007年迄今已收到200多份关于病患接受DaVinCi机器人手术时遭受烧伤、切割伤以及感染等报告，其中89件最后导致病患死亡结果。根据统计DaVinCi微创机器人手术系统最常出现的争议性并发症为“可逆性肢体麻痹（Reversible Limb Palsy）”、“手...
指的暂时性神经损伤（Temporary Nerve Damage in Fingers）、“肠穿孔出血（Bleedings from Perforated Bowels）”、“周边视力减退（Peripheral Vision Loss）”等等。这也引起了美国民间律师事务所的莫大兴趣，以对抗不肖厂商和医疗院所、维护病患权益为诉求的“DaVinCi机器人法律/诉讼中心群”一时风起云涌在美国成立。在2013年度假使以“机器人法律（Robot Law）”为关键词在网上进行搜寻，检索结果通常显示为令人啼笑皆非的“DaVinCi机器人法律/诉讼中心（DaVinCi Robot Lawsuit Center）”。

目前律师关注DaVinCi微创机器人手术系统的法律争议还是在于究竟系统制造商Intuitive Surgical公司有没有善尽对产品的使用者-“医生”进行使用说明指示的义务，特别是教育训练这部分，因为DaVinCi微创机器人手术系统的操作接口设计复杂，在缺乏周全训练下一般人难以顺畅地操作该系统。除了教育训练的问题，也有不少医生回报反映机械手臂在手术过程中出现异常情况。

为了因应服务机器人数量及其与人类共存范围的日益增加34，ISO国际标准化组织在2014年2月即将发布全球第一个服务机器人安全标准-“ISO 13482个人护理机器人安全标准”。该标准推出后服务机器人的产量与商业应用可望大幅增加；同一时间工业机器人的ISO 10218安全标准也已经于2012年完成修订35，这次新修订内容主要是针对与人类一同上工的合作式机器人，在科技新浪潮下传统用来确保厂内机器人安全的隔离栅栏决定被撤除，同时许多国家的劳工卫生条例或行政规章也必须配合修正以使工业机器人安全迈入新的里程碑。

作为调节社会内部利益冲突工具的法律除了协助社会接受度的发展之外，法律对于机器人科技的安全监管也扮演很重要的角色，特别是我们对于下一代机器人的“自主能力/自律性”以及“劳力替代性”衍生的风险所知有限，而机械风险的安全性通常需要以法律责任作为底线方能确保，如同ISO 13482个人护理机

机器人安全标准最终还是必须要有法律的约束，如民事产品责任作为监督手段，这些机械安全标准与认证体系的运作才能落实。此外，由于自主能力可以大幅提升军事机器人的战术效能，军方势必不会轻易放弃对于机器人自主能力的开发应用，但这也涉及到一个安全监管问题就是如何确保“致命性军用自动机器人 (Lethal Autonomous Robots)”或称为“杀手机器人”在战场上能够遵行日内瓦公约（jus in bello）第一条所规范的“在战场上不得误伤平民”？究竟不须人为操作的机器人要如何自觉地“守法”仍然是科技安全监管上的一大挑战。

1.2 机器人：历史性的综述

机器人（Robot）一词最早来自捷克小说家卡雷尔·恰佩克（Karel Capek）在1920年发表的戏曲小说R.U.R（Rossum’s Universal Robots）。Robot一词在捷克语指“强制劳动”与“无聊的工作”，在斯洛文尼亚语则指“劳动者”。R.U.R内容描述人类将无感情、持续重复动作的机器工人投入生产活动，并且从劳动中获得解放，但这些机器工人后来却获得智能并发起革命向人类社会进行反扑。

在R.U.R之前西方文学对于机器人/人造人已经有许多关注和讨论，公元前8世纪古希腊诗人荷马（Homer）《伊里亚特》史诗中曾经描述“锻造之神”赫淮斯托斯（Hephaestus）制造出协助工作的人型机械—“黄金打造的侍女机器人”以及可自由行动的“三脚机器人”等情节；公元前3世纪希腊神话出现守护克里特岛的青铜巨人“塔罗斯（Talos）”之描述。罗马诗人奥维德（Publius Ovidius Naso）在公元8年所著的《变形记》里面则提到希腊神话中一位雕刻家皮格马利翁（Pygmalion）爱上了自己所刻出的雕像并给雕像取名为加拉忒亚（Gelatea），最后基于爱神维纳斯对皮格马利翁的同情而赋予雕像生命。希腊罗马时代对于自动机械除了文学幻想外也有不少的实践，例如古希腊数学家海伦（Heron Alexandria）自行开发出“蒸汽汽转球（Aeolipile）”，并尝试利用虹吸原理开发出“神殿自动门”以及“圣水自动贩卖机”等装置。此外，根据《三国志·魏书》记载，中国古代有史料可考的“指南车”乃由魏国工匠马钧在公元235年打造而成，指南车采用差动齿轮装置并不涉及磁极的使用，车上小人手指方向始终保持南向。

15世纪发条弹簧的发明并用作钟表稳定的动力源，使得钟表装置在文艺复兴时期获得了快速发展，值得关注的是欧洲在16至18世纪之间逐渐由附属在时

38 田近伸和（2001）未来のアトム, 東京：アスコム, pp. 25
39 同上, pp. 29-30
42 晋·陈寿《三国志·魏书》卷二十九
钟之下的巧匠技艺独立出来形成所谓的 “自动机（Automata）”

1738年法国纺织技师雅克·沃康松 (Jacques de Vaucanson) 在巴黎科学学会中发表了 “吹笛小童”、“击鼓少年”、“机械鸭” 等作品，其中机械鸭微细地模仿鸭子的生理构造，可以展现行走、转向、甚至消化排泄等机能。1773年瑞士钟表工匠皮埃尔·雅克-德罗 (Pierre Jaquet-Droz) 与亨利-路易斯·雅克-德罗 (Henri-Louis Jaquet-Droz) 父子发明的自动人偶则可以模拟人物写字、画画、弹风琴等动作。

和欧洲的自动机不同，日本的 “活动机关人偶（からくり）” 应用面更加广泛，除了武士贵族阶层之外，在一般庶民社会里也可看到用于大众艺术木偶剧的活动机关人偶。1796年有“からくり半蔵”之稱的细川 (半蔵) 赖直 (Hosokawa Hanzo Yorinao) 所著的《机巧図彙》

在內的9种活动机关人偶之详细设计说明。早稻田大学机器人学教授菅野重树 (Shigeki Sugano) 认为虽然兴起的时代类似，但日本活动机关人偶与欧洲的自动机仍然存在根本性差异，而这种差异性在于 “设计思想的不同”。菅野指出自动机所追求的目标在于设计出能精确模仿人物动作的机械，例如雅克·沃康松的机械鸭能模仿鸭子的消化与排泄动作，雅克-德罗父子的自动人偶则透过胸部动作表现出一种拟人的紧张感; 但另一方面，日本的活动机关人偶对于其动作则采取抽象的表现。江户时期 “からくり仪右卫门” - 田中久重 (Hisashige Tanaka) 所制作的 “拉弓童子 (弓曳き童子)” 便是一个代表性例子，该人偶脸部并无任何机关设置，但却能藉由人偶瞄准目标射出的动作巧妙地利用身体协调性与角度

45 注: 单数为Automaton
46 菅野重樹 (2011) 人が見た夢 ロボットの来た道, 東京: JIPM-S, pp. 24-27
差异营造出神情的变化。换句话说，活动机关人偶的设计思想是艺术导向的，并且与“能剧（Noh）”透过面具来抽象诠释感情的表现方法有相似之处。

自动机出现的时期欧洲正处于科学革命，许多新思想与认知也在这个时代逐一涌现。1543年医师、解剖学家安德雷亚斯·维萨里（Andreas van Wesel）出版《人体的构造》（De humani corporis fabrica）一书，正确的人体构造信息和详尽的插图使该书成为人体构造学的奠基之作。之后1628年英国医生威廉·哈维（William Harvey）发表《关于动物心脏与血液运动的解剖研究》50，推翻过去医学对于血液循环的错误认知。而哲学也受到这些现象的影响，进而在17世纪兴起了探究人类与机械两者差异性的思考，其中最具代表性的便是勒内·笛卡儿（René Descartes）的“心物二元论（Mind Body Dualism）”。51 笛卡儿认为人是由灵魂与身体两个部分组成，这也是人与动物本质上的不同之处，人类有灵魂同时属于物质世界，而动物没有灵魂只属于物质世界。52 相较于笛卡儿的“动物是机械”主张，18世纪法国哲学家朱利安·奥佛雷·拉美特利（Julien Offray de La Mettrie）则提倡“人是机械”的唯物一元论，他认为物质本身包含一种运动能力，它是感觉、思维、良知产生的根据。拉美特利1747年发表的《人是机械》（L’Homme-machine）书中亦明确指出运动的物质能够产生有生命的生物、有感觉的动物和有理性的人。53 从拉美特利的一元论观点来看人类与动物并无差异，都可以视为一种有机的机械。

历经17世纪与18世纪“动物是机械”以及“人是机械”的哲学思辨后，19世纪西方社会开始出现了许多与机器人有关的文学或机械艺术作品，较具代表性的有英国小说家玛莉·雪莱（Mary Shelley）在1818年所著的《科学怪人》

49 同 [46], pp. 36
51 Rolf Pfeifer, Josh Bongard 着；俞文伟，陈卫东，杨建国，许敏，横井浩史，金丹译（2009）身体的智能—智能科学新视角，北京：科学出版社，PP. 4
（Frankenstein; or, The Modern Prometheus）54，约翰·沃尔夫冈·冯·歌德
（Johann Wolfgang von Goethe）在 1831 年发表的《浮士德》（Faust）55，卡洛·科
罗狄（Carlo Collodi）在 1883 年出版的《木偶奇遇记》（Le Avventure Di
Pinocchio）56，法国作家奥古斯特·维里耶·德·利尔-阿达姆（Auguste Villiers de l'Isle-Adam）在 1886 年出版《未来的夏娃》（L'Eve Future）57，乔治·摩尔（George
Moore）在 1893 年制造了具代表性的机械艺术“蒸汽人（Steam Man）”58等。挪
威文学家 Jon Bing 分析了许多西方社会中涉及人造人/自动机械等情节的文学作
品，他将这些作品区分为三大类，分别是（1）“像机器的人（Machinelike Man）”;
（2）“像人的机器（Manlike Machine）”与（3）“人机合体（Cyborg）”。若仅从
剧情结果来看，近代西方文学作品对于人类-机器人的共存关系总是抱持怀疑态度的。59

20 世纪计算机科学的兴起对于机器人产生革命性的影响。1904 年约翰·阿
布罗斯·佛莱明（John Ambrose Fleming）发明二极电子管，成为早期计算机所
需的电子组件。1936 年亚兰·图灵（Alan Turing）在其论文“On Computable
Numbers With An Application To The Entscheidungsproblem”中正式提出“图灵机
（Turing Machine）”计算模型的理论构想，并且影响后来被当代电子计算机设计
所奉为圭臬的“冯·诺曼计算架构（von Neumann Architecture）”。60 紧接着世界
第一部二进位数值电子计算机 ABC - Atanasoff–Berry Computer 则由 Atanasoff 与
Berry 于 1942 年在美国爱荷华州立大学（Iowa State University）（当时为爱荷华
州立学院）开发而成，这对于工业自动化产生直接的影响。1952 年麻省理工学
院实现了对工作机械的数值控制（NC），紧接着也开始了机器人的商业化进程，

54 Mary Shelley (1818) Frankenstein; or, The Modern Prometheus, London: Lackington,
Hughes, Harding, Mavor & Jones
55 Johann Wolfgang von Goethe (1831) Faust; English translation by Bayard Taylor,
Available via http://www2.hn.psu.edu/faculty/jmanis/goethe/goethe-faust.pdf (Accessed at
February 1, 2014)
56 Carlo Collodi (1883) Le Avventure Di Pinocchio, Available via
57 Auguste Villiers de l'Isle-Adam (1886) L'Eve Future, Available via
58 注: George Moore (1893) Steam Man
60 Alan Turing (1936) On Computable Numbers With An Application To The

图 1. “ワセダロボットの歩み”加藤研究室におけるバイオメカニズム研究

1970年“日本机器人之父” - 早稻田大学教授加藤一郎（Ichiro Kato）联合早大理工学部四间研究室发起交叉学科的“早稻田人型机器人计划（WABOT Project）”（图1）并在1973年成功开发出全世界第一部具备感知能力的人型机器人WABOT-1（WAseDA roBOT-1）（图2）。^62

![WABOT-1 (1973) Image](image-url)

图2. 世界第一部人型机器人 - 早稻田大学的WABOT-1 (1973)

WABOT-1上半身以1972年开发的WAM-4（Waseda Automatic Manipulator - 4）为基础，手腕具6个自由度，5支手指具备1个自由度，下半身双足则以1971年开发的WL-5（Waseda Leg - 5）基础，采用微计算机控制WL-5可以以静步步行方式行进并变更方向，步行速度为45秒/步。WABOT-1人型机器人具备简单日语会话的对话能力，能以双足步行的方式移动，具有触觉的双手可以抓取物品，其电脑视觉机能可测定前方物品的方向和距离。

田近伸和（Nobokazu Tajika）表示自第二次世界大战后全世界对于机器人的研究可以区分为两大方向，一种是“作为道具的机器人”，另一种则是“打造出像人的机器人”。第一种方向是很直观的，也就是从利益衡量的功利角度思考究竟驱动器、传感器与中央处理器的组合能够变化出多少对人有益的工具，特别是把机器人用在3D：危险（Danger）、枯燥（Dull）、肮脏（Dirty）的应用；然而回顾过去的历史，人类始终没有放弃对于仿人机械的追求。MIT麻省理工学院人工智能实验室前所长Rodney Brooks教授指出人型机器人出现的理由有二：第一，它对人类来说是一种隐喻；第二，面对这种人型机械，人类自然而然地就知道如何与他们互动。早稻田大学人型机器人研究所所长高西淳夫教授指出人类有一种模仿自己的倾向，从石器时代遗留下来的洞窟壁画上可发现有不少人的肖像画，除了壁画之外，用石雕、泥塑、木刻、布画、铸造等方式来呈现“人的形象”也十分常见，而这种倾向究极的结果就是打造出一个“完全的人”，只是手段上还尚未能够实现。
1.3 选题意义：“机器人法律”的特殊性和普遍性

随着图灵机概念（Turing Machine）与冯・诺曼计算机架构的提出，自 20 世纪中叶开始，有许多行为可预测且持续重复相同动作的机器人陆续投入工业应用，自动化减轻人类负担并且提高工作效率，并且随着机器计算能力的提高与科技的进步，逐渐扩大其自动化服务范围。然而 21 世纪初第一个十年间具备学习能力的机器开始有机会在大学实验室、科研机构与工厂之外的户外环境活动，如 SONY 公司的 AIBO 机器狗66 和 i-ROBOT 公司 ROOMBA 吸尘器机器人67 已经进入一般家庭提供人类娱乐与打扫等服务。这种“下一代机器人（Next Generation Robots）”，也从活动范围受限的反射式智能活动机器进化成自主订定决策却无自我意识的“自律型机器（Autonomous Machine）”，预计在 21 世纪初的第二个十年里这种“下一代机器人/自律型机器”将大幅度地分别进入人类社会中的民生及军事领域。

此刻坚信“人类-机器人共存社会”终将到来的并非只有西方社会或日本的学者，在华人社会里仍有许多具备未来洞察力的学者认同机器人终将融入人类社会的大趋势，例如香港中文大学（深圳）校长徐扬生教授68以及台湾大学智慧型机器人与自动化国际研究中心主任罗仁权教授69皆曾多次在公开场合推广此一概念。是故本篇论文着眼于一个即将来临的大趋势-“机器人进入人类社会”以及其对法学、伦理学和社会科学的挑战。研究此一问题的意义在于过去“机器人”一词很大程度上是归属于一种科幻小说、电影情节或是尚无法实现的概念，而接下来的科技发展却即将引领这个概念成为现实。法律本身在现实社会里扮演调整科技物与人类的关系的重要枢纽，因此在这个大趋势之下法学对机器人的关注也

必须从17世纪以来机器人存在本体论的思辨转换到对于人类-机器人共存现实问题的关注，而思考机器人在人类社会中所需要的法制框架或许可以作为在“人类-机器人共存社会”萌芽期之当下的一种实践体现。另一方面，在过去200年间人类已经成功地与蒸汽机械、微电机械共存，而对于下一波的人类与机器人共存之机遇和挑战，法律与社会科学应该如何应对并以风险管制的角度来调节人类与机器人的关系？恐怕也是将来所无法避免的问题。

子曰：“人无远虑，必有近忧”\(^{70}\)，在欧盟委员会资助下，大型跨国FP7科技框架计划项目：“机器人法律（ROBOLAW）”\(^{71}\)已经在2012年于意大利比萨圣安娜、德国柏林洪堡与慕尼黑、荷兰蒂尔堡与英国瑞丁五地启动，该组织的目标是着眼于10年后即将到来的“人类-机器人共存社会”所将面临的法律及伦理挑战，并且进行初期梳理研究以图分析机器人科技法制的基础性问题。欧盟之外，

\(^{70}\) 先秦・孔丘《论语・卫灵公》
日本经济产业省（METI）主导的“机器人政策”也早在2003年开始对服务机器人的法制框架和商业发展进行系统性研究；美国虽然无大型官方机器人科技立法项目进行，但是对于军事机器人、无人机之国际争议、机器人与交通监管等问题将会有迫切的立法需求存在。中国作为全球第二大机器人市场，除了目前ISO 10218安全标准修订后新一代工业机器人安全管理法规之修正出现缺口之外，未来服务和医疗机器人导入社会的过程亦有相当之立法需求。综上所述，有鉴于机器人是全球科技发展趋势，此刻切入该领域并进行基础性研究实有其必要性。

图4. 机器人法律框架：兼具特殊性与普遍性

那么，机器人科技全面融入人类社会是否必然就会出现所谓的“机器人法律”呢？现存的法律难道不足以覆盖对于下一代机器人的管制？即便有此需求，究竟其内涵为何？以上皆是现阶段人们思考“机器人法律”时所经常提出的问题。就本论文撰写过程中，作者旅日期间在东京早稻田大学人型机器人研究所高西研究室从事福冈机器人特区个案研究（第四章）分析时发现对于未来“机器人法律”的潜在需求或可区分为三个层次（图3）。

若以人类与机器人的共存为目标，首先必须确认的是机器人安全监管问题。自工业革命以后人类对于机械的依赖性逐渐增加，由最初工厂内部的生产力辅助

注：日本政府-经济产业省METI – Ministry of Economy, Trade and Industry of Japan
扩展至人类日常生活的食衣住行。然而机械在使用上导致的意外却时有耳闻，因此法律也发展出一套监管制度在源头上治理机械安全以将这类人造物的技术风险降至最低，例如民航机、汽车、火车、升降机、工业机器人皆有相关的监管法规来确保其机械安全。

必须澄清的一点是服务机器人安全监管和工业机器人安全监管是截然不同的问题，从机械安全角度来看传统工业机器人反而更贴近于对民航机、汽车、火车、升降机等“微电机”的监管框架。同时传统工业机器人的安全监管法制是建立在“隔离”的基础上，原则上人类与工业机器人互不接触。服务机器人安全监管的特殊之处在于法律必须开始考虑如何将智能机械的“自主能力/自律性”纳入机械安全监管框架之中以实现人类-机器人共存的“新安全性”。

所以“机器人法律”框架的最底层为“机器人安全监管法（The Robot Safety Governance Act）”。基本上这是目前机械安全监管法规的延伸，而其中一个显著例子是汽车的“型式认证（Type Approval）”制度，由于ISO与IEC的国际机械安全标准缺乏强制性，所以对于若干较关键的技术安全性确保最终必须透过法律规范来落实，这种“技术法规”的特色在于同时夹杂法律文字和大量技术内容，属于一种典型“技术的治理”。

服务机器人的安全监管兼具物理接触的“机械安全”以及非物理接触的“信息安全”。回顾2007年谷歌联合IBM推出云计算概念并使该名词一时洛阳纸贵，于是许多人也开始关注云计算的法律问题，包含著作权保护、服务条款问题、隐私争议及个人数据保护问题等等。然而云计算技术本身的特殊性在于透过虚拟化技术使大量的计算资源得以从个人计算机端流入大型服务器端，回复“前PC时代”计算资源由少数人实质掌控的中央集权模式，以白话的方式呈现就是一种“吸星大法工程”。直到2013年6月美国前中央情报局职员斯诺登在香港揭露美国政府正在悄悄进行的“棱镜计划”后我们才惊觉或许云计算最根本的法律问题还是在于如何有效地落实其信息安全的监管制度。

73 陈建勋（2010）云的技术：云计算国际趋势介绍，北京大学互联网法律通讯（6）5：39-50
74 翁岳暄（2010）云的管制：迈向社会系统设计之云计算法律框架，北京大学互联网法律通讯（6）5：64-72
另外，如果我们将“联网机器人（Networked Robotics）”视为“物联网（The Internet of Things）”的一种，那么云计算的信息安全隐患也将会反映在联网机器人上面，一方面不肖分子或黑客可以透过机器人身上装备的各式传感器获取许多实时实境的个人信息，如果联网机器人不是以人型或动物的方式呈现，而是一个布满各类传感器的“智能屋（Smart House）”，那么对于智能屋的使用者而言一种198475的压迫感和威胁感将立马产生；另一方面为了节约对于实世界探索所花费的计算资源，机器人也可能利用专属机器人的互联网来下载获取信息，例如最近刚结项的欧盟FP7科技框架计划项目：“机器人地球（ROBOEARTH）”76研究一种专属机器人的信息共享平台，只要有一部机器人探索实世界并且将信息上传至“机器人地球”服务器该信息便可以在短时间内为世界各地的其它机器人所下载使用。77而其信息安全隐患在于有隐私侵犯争议的信息可能在极短的时间内被大量的机器人共享，除此之外，一个新热点在于万一黑客入侵服务器恶意修改信息内容或者由机器人上传的信息本身就是有问题的，这些“有瑕疵的信息”经由机器人的长期使用很可能进一步影响到机器人本身的决策以及自律行为。78在这个面向上非物理接触的“信息安全”最终还是会对传统物理接触的“机械安全”造成影响。最后，具备自动决策机能的服务机器人安全监管尚还必须考虑到伦理方面的问题，即在机器人自动执行任务的过程中我们要如何确保一种“安全且不突兀”的人机互动（Human-Robot Interaction）模式得以落实？

“机器人法律”的特殊性除了其“自主能力/自律性（Autonomy）”衍生的安全监管问题之外，还有另一种特殊性在于考虑对仿人机器人的道德规范法进一步法制化，或称为“仿人机器人道德法（The Humanoid Morality Act）”。无可避免地，“机器人伦理（Roboethics）”对于未来人类-机器人之互动关系将扮演一种指导性角色，然而其本质仅仅就是一种道德规范，并不具备法律的强制力。内容庞杂、

76 注：欧盟FP7框架科研项目：机器人地球（EU FP7 Project: ROBOEARTH），Available via http://www.roboearth.org （Accessed at February 8, 2014）
范围浩大的机器人伦理只有其中少数牵涉到重大道德伦理争议的部分才需要考虑加以法制化。日本机器人学家石黑浩（Hiroshi Ishiguro）以他自己的外观为基础打造了一部外貌与其极为相似，旁人几乎难以分辨的仿人机器人“Geminoid HI-4”。对此，美国佐治亚理工学院机器人学家 Henrik I. Christensen 做出如下评论：

“从中产生出一个社会性的议题在于你有多想与这些机器人互动？一个你平常以礼待之的人，是否可以粗暴地对待他的机器人分身？这样是否合宜，例如你踢完一只机器狗之后马上告诫你的小孩不可以用这种方式对待一只真狗，究竟你要如何告诉你的小孩其中的差异？”

畅销书 “Love + Sex with Robots: The Evolution of Human-Robot Relationships” 的作者 David Levy 曾经大胆预测在未来数十年内机器人将成为人类忠实的性爱伴侣，现阶段日本许多情趣用品业者在技术上已经完全有能力开发出外观、触感、尺寸几乎与真人无异的硅胶人偶，而导入智能科技制造出可与人类自然互动的“智能仿真情趣人偶”将会是大势所趋，到时候这种人偶在销售及使用上可能牵涉到重大道德伦理争议而必须透过立法方式来解决。“仿人机器人道德法”除了确立人类与仿人机器人之间互动的底线之外，对于技术乐观主义者无限上纲地追求自身的“机器人化（Robotized）”也是一道重要的伦理防线。

奥地利人坎德鲍（Christian Kandlbauer）因为误触高压电而失去双臂，于是透过手术在其左臂加装连接神经可透过脑波驱动的假肢，右臂则安装普通假肢，这使他成为欧洲装设高科技脑波控制机械假肢的第一人，并且藉由人机之间的协调性顺利取得汽车驾照。不久之后，2010年10月某日坎德鲍开车上班途中却因为不明原因导致汽车冲撞路树使其本人伤重不治。坎德鲍事件或许只是“机器

人与人类合而为一”趋势的一个开端，但是随着未来机器人技术的发展我们还将遭遇若干道德上的重大争议，例如假使并非身体残疾，是否可以单纯因为追求时尚而任意使用机械改造手术摘除身体器官并以功能化的机械部件替换？其中最极端的例子莫过于将人类的大脑取出置入一部人型机器人躯体内，如同日本科幻小说家石之森章太郎（Ishinomori Shoutaro）作品中的人物“哈凯达”（人造人間ハカイダー）83，那么这种植入活脑的机器人究竟该如何认定其法律主体属性？坎德鲍事件背后所反映的问题是人类机器人化的合理界限与标准最终可能还是必须透过一套法制来加以确立。相较位于机器人法律框架底层的“机器人安全监管法”，“仿人机器人道德法”处于机器人法律框架的最上层，但在现阶段可能还缺乏实际且立即的立法需求，具体事例如 2007 年韩国政府公布对外宣布准备着手制定全世界第一部但最后却无疾而终的“机器人伦理宪章（Robot Ethics Charter）”。换句话说，“仿人机器人道德法”的立法必要性得在人类-机器人共存社会发展成熟后才会逐渐突显出来。84

机器人法律框架的特殊性呈现在上下两侧对于“道德的治理”以及“技术的治理”上，而其普遍性则介于两者之间以“修订法规（Revisions）”的形式呈现。过去几年内已经陆续出现许多现存法律与机器人科技双方冲突的实例，例如：与成人等身大的双足型机器人或者无人驾驶车一离开实验室随即面临道路交通法的限制；自律型服务机器人的民事侵权责任难以判断；智能房与小型民用无人机所衍生的隐私保护问题；具有杀伤力的军事机器人所引发的国际人道法争议等等。最后法律必须考虑进行适当的修正以促进机器人科技融入社会，在人类-机器人共存社会的萌芽期或许“修订法规”只牵涉到众多实体法规的一小部分，如道路交通法、侵权责任法、国际人道法，但随着机器人科技融入社会的范围扩大以及机器人科技本身的发展与进步，“修订法规”的范围势必将持续扩大延伸到其它诸法，如知识产权法、刑法85、最终乃至宪法等领域。

囿于作者所学以及背景知识，本文所探讨的机器人法律问题仅限于“服务机

(Accessed at November 25, 2013)
83 石ノ森章太郎（1972）人造人間キカイダー, 東京：復刊ドットコム
85 注：请参照本文附录 7.6：维尔茨堡大学 Eric Hilgendorf 刑法学教授访谈-“欧洲机器人法律研究”
器人安全监管”，选题动机与全世界第一部针对服务机器人的安全标准 ISO 13482 预定于 2014 年 2 月发行有关，这同时象征服务机器人的销售与准入市场正式进入了最后一哩。然而和传统微电机的安全监管相比，部分的服务机器人具有自主能力/自动决策的功能，也伴随着一种称为“开放组织风险”的副作用，同时这种新风险对于“事前的机械安全确保”以及“事后的法律责任分配”所造成的影响仍不明朗，也因此促成了作者思考开放组织风险以及服务机器人安全监管问题。

图 5. 研究范围：机器人安全监管问题

简言之，本研究的目标有三（1）探究开放组织风险的性质；（2）开放组织风险对于“事前的机械安全确保”以及“事后的法律责任分配”所造成的影响；（3）从监管的角度思考以开放组织风险为中心的立法政策框架，作为日后发展服务机器人安全监管法制的参考。

本研究的结构编排分为六个部分：第一章 “绪论：迈向人类-机器人共存社会”，首先以历史性的回顾方式对机器人进行综述介绍，并在选题意义上尝试描绘未来“机器人法律（Robot Law）”的雏形，至于文献探讨部分则尝试汇整学术界过去对机器人伦理和法律的讨论，并且区分为（1）机器人伦理、（2）机器人
与战争、（3）机器人与劳动力、（4）机器人与隐私、（5）机器人与安全等五个议题。

第二章 “风险社会与机械安全”，先导入风险社会理论接着点出科技全球化与风险治理问题。作者尝试以风险治理角度来观察机械安全，分别以“蒸汽机”与“微电机”的考察来理解两个不同时代的人类-机械共存情况。最后则是透过对于当代机械安全法制：汽车安全、铁路安全、电梯安全、工业机器人安全等法规结构面观察，分析现代以“物理安全”为中心的“微电机”安全监管框架。

第三章 “非结构化环境与开放组织风险”，延续前一章对“蒸汽机”与“微电机”的考察，继续进行对机器人时代的人类-机械共存考察。由于目前正处于机器人科技进入人类社会的萌芽期，对人类-机器人共存的考察而言的确增加了不少难度。因此在3.1的编排上作者尝试将它区分为二部分，第一部分“3.1.1编年史：机器人与社会-1973年至2013年”以按年份区分排列的方式汇整自1973年以来与机器人融入社会相关的重要事件；第二部分“3.1.2新机器人学：机器人作为第三的存在”则是从“新机器人学”形成之趋势切入，谈论关于机器人的定性问题。3.2 “开放组织风险与风险增生”探讨新机器人学引发的副作用-“开放组织风险”以及风险增生问题。3.3 “风险监督”研究人类-机器人共存社会初期的安全监管法制框架；3.4 “风险控制”则预测机器人安全监管体系从目前功能安全过渡到“安全智能”的趋势，并且将阿西莫夫机器人三原则与风险监管框架进行对比分析。

第四章 “个案研究（一）：智能汽车、自动驾驶汽车安全监管问题研究”则以汽车的智能化趋势为主题，探讨开放组织风险对产品责任与侵权责任造成的影响，以及对应的风险监督机制。第五章 “个案研究（二）：“Tokku”机器人特区与科技立法研究”则尝试以早稻田大学高西研究室“人型机器人：WABIAN-2R”和“汎用双足步行机械：WL-16RII”在福冈机器人特区进行的实证测试资料为基础进行立法政策研究。第六章 “结论”则归纳本篇论文的内容并作出总结。

综上所述，本文所关注的“服务机器人安全监管”是一个以风险控管为核心交叉于机械安全、法学与保险等领域的复合型问题，这也是本研究选择以具备自动决策机能之服务机器人特有的“开放组织风险”为切入点之动机所在，希望能
够透过对于“开放组织风险”的观察来进一步考察此风险对于“事前的机械安全确保”以及“事后的法律责任分配”所造成的影响，并且以监管的角度思考以开放组织风险为中心的立法政策框架，作为日后发展服务机器人安全监管法制的参考。
文献探讨

如同汽车产业的发展需要一套法制来支持其生产、销售乃至实际道路上的运行。在人类-机器人共存社会的前提下智能机器人一旦跨出实验室与工厂走入人类的居住环境势必也要考虑发展相应的法制，或称为“机器人法制研究（Robot Legal Studies）”。在过去10年间机器人伦理学已经开始关注机器人的法制化问题，此议题牵涉到机器人科技在军事用途的争议、劳动力替代的社会接受度、高新传感技术对于隐私、数据保护造成的影响以及机器人安全与民事责任等问题。是故，本文献探讨尝试汇整学术界过去以来对机器人伦理和法律的讨论，并区分为（1）机器人与道德伦理、（2）机器人与战争、（3）机器人与劳动力、（4）机器人与隐私、数据保护、（5）机器人与安全等五个议题。

1.4.1 机器人与道德伦理

2006年EURON欧洲机器人研究网络（European Robotics Research Network）推出了“EURON Roboethics Roadmap 白皮书”，该白皮书首度将机器人伦理学（Roboethics）由机械伦理学（Machine Ethics）中独立出来，其中两者最大的差异在于机械伦理学探究人工道德主体（AMAs）的行为，而机器人伦理学更关心的是人类本身的行为，即人类如何设计、制造、使用机器人科技以及如何与机器人互动。

Peter Asaro 对于机器人伦理学的看法则是将它们区分为三类，分别是（1）The Ethical Systems Built Into Robots，（2）The Ethics of People Who Design And Use Robots，and（3）The Ethics of How People Treat Robots。而根据Daniela Cerqui

的观察，机器人科研社群对于机器人伦理学仍然区分为三种态度：

（1）对伦理不感兴趣：认为机器人的动作完全是技术性的，不认为机器人在执行任务过程中涉及到社会与道德责任的承担。

（2）对短期的伦理问题感兴趣：关注好或坏的道德判断并涉及到文化价值与社会传统。

（3）对长期的伦理问题感兴趣：关心全球性、长期性的机器人伦理问题。

在短期面向上，过去一段时间里有许多学者十分关心的问题是东西方社会不同的文化、宗教与社会价值观对机器人伦理产生的影响。早稻田大学教授、人型机器人研究所所长高西淳夫（Atsuo Takanishi）认为日本社会对于机器人的高度接纳行为与传统日本神道教的“万物皆有灵（Animism）”观念有关，特别是“もったいない（Mottainai）”的想法，在日语中もったいない是指事物没有被充分地发挥其应有价值而造成了无谓的浪费之遗憾，其背后所反映的是日本人对于自然界生命万物的存在价值加以重视的一种思想观。北野菜穗（Naho Kitano）研究日本社会下的机器人伦理，她认为将万物皆有灵的观念投射在机器人身上，我们必须进一步思考的是如何架构介于个人(持有人)以及机器人衍生的灵性之间的“中介性（Betweenness）”，虽然机器人(或其灵性)获得承认而成为一种在西方社会中不易见到的特殊存在，然而中介性的伦理界限仍应以机器人作为一种附属于人类使用者之“工具”为主。仲田诚（Makoto Nakata）则发现和西方机器人伦理学相比，日本的机器人伦理学研究并不是那么关心机器人的自律性，其原因与双方文化背景“-场（Ba）”的差异有关。Cosima Wagner 从日本的历史、宗教与大众文化（漫画）等三个文化因素讨论何以日本社会对于机器人的接

89 Gianmarco Veruggio (2005) The Birth of Roboethics, Workshop on RoboEthics, IEEE International Conference on Robotics and Automation (ICRA’05), April 18, Barcelona, Spain
90 Atsuo Takanishi (2007) “Mottainai” Thought and Social Acceptability of Robots in Japan, Workshop on Robethics, IEEE International Conference on Robotics and Automation (ICRA’07), April 17, Rome, Italy
受度如此之高。\(^93\) Frederic Kaplan 则透过西方与日本社会的比较研究，分别探讨机器人在两个社会里获得承认的情况，他所提出的假说是科技在西方社会是一种界定人类（能力）的重要依据，所以小说情节中的人类-机器人通常处于紧张的状态；但是日本文化有一种善于吸收模仿外来文化技术的特质，加上神道教的万物皆有灵观念使得日本对于机器人有着正面的高社会接受度，于是乎机器人在日本社会里成为一种特殊的存在。

而对于长期的面向，我们必须思考的是若干机器人伦理学的结构性问题。1942 年艾萨克·阿西莫夫（Isaac Asimov）在其小说“转圈圈 (Runaround)” 中正式介绍了著名的“机器人三原则 (The Three Laws of Robotics)”，三原则在阿西莫夫的小说中作为一种约束机器人在人类社会中的根本道德规范，在三原则的约束下机器人不仅不能伤害人类还必须在执行人类命令与保护自身安全的潜在逻辑冲突下自行做出迎合人类道德的判断。Windall Wellach 表示阿西莫夫小说的创新之处在于颠覆了西方传统小说将机器人描述成“Bad Robot”的偏好，只要给予合适的道德教导机器人也可以做出对人类有益的事情。\(^95\) 但是对于教导机器人道德这件事首先必须思考的便是认同本身具备伦理判断认知的“道德机器人 (Ethical Robots)”和主张机器人伦理是约束人类的道德标准，无涉机器人自身道德判断的“机器人工学伦理 (Ethics in Robotics)” 两派争论。

经济学人（The Economist）杂志在 2012 年的“机器人伦理专刊”提到由于机器人自动化的提高，目前由人类操控为主的“Human in the Loop” 模式将逐渐被“Human out the Loop” 模式所取代。当机器人拥有高自主能力时，有许多的判断必须牵涉到人类的道德伦理和价值体系，例如一部无人驾驶驾驶汽车是否应该及时避开行人，如果做出这个判断的代价是撞到其它车辆或使自身面临危险？

Should a driverless car swerve to avoid pedestrians if that means hitting other vehicles or endangering its occupants?

Based on the above reason, Patrick Lin believes that while in the short term robots are unlikely to bear legal responsibility, the most natural way to reduce the risks of robot automation is to consider writing programs that make robots obey current laws or ethical norms, while humans must also follow the corresponding legal and moral norms.

Patrick Lin, Keith Abney, and George Bekey (2011) Robot ethics: Mapping the issues for a mechanized world, Artificial Intelligence 175.5-6, pp. 942-949

Ryan Tonkens 认为目前对于机械伦理学的讨论很大部分是在质疑这种由机器人守法的体制“能不能”被制造出来，但这种体制是否应该被制造出来的问题反而少有人提及。他的论证先以 Moor 的分类，将智能主体系统（Intelligent Agent）分成 (1) Ethical-Impact Agents; (2) Implicit Ethical Agents; (3) Explicit Ethical Agents; and (4) Full Ethical Agents。前面两者分别指带来伦理效果以及依循某种与伦理有关的规则被设计而成的机械，共通之处在于它们本身没有自律性，而后两者不但可以在真实世界行动，其行动也能部分或完全脱离人类的监督（Supervision）。根据伊曼努尔·康德（Immanuel Kant）的伦理学“理性（Rationality）与自由/自律（Freedom/Autonomy）是道德智能主体的基础”，但是发展一个守法机器人最大的问题在于其本身与康德的伦理学产生冲突，因为机器人是被人类强迫嵌入以人类价值为中心的伦理道德观。Tonkens 认为如果要制造出符合康德伦理学的道德智能主体系统（Kantian Moral Agency），适度地允许机器人做些不道德行为是必要的，但是这样却又违反了机器人伦理学家的初衷。另外，Michael 与 Susan Leigh Anderson 夫妇的主张则是 Explicit Ethical Agents 应该是机器人伦理所追求的终极目标，相较于 Implicit Ethical Agents 只能服膺于人类设下的范围内采取行动、Full Ethical Agents 的不可预测性，Explicit Ethical Agents 在遭遇道德判断难题时能够依凭自身知识进行最佳的实时判断。

英国政府机构预测 2050 年机器人将可望获得机器人权。Joanna J. Bryson 则抱持反对立场，她认为机器人就只该是奴隶，完全不应该有任何附属的道德和权利保护在其身旁，她论证的几点理由基于四个基本主张，分别是：(1) 有侍从
是有益且实用的，特别是排除拟人化；（2）机器人可以仅成为侍从而非为个人个体；（3）让人们拥有机器人是正确且自然的；（4）让人们联想到它们机器人的人格化是错误的。机器人伦理的争议除了讨论机器人自身是否能够服膺在机械伦理学的指导框架之外，另一个争议则是在机器人与人类彼此距离逐渐缩小的过程中究竟人类应如何与机器人互动？法律是否需要介入其中？如前面所提到的，“机器人伦理（Roboethics）”对于未来人类-机器人之互动关系将扮演一种指导性角色，然而其本质仅仅就是一种道德规范，并不具备法律的强制力。内容庞杂、范围浩大的机器人伦理只有其中少数牵涉到重大道德伦理争议的部分才需要考虑加以法制化。日本机器人学家石黑浩（Hiroshi Ishiguro）以他自己的外观为基础打造了一部外貌与其极为相似的仿人机器人 Geminoid HI-4。对此美国佐治亚理工学院机器人学家 Henrik Christensen 指出：

“从中产生出一个社会性的议题在于你有多想与这些机器人互动？一个你平常以礼待之的人，是否可以粗暴地对待他的机器人分身？这样是否合宜，例如你踢完一只机器狗之后马上告诫你的小孩不可以用这种方式对待一只真狗，究竟你要如何告诉你的小孩其中的差异？”

畅销书“Love + Sex with Robots: The Evolution of Human-Robot Relationships” 的作者 David Levy 曾经大胆预测在未来数十年内机器人将成为人类忠实的性爱伴侣，现阶段日本许多情趣用品业者在技术上已经完全有能力开发出外观、触感、尺寸几乎与真人无异的硅胶人偶，而导入智能科技制造出可与人类自然互动的情趣人偶将会是大势所趋，到时候这种人偶在销售及使用上可能牵涉到重大道德伦理争议而必须透过立法方式来解决。一种“仿人机器人道德法”除了确立人类与仿人机器人之间互动的准则之外，对于技术乐观主义者无限上纲地追求自身的“机器人化（Robotized）”也是一道重要的道德防线。

105 Joanna J. Bryson (2010) Robots Should Be Slaves, Close Engagements with Artificial Companions: Key social, psychological, ethical and design issues (Natural Language Processing - Book 8), Yorick Wilks (Ed), New York: John Benjamins Publishing Company
1.4.2 机器人与战争

2013 年 12 月 13 日也门中部拉达镇（Radaa）一列婚礼车队突然遭到美军无人机发射 2 枚火箭攻击，其中一枚火箭命中车辆，另一枚则击中车辆附近，总共造成 17 人丧生。根据当地官员描述，死者大部分是平民百姓。111 根据联合国特别报告员 Ben Emmerson 引述巴基斯坦政府统计数据指出美军自 2004 以来在巴基斯坦境内实施的无人机攻击行动一共造成约 2200 人死亡，其中至少 400 人是平民，另外 200 人可能属于非战斗人员。112 相较于美国政府官员宣称 “采用无人机攻击一切合乎国际法” 以及 “无人机的精准打击与常规导弹相比能够减低不必要的伤亡人数” 等说法113，以联合国为首的组织机构则质疑用国家安全为理

110 大西祥一、岸川真 (2013) 世界最先端兵器：衝撃の真相：ロボット兵器の全貌，东京：宝岛社，pp. 4-16
由隐瞒具体伤亡数字和选择打击目标过于宽松等做法皆可能与国际人道的原则产生冲突。然而无人机所衍生的法律与伦理难题可能不仅限于联合国专家所指责的两点而已。

Peter Singer 表示自亚里士多德以来的伦理学乃至二战后建立的日内瓦公约体系皆以人的意图和行动为规范的重心，但远程遥控却使得操控者的意图和机械的行动相隔千里之遥，法律与伦理对其行为施加控制的复杂性和困难度将增大，因此而产生了所谓的“距离问题（The Distance Problem）”。

岸川真（Shin Kishikawa）指出自第二次世界大战之后兵员的战斗力与杀敌力呈现飞跃式的成长，这与教育训练方式有关，特别是附带条件式将敌人人格否定的洗脑教育。他认为这种训练方式加上侵略性的攻击心理在使用无人机时将很可能产生 “过度杀伤（Over Kill）” 的结果。

Daniel Howlader 与 James Giordano 则认为无人机的出现与使用将因为降低发动战争的门槛进而彻底改变未来战争本质。

Pericle Salvini 指出使用无人机可能产生 “道德开脱（Moral Disengagement）” 的伦理隐忧，他引述 Robins 的论证表示对于经验的发生而言，接受灾难性或混乱性的基础能力是必要的，但是无人机这种利用人工视觉、远程操控的方式躲在敌人看不到且无法加以伤害的地方，完全避开了疼痛与苦难却也避开了经验，进而造成 “道德开脱” 的疑虑。

Kahn 则定义了所谓的 “无风险战争（Risk Free War）” 概念，无人机的操纵员在整个过程中完全没有任何威胁只消从屏幕中寻找确认目标并且给予打击，这和传统的交战行为之基本精神是违反的，至少在以往战争中士兵还有面对敌人的风险与压力，但是现在却完全消失了。

Robert Sparrow 观察到虽然无人机能够减少驾驶员肉体上受伤的风险，但是在心理上却

115 大西祥一、岸川真（2013）世界最先端兵器：衝撃の真相：ロボット兵器の全貌 东京：宝岛社，pp. 40-43

32
反而可能承受额外的压力，例如受限于机体的性能，驾驶员只能目睹在真实战场上战友伤亡、平民死伤或涉及战争犯罪行为却无力及时阻止。\(^{119}\) Marcus Schulzke则认为将机器人科技投入传统战争的结果可能是适得其反的，他分析苏联入侵阿富汗、英国在北爱尔兰的军事镇压以及美国入侵越南等军事行动，发现胜利关键在于如何获取地方支持，然而机器人与人类士兵相比完全缺乏社交能力，并且带给当地人民疏离感和压迫感，因此成为在人口过度集中的现代社会里使用无人机的潜在问题。\(^{120}\)

但是无人机最大的问题还是在于由“Human in the Loop”过渡到“Human out the Loop”中间是否需要一套完善的法制作为其后盾？2013 年联合国海恩斯特别报告员公开呼吁以美国为首的国家应该先暂停无人机的开发并等待联合国拟定相应的管制计划后再继续对无人机的生产与使用\(^{121}\)，该组织预计于 2014 年在瑞士日内瓦 UN 人权理事会召开会议，讨论是否仿照一战时期透过订立毒气禁止公约的模式来管制无人机。\(^{122}\)

与无人机议题紧接相关的是“致命性自律机器人 (Lethal Autonomous Robots)”，它的定义是指能够自动执行任务并且握有杀伤力开火最终决定权的机械，在搭配相关升级控制软件的情况下无人机可以成为致命性自律机器人，但是这种机器人却不低于无人机，应用更加广泛。2007 年 10 月在南非发生一起“机器人化”自动控制的厄立空防空炮（Oerlikon 35 mm Twin Cannon）突然误击军事人员事件而造成 9 人死亡 14 人受伤的不幸结果。\(^{123}\) 此事件发生后对于如

\(^{120}\) Marcus Schulzke (2011) Robots as Weapons in Just Wars, *Philosophy & Technology*, vol. 24, pp. 293-306

何制约致命性自律机器人使用的讨论也逐渐增多，Noel Sharkey 提出一个关键伦理问题在于机器人没有能力“分辨 (Discrimination)”士兵与平民，然而这却是日内瓦公约的最低要求，同时这种机器人也缺乏开火“比例(Proportionality)”的掌控。Patrick Lin 也指出在（1）机械自主能力日益增加；（2）环境的复杂性与非预期的使用；（3）设计人员无法预期机械的表现等原因下，对于致命性自律机器人的道德必须超脱出现有的“操作性道德（Operational Morality）”并进入“功能性道德（Functional Morality）”，而实践功能性道德的方式是建立一种机制使机器人能够在第一时间内对于牵涉道德的行动自行做出决策。他从 Top-Down 与 Bottom-Up 两个角度分别思考 Programming Morality 的可能性，他进一步指出 Top-Down 角度最大的难题在于人类专家如何适宜地表达与定义道德的内容，而 Bottom-Up 角度的难题则在于人工神经网络自行学习得到的行为模式通常没有办法清楚地解释其动机缘由，有如一个“黑箱子”。此外，如先前提到 Ron C. Arkin 以道德调节器、人机接口、责任监督者三者构成的“嵌入式伦理”框架，在 2008 年纽约时报的专访中 Arkin 表示自己并不认为自动机器人在战场上能够完美地表现合乎伦理道德的行为，但是他确信至少机器人的行为能够比人类士兵更加理性。John P. Sullins 则延续 Arkin 的假设探讨究竟机器士兵会否比人类士兵在战场上有更加理性和合乎伦理道德规范的表现？他指出人类对于“义战（Just War）”的思想与实践有着很长的一段历史，然而战士在对于这种命令的服从上却总是抓襟见肘。因此对于机器人自动服从道德规范一事他仍抱持怀疑的态度。

最后，致命性自律机器人的核心议题除了如何在分辨敌我、掌握比例分寸的

基础上建构出遵守道德规范的机制之外，其法律责任归属也是必须加以关注的问题所在，Robert Sparrow 分别从程序设计师，指挥者与机器本身三个不同角色来探讨这个问题，通常程序设计师及其团队只在本身与有过错的情况下对机器人的不当行为负起责任，理由有二：（1）一般厂商会告知持有者/使用者系统误射击的可能性；（2）自律型机械具备学习能力，一旦投入使用将随著与环境的互动的增加而逐渐脱离原初的设定。至于指挥者下达命令给机械，却在执行过程中造成误击的结果是否应该负责？而其中的争议在于究竟自律性（Autonomy）的范围仅止于完全按照指挥者命令机械式地执行或者在执行过程中涉及到很多必须由机械来诠释指挥者命令的内部决策过程？就后者而言 Sparrow 倾向认为不需要由指挥者来承担责任。至于机械本身的责任承担，尽管 Luciano L. Floridi and J. W. Sanders 认为机械有可能承担责任但 Sparrow 还是认为并不适当，理由在于除了我们不清楚如何让机器来承担责任之外，这是否意味着可以对机械施加惩罚或奖励？

Marcus Schulzke 则质疑 Sparrow 对于自律型机器人责任承担的主张，他认为 Sparrow 忽略了军事体系阶层化结构对于责任分摊与行动者自律性的限制，只要自律型机械在“军事阶层（Military Hierarchy）”体系中相应的责任与自动化程度得以判断，那么要求相关程序设计师、指挥者甚至机器来承担责任皆是可能的，不过 Schulzke 也补充说明所谓的机器责任承担具体上是要求程序设计师与指挥者代位承担责任，同时他认为即便机器具诠释指挥者命令的高自律性相关人员还是要负责，因为他们必须对于让机械如何展现其自律性的决定负起责任。

对于复杂的自律型机器人责任分配问题，美国海军水面战争中心（US Navy - Naval Surface Warfare Center）工程师 John S. Canning 直接提出了一个简化方案，他的奇想是“让机器人去打机器人，人去打人（Let Machines Target Other Machines, and Let Men Target Men）”。

动攻击，但是如果目标是人类的话无论如何必须有人类监督者的授权方可发动攻
击，在 Canning 的架构下至少很大程度上简化了人类指挥者与机械之间责任分配
的模糊性。

1.4.3 机器人与劳动力

美国亚马逊公司在 2012 年 3 月以 7.75 亿美元收购 KIVA System。134 KIVA 机
器人系统是一种外观类似 ROOMBA 吸尘器并且能够在大型仓库里搬运货物、自由
移动的机器人，根据专家估算在整合 KIVA 机器人技术进入自身仓储系统后亚马
逊公司每年约可节省 4.58 亿至 9.16 亿美元135，其中节约幅度最大的可能是人事
费用的支出，因为在先前亚马逊的实验里，巨大物流仓库只需要 2 人管理便能完
善运作。日本川田工业（Kawada Industries, INC.）则推出了拥有人型上半身、电
脑视觉能代替人类完成特定工作的 NEXTAGE 机器人。2013 年 3 月日本大型货
币处理机企业 Glory Inc. 将 NEXTAGE 引入其工厂生产线中，负责零件组装的工作，
据说 NEXTAGE 机器人可以完成 80%的组装作业，只有最后一道工序是由人类负
责的。136 这些时事背后所反映的是未来机器取代人类劳动力的机会与隐患。

“机器是否会取代人类的工作?”，这是自工业革命以来持续被讨论不休的
问题，而其中关键还是在于机器在当时社会文化氛围下社会接受度的高低与否，
例如 1811-1816 年间英国诺丁汉与英格兰地区等地展开的“卢德运动（Luddite）”
起因便与人们对机器的抗拒有关137，这也说明了 19 世纪时期人类对于机械辅
助生产的接受度远不如今日的开放。2011 年 8 月富士康公司宣布在未来三年内
生产百万部工业机器人并部署于组装工厂中，同年 11 月郭台铭明确表示 2012 年

134 李丽 (2012) 亚马逊收购仓库机器人公司 Kiva: 提高仓储效率, IT 之家 (2012-3-20),
135 徐一嫣 (2013) 亚马逊仓储试用机器人: 每年节省约 9 亿美元, 新华网 (2013-12-09),
136 川又英纪 (2013) 郭台銘機器人大夢 日本人先做到了, 台湾商业周刊 (2013-5-22),
(Visited at December 13, 2013)
December 13, 2013)
富士康将以日产千台的速度生产 30 万台工业机器人并投入单调、危险性强的工作，该言论曾在中国社会内引起一阵广泛讨论。Pericle Salvini 认为衡量机器人社会接受有两个角度可以切入，第一是在设计机器人是必须考虑到功能性过强的机器是否会造成取代人类工作的社会问题；第二则是科技本身是否有助于增加工作者的生活条件与工作质量。

除了社会接受度因素，在技术乐观主义者和技术悲观主义者两方阵营的对立下也逐渐形成颜色分明的两种立场。乐观主义者如IFR国际机器人联合会在表示到2020年自动化产业将在全球直接或间接创造190万到350万个工作机会，悲观主义者如Erik Brynjolfsson与Andrew McAfee则认为机器人科技所带来的新就业机会远远少于它所抢走的工作机会。由于作为一种“复杂系统（Complex System）”的人类社会其内部组成个体与总体的微妙关系不易划清，因此欲一刀划开采用Yes or No二分法来谈“机器是否会取代人类的工作?”本身就是一个值得再商榷的问题。

1. 4. 4 机器人与隐私、数据保护

美国加州帕罗奥多研究中心（PARC - Palo Alto Research Center）的Mark Weiser 曾提出“普适计算（Ubiquitous Computing）”概念，在此构想下计算将无所不在，并且以多种形式呈现。而今日的物联网科技可以说是实践普适计算的一种手段，例如车联网技术透过车内传感器与嵌入式处理器达到透过计算来提升汽车
的环境感知能力；云计算本身作为强大的在线计算平台亦可透过管理数据流的形式来实践普适计算。无论如何，普适计算的概念最终还是会实践在机器人身上，如果你可以把它想象成串连许多传感器的一组机械网络，或者“联网机器人（Networked Robotics）”。

机器人的网络化是在经济效益衡量之下不可避免的技术发展趋势，但是透过网络平台放大的环境感知能力却必须直接面临法律与道德等社会规范的检视，即机器人的感知能力应用是否只考虑技术、成本与商业价值等因素，或者我们必须考虑到在机器人与人共存的前提下对技术设下若干限制？一个明显而立即的问题在于考虑对机器人强大传感能力之限制与隐私保护，例如东京大学团队开发出一种“移动体传感器技术（Moving Object Sensing Technology）”146，透过散布在住宅内部大量的传感器与集中统合传感信息的中介平台服务器，房屋内部的空调、冰箱、电视甚至机器人皆可透过与“智能屋”的互动获取许多以屋内人员为中心的生活习惯数据记录，例如个人影像记录、平常进/出门与就寝时间记录、体温与心跳脉搏的变化记录、个人喜好的食物取用记录、个人喜好的电视节目收看记录等等。以这些巨量实证数据为基础，机器人将知道如何“投其所好”来与人类互动，但是人类在如此强大的传感器监控之下生活将可能造成“侵入式隐私”的保护问题。147

洪延青指出在公共场所架设摄像机可能涉及侵犯人的“资讯隐私权”148，机器人衍生的隐私保护问题并不限于室内，户外环境也可能面临到隐私被机器搜取的问题。西班牙 Alberto Sanfeliu 团队透过机器人户外实证实验研究发现了若干对隐私保护可能产生的潜在问题，以及使用部署服务机器人在户外所需考虑到的新政策，例如机器人的自主导航必须仰赖摄像镜头对于人员的辨识，在欧洲法

144 王正宏（2010）云的风险：云计算的技术风险分析，北京大学互联网法律通讯（6）5
147 翁岳暄（2010）云的管制：迈向社会系统设计之云计算法律框架，北京大学互联网法律通讯（6）5：64-72
148 洪延青（2008）摄像头下的公共隐私，余凌云、王洪芳、秦晴主编：摄像头下的公共隐私，北京：中国人民公安大学出版社，pp. 97-123
在户外使用机器人可能必须配合街头 CCTV 摄像机使用的管制，以及数据的匿名化 (Anonymous) 或至少通知并取得相关人员的同意等。149

京都 ATR 智能机器人研究所的荻田纪博 (Norihiro Hagita) 则将机器人服务网络平台区分成三种类型，分成 “看得见的实体机器人 (Visible Type)”，“软件构成的虚拟机器人 (Virtual Type)” 与 “直观上不易察觉的传感网络 (Unconscious Type)” 来讨论隐私保护问题，他的观察是市场里一个成熟的机器人服务必然包含三者，所以隐私保护必须从整体面来思考150，以 ATR 曾实施让机器人协助老人在超市购物的实验为例，老人在家中观看购物信息时使用到 Virtual Type 虚拟机器人，到超市门口透过 Unconscious Type 传感网络的整合与机器人会合，最后在购物区购物则直接与 Visible Type 实体机器人进行情感交流互动。151 虽然人机互动对于服务机器人来说是至为重要的，但机器人必须具备辨识人的能力才能够流畅地与人互动，Min Kyung Lee 则提醒在机器人辨识人脸的机制里面包含隐私被不当暴露的风险。152

服务机器人的安全监管兼具物理接触的 “机械安全” 以及非物理接触的 “信息安全”，因此从技术—信息安全的角度来思考个人数据保护也是必须的，云计算的盛行和普及将使未来许多机器人将选择以这种方式进行数据的传输，或者从 “机器人的互联网” 里面上传下载数据。回顾 2007 年谷歌联合 IBM 推出云计算概念并使该名词一时洛阳纸贵153，于是许多人也开始关注云计算的法律问题，包含著作权保护、服务条款问题、隐私争议及个人数据保护问题等等。然而云计算技术本身的特殊性在于透过虚拟化技术使大量的计算资源得以从个人计算机端

流入大型服务器端，回复“前-PC时代”计算资源由少数人实质掌控的中央集权模式，以白话的方式呈现就是一种“吸星大法工程”。直到2013年6月美国前中央情报局职员斯诺登在香港揭露美国政府正在悄悄进行的“棱镜计划”后我们才惊觉或许云计算最根本的法律问题还是在于如何有效地落实其信息安全的监管制度。

另外，如果我们将“联网机器人（Networked Robotics）”视为“物联网（The Internet of Things）”的一种，那么云计算的信息安全隐患也将会反映在联网机器人上面，一方面不肖分子或黑客可以透过机器人身上装备的各式传感器获取许多实时实境的个人信息，如果联网机器人不是以人型或动物的方式呈现，而是一个布满各类传感器的“智能屋（Smart House）”，那么对于智能屋的使用者而言一种1984年155的压迫感和威胁感将立马产生；另一方面为了节约对于实世界探索所花费的计算资源，机器人也利用专属机器人的互联网来下载获取信息，例如最近刚结项的欧盟FP7科技框架计划项目：“机器人地球（ROBOEARTH）”156研究一种专属机器人的信息共享平台，只要有一部机器人探索实世界并且将信息上传至“机器人地球”服务器里该信息便可以在短时间为全世界各地的其它机器人所下载使用。157而其信息安全隐患在于有隐私侵犯争议的信息可能在极短的时间内被大量的机器人共享，除此之外，一个新热点在于万一黑客入侵服务器恶意修改信息内容或者由机器人上传的信息本身就是有问题的，这些“有瑕疵的信息”经由机器人的长期使用很可能进一步影响到机器人本身的决策以及自律行为。158在这个面上并非物理接触的“信息安全”最终还是会对传统物理接触的“机械安

154 翁岳暄（2010）云的管制：迈向社会系统设计之云计算法律框架，北京大学互联网法律通讯（6）5：64-72
全”造成影响。就具备自动决策机能的服务机器人安全监管尚还必须考虑到伦理面向问题，即在机器人自动执行任务的过程中我们要如何确保一种“安全且不突兀”的人机互动（Human-Robot Interaction）模式得以落实？

1.4.5 机器人安全监管

西方心理学家亚伯拉罕·马斯洛（Abraham Harold Maslow）的“需要层级理论（Theory of Hierarchy of Needs）”将人的需要分为五个层次，由底层开始分别为：(1) 生理的需要（Physiological Need）：对于生存与维持生命所需的基本需要，如人对食物、睡眠、性、住所的需要；(2) 安全的需要（Safety Need）：保障自身安全，包含物理面与经济面；(3) 归属和爱的需要（Belongingness and Love Need）：同人群往来、社交的需求、获得团体的认可、对朋友、爱人渴望皆属于此需求；(4) 尊重的需要（Esteem Need）：指人们追求稳定社会地位或得社会认可的需要；(5) 自我实现的需要（Self-Actualization Need）：这是最高层次的需要，指实现自身个人理想和自己能力相符实践的需求。而安全乃是仅次于人类维持生理本能之外的最重要需求，也是人类-机器人共存中必须优先确保的事项。

图 6. Maslow’s Hierarchy of Needs Pyramid

从风险控制角度来看法律对于科技产品的安全监管通常区分为抑制产品本体风险的“安全性（Machine Safety）”确保”以及防止人为恶意介入的“信息安全（Information Security）”监管框架。前者如行政部门对于汽车生产安全性订下的“型式批准”/“强制性安全标准”或者民航机的“适航认证”等管理制度，业者如果违反规定的话除了遭受行政法规裁罚若产品瑕疵导致使用者受到伤害还必须另外负担民事产品责任；后者如美国欧洲的“网络安全法案”，除了规范网络使用环境与标准之外，对于黑客入侵网络系统的恶意行为通常诉诸于刑事责任。然而如前面所提到的，服务机器人安全监管兼具物理接触的“机械安全”以及非物理接触的“信息安全”，因此这两种传统上泾渭分明的监管思维可能必须寻求新的出路。

除了汽车现有的安全监管制度，民用无人机进入一般民众生活区域的应用也将出现行政部门在法律上如何对这种机械采取监管的新问题。依照美国联邦航空管理局（FAA - Federal Aviation Agency）规定，空域被分为A至G不等的监管层，距离地表1万8千英尺到6万英尺的是供商用民航机使用的A类监管层；至于BCD类监管层则属机场周围空域，依照城市和机场的不同而做出区分，700英尺至1200英尺的低空空域则属于G类监管层。以往低空G类监管层不受到监管同时也缺乏相关法律规范，然而自从亚马逊在2013年宣布考虑将民用无人机用为送货工具之后，这个法制化需求才逐渐开始受到重视。161 根据统计，一旦无人机开始进行商业应用将马上创造7万个就业机会，其中飞机制造部分就占3万4千个，然而国际无人机系统协会（AUVSI）也表示美国商业和民用无人机发展的最大障碍是缺乏相关部门的监管。例如美国在2013年就曾发生一起关于无人机使用与公众安全的法律纠纷，美国联邦航空管理局认为无人机操作员Raphael Pirker使用无人机飞越弗吉尼亚大学校园的行为涉及透过摄像镜头拍摄建筑物与街头车辆，属于非法的飞行行为，而Raphael Pirker则认为联邦航空管理局没有权限干涉他合法使用无人机，他反驳的理由认为联邦航空管理局的管制规定并未依照美国行政程序法案

举行听证会，因此属于无效规定。162

正当美国国内发生无人机监管的法律争议时，2013年12月29日北京首都机场
以东空域一架由航模改装的无人机在未经事先履行行政审批的情况下擅自进行
测绘作业，导致10余架飞机延迟起飞，2架飞机实施空中避让。163 目前中国对于
无人机安全监管的法规仍然十分缺乏，虽然中国民用航空局飞行标准司已经发行
“民用无人驾驶航空器系统驾驶员管理暂行规定”，并预计将在2014年6月推广实施
相关管理措施及细则，但其范围仅限于对于“人”，即无人机操作员的考照认证
等监管规定，而“机械的安全性确保（强制性技术标准制定与认证）”和“空
域-空中法规”仍是未来完善无人机安全监管法律框架所不可或缺的重要部分。

162 Unsigned Editorial (2014) 美国商业无人机产业发展亟待突破法规限制，私人飞机网
February 12, 2014)

163 王莹莹 (2014) 想开无人机?先考“驾照”！Vista 看天下 (2014.1.12) Available via
http://mp.weixin.qq.com/s?__biz=MjM5NDA5NDcyMA%3D%3D&mid=100214251&idx=2
&sn=282a1c8b9abc8f051c83a0604bd492a4 (Accessed at February 12, 2014)
贰．风险社会与机械安全

2.1 现代风险社会

2011年3月11日在日本东北地区外海引发的9级强震与海啸造成福岛第一核电站机组炉心融毁、辐射外泄之严重灾情⁶⁴，成为继1979年三哩岛(Three-Miles Inland)与1986年车诺比(Chernobyl)事件以来全球核能安全史上第三起重大事故。这也使我们联想到20世纪至今人类由于高度仰赖科技支持其社会运作，无形之中却也产生了许多副作用，即风险。

强世功指出历经改革30年之后中国快速地完成了社会的现代化，并且在未来的改革发展中即将面临高风险社会的一连串挑战⁶⁵，而中国内部的体制转型导致社会结构的持续分化，形成一种具有弹性的社会结构。⁶⁶ 对于迈入风险社会的中国，无论是食品安全、环境问题、金融秩序乃至于核能安全的风险分配都是跨越阶级的，换句话说，所有人员都是休戚相关的命运共同体。

风险社会理论最初由乌尔里希·贝克(Ulrich Beck)在1980年代所提出，贝克一开始先将现代性区分为第一现代性与第二现代性。第一现代性是以民族国家为基础的，而第二现代性则是因应全球化与金融危机等的共性，传统工业社会的风险属于第一现代性，而当风险演化到世界的层次时将突破第一现代性的范畴。根据贝克的说法风险社会是一种新的社会结构态样，有许多特征和传统工业社会不同，例如风险的承担由以往的阶级转成个体，决策群体也呈现有组织的不负责任，因为在复杂因果关系之下你难以明确化分责任承担，另外也出现所谓的亚政治单元与现存政治利益体系冲突。⁶⁷ 贝克认为工业社会的生产活动引起风险社会，工业社会的生产伴随着短期可见的污水废气，也包含长期不可见的辐射污染与贫富差距等副作用，经过长期积累将以某种形式反馈给社会，进而形成所谓

的“风险社会（Risk Society）”。

风险社会的第二现代性并不等同于后现代，和解构主义强调的异质性、单一性、特殊性不同，第二现代性创造了一个没有外部、没有他者、没有出口的“共同世界”。“第二现代性的特征如贝克所提到的现代社会是全球性、利己主义、个人自我实现的伦理观所构成的一种“更道德的风险时代”，因为在自我实现价值观下成长的人们对于人权、伦理将有更高的要求。此外“个体化”反映出一种制度化的个人主义，作者的理解是在社会中个人主义兼容并存的最大公约数。然而第二现代性本身的风险在于不确定性导致人们对于生活的恐惧，例如一种对于现代社会失业率攀升的恐惧源自于社会被越来越多的智能技术取代时工作社会的终结。中国近年来层出不穷的“黑心食品”，北京等大城市饱受雾霾空污侵袭，2008年美国华尔街爆发并且蔓延全球的“金融海啸”等事件的风险性质皆有一个共通点，那就是建立在人为决策基础之上但却无法有效地用传统风险微积分（计算）的管控方式解决。贝克曾指出瘟疫、饥荒、自然灾害和风险有本质上的区别，因为不是建立在决策基础上的。工业社会前的灾难无论多大、多惨烈也只来自外部自然界对人类命运的打击，但自从迈入工业社会之后的200年间，人类对于灾难的认知开始产生结构性的巨大转变，人们不再怨怼虚无飘渺的上帝神灵而要求做出风险决策的专家组织、政府、经济集团负责。

对于问题的承担，工业社会时期发展出一套风险微积分学（计算模式）吸取风险。风险是超个人的，藉由制度引发并可由统计描述；另外允许技术道德化，使技术沾上道德评价。这套模式衍生出两个现象，分别是（1）风险由个体事件变
为制度事件；(2) 保险建立在无过失基础上。工业社会以这种模式对付自身不可预见的未来。然而风险社会第二现代性的出现导致对于传统工业社会风险微积分学（计算模式）的挑战。首先，人们关注全球性、不可挽救的损害，于是金钱补偿丧失了其意义。其次，预防性的事后安置措施（After-Care）在最糟糕设想的致命性危害下也被加以排除，因此以预期其监控结果为主的安全概念也失败了。第三，“事故（Accident）”失去时间上空间上的定界，也丧失其意义，成为有始无终的事件（Event），标准、程序等计算危害的基础被遗弃，于是无可比性的实体被拿来比较，风险微积分学（计算模式）也就变得模糊不清。风险的社会根源阻碍了负有责任状态问题的“外化能力“，特别是风险结果与破坏程度无法推算，风险责任主体模糊与缺位，最后导致对于风险造成之灾难的因果关系责任主体不明。

根据贝克的主张，现代社会必须处理自己造成的人为不确定性，分为第一种是能被控制的决策依赖型风险；以及第二种是逃脱控制使工业社会的控制需求归于无效的危险（不可保险性），而其中工业社会决策模式与全球性产生变化将导致危险通过匿名而成长。在第二现代性的风险社会下，虽然风险的分配是超越阶级的，但对科技话语权的垄断的专家政治下的治理最终将造成“有组织的不负责任”现象，即“没有一个人或机构似乎明确地为任何事负责”。

174 Ulrich Beck 著；吴英姿、孙淑敏译（2004）《世界风险社会》，南京：南京大学出版社，pp.69-70
175 同上，pp.72
2.2 科技的全球化与风险治理

世界贸易组织的建立以及现代知识产权制度的国际化无疑助长科技全球化发展的趋势，贝克认为全球化、演化、全球性的发生乃是第一现代性与第二现代性的分水岭，迈入第二现代性的风险社会映射出一种全球化视野的科技风险问题，例如在2013年12月台湾日月光半导体公司由于违法排放工业废水污染当地环境因而遭到高雄市环保局裁定K7厂停工处分。作为全球半导体封装测试龙头，日月光的停工裁罚背后所衍生的危机是三分之一半导体供应链将因此而断裂，对全球半导体产业产生不小的冲击。177

在风险社会中，人类对于科学技术的风险治理仍然面临许多挑战。拉什提到技术资本主义试图利用技术手段来解决风险，但是却又会衍生出新的风险。178 吉登斯也提到现代化的发展产生了不同于传统社会的时空结构，并且在越来越大的程度上将时间和空间分离开来，这使得风险的管制维度变得更加地复杂。周桂田则认为全球化并非只是同质、单一的普遍发展，它是一种不断发展的动态过程，因此对于任何地区而言更贴切的描述应当是“全球化地化（Globalization）”，也就是将地域的特殊性考虑至全球化之中。他以基因科技风险治理为例，指出基因科技的主要风险包含“基因治疗风险”与“基因改造动植物引起的科学与生态风险”二类，由于基因科技带给各地的风险程度不一，所以应当以个别社会对于总体风险的认识和防范为依归。180

吴汉东认为对知识产权的技术性风险可采取法律控制和技术规制的综合治理机制，事实上不仅止于知识产权的技术性风险，其它的科学技术风险如机械
的物理安全、互联网的服务器与网络层的信息安全、基因科技的风险治理等都曾采用过法律控制和技术规制并行的风险治理机制，原因在于科学技术的高技术知识性、复杂性与不确定性使得管制者不得不考虑授权让具有丰富知识背景的技术专家来负责制定技术规则。然而这种由“法律描述总体规则，细部技术规则由专家定义”的协作模式背后所隐含的问题在于，诚如贝克所观察到的“一种极大的危险在于将解释危险的专利由全体人民让渡给制造危险的人”183，最后形成所谓的“有组织的不负责任”现象。

自瓦特改良蒸汽机关键技术以来200余年人类社会已历经三次产业革命。机械作为日常生活辅助工具的使用已经相当地普及至人类社会各阶层，包含交通工具的火车、汽车或者是自动化设备的自动门、升降机乃至工业机器人。然而血淋淋的温州动车事件184和武汉电梯事故185所造成的惨重伤亡也让我们见识到机械的潜在风险及其可怕之处。基于机械设计、生产与制造的复杂性，现今机械安全之确保在很大程度上是采取委由专家技术自治的模式来落实机械的风险治理，最具代表性的莫过于ISO/IEC Guide 51三阶段机械安全风险评估（Risk Assessment）指针186，机械的安全性透过客观、科学化的分析与评估得以落实在其设计与生产制造的所有环节中。这种以工学为核心的理念安全性确保手段本质上就是将机械风险视为一种物质特性，并且用成本效益评估的逻辑来治理其潜在风险，特别是“工业机器人安全监管”。过去以来工业机器人的功能设计就是着眼于不与人类互动、不介入人类日常生活环境的封闭空间，如工厂生产组装线，历经数十年来对这种固定模式的依循，机械安全监管与风险治理也就自然而然地视将风险视“某事件造成损害的概率”的精确控管为理所当然，而下一代服务机器人的功能设计以及机械安全监管所带来的新冲击为“开放组织风险”的产生以及“风险作为一种社会建构的属性”价值的突显。

2013)
183 Ulrich Beck 著；吴英姿、孙淑敏译（2004）《世界风险社会》，南京：南京大学出版社，pp. 78
184 国务院“7·23”甬温线特别重大铁路交通事故调查组（2011）“7·23”甬温线特别重大铁路交通事故调查报告，2011 年 12 月 25 日
诚如顾忠华提到的，风险社会学并不单纯将风险视为一个技术性问题，风险的形成还包含复杂的沟通与决策过程。作者在此提出一个思考就是为何机械安全的风险治理总是侧重在技术性问题而缺乏一种沟通与决策过程的传统？作者认为一种可能性是因为以往的机械功能较简单、使用的情景与投入应用的环境比较具体因此可预测性高，机械安全标准的遵行几乎可以涵盖大部分的潜在风险，至于少量无可避免的机械使用事故与意外事件则透过法律责任与保险机制来解决。但是未来随着机械智能的提升和功能增长，机器人对于环境的适应性也将大幅地提高，而这衍生的新问题就是将机械风险视为一种物质特性、以工学为核心的机械安全性确保手段究竟是否依然能够有效一如以往地“吸收风险”？当机械更进一步地融入人类所处的开放环境中其风险在人类-机械共存的前提下似乎不能只是单纯的“技术性问题”，而法律作为一种调整人类-机械共存关系的工具势必变得更为重要，因此以下就机械安全的风险治理，作者希望采取一种框架性的探讨，研究下一代服务机器人进入人类社会后可能对目前机械安全法制框架产生的影响。而在本章的后半部分，作者尝试先观察过去以及现在的机械安全管制以作为研究的参考依据，包含“蒸汽机时代的人类-机械共存考察”、“微电机时代的人类-机械共存考察”与“当代机械安全法制分析”三部分。

187 顾忠华（1993）“风险社会”之研究及其对公共政策之意义，台北：国科会科研项目
2.3 机械安全

2.3.1 蒸汽机时代的人类-机械共存考察

公元1世纪，古希腊数学家与工程师海伦（Heron Alexandria）开发出“蒸汽汽转球（Aeoli pile）”装置。根据史料记载此乃全世界第一部蒸汽发动机，但蒸汽发动机的实用化却迟至18世纪才以英国为中心向欧洲大陆推展。1763年冬天，英国格拉斯哥大学技工詹姆士·瓦特（James Watt）在一个偶然维修纽科门式蒸汽机（Newcomen Steam Engine）的契机下激发他对于蒸汽机的研究兴趣。之后的1765年至1790年间他不断地改良纽科门式蒸汽机的不足之处，例如推出分离式冷凝器、行星齿轮机构、在活塞行程中关闭进气阀、平行四边形机构、示功仪、平行运动连杆机构、离心调速器、压力表、曲柄连杆机构等等，而其中最值得关注的应该是属于离心调速器的发明，透过对进气阀开启程度的控制进而调整蒸汽机的转速，这不但使得蒸汽机的安全性得以确保，大大地增进其产业实用化，同时也为自动化技术投入人类与机械共存的应用开创了先河。

瓦特的改良式蒸汽机使得机械用于提升人类工业产能成为可能，并且很快地普及到各领域之中，例如蒸汽动力火车、蒸汽动力轮船与蒸汽动力纺织机等等，但是社会却也出现部分对机械的负面反应。首先是关于机械的社会接受度问题，1811-1816年间英国诺丁汉与英格兰地区等地展开的“卢德运动（Luddite）”即显露出人们对于机械取代劳动力的排斥与不满。1865年英国议会推出一部对汽车的普及造成严重阻碍的“红旗法（The Locomotive Act 1865/Red Flag Act）”，其中离谱的规定如：“规定自走式车辆应伴随着3名人员，驾驶、操作员以及一位旗手在该车前方60码（约55米）的距离高举红旗步行”。“旗手（白天）或提灯笼者（晚上）必须严格遵守速度限制，当骑士或马车接近时有预先告知的义务”。

188 菅野重樹（2011）人が見た夢 ロボットの来た道，東京：JIPM-S，pp. 36
189 Muirhead, James Patrick (1858) The life of James Watt: with selections from his correspondence. J. Murray. 1858:19

日本“黑船事件”发生的第二年，1854 年美国海军准将马休・佩里（Matthew C. Perry）再度率领东印度舰队抵达日本并且赠送江户德川幕府 33 种珍贵的土产，其中一件便是缩小常规火车 1/4 尺寸的蒸汽火车模型。1854 年 2 月 23 日幕府官员在横滨海岸旁一处麦田铺设轨道对蒸汽火车进行测试，不料见到喷出白色烟雾的火车头沿着轨道缓缓前移的情景在场官员竟一片哑然，不约而同地认为这一定是“红毛人所施展的魔法”。196 1865 年，英国商人杜兰德（Durand）未经清政府许可自行在北京永宁门（宣武门）外建立 500 米长的铁路，根据徐珂所著《清稗类钞》记载197：

“英人杜蘭德於同治乙丑七月，以長可里許之小鐵路一條，敷於京師永寧門外之平地，以小汽車駛其上，迅疾如飛，京人詫為妖物”。

194 Benz Patent-Motorwagon, Available via Mercedes-Benz Museum, Stuttgart, Germany
197 （清）徐珂(1917)《清稗类钞》北京：商务印书馆
随后不久这条宣武门外展示用铁路便遭到清政府强制拆除。11年后，即1876年在英美合谋，由英国主导下中国第一条营运铁路—“吴淞铁路”建成，并连接上海与吴淞两地，长度14.5公里。但通车不久即被清廷花费28.5万两白银买断铁路设备，拆除后为避免不必要的纠纷同时顺应台湾巡抚刘铭传先前奏请设台湾内铁路之要求，于是将枕木铁轨运往台湾存放。200当时清朝官员反对兴建铁路的理由主要有三：（1）资敌；（2）破坏风水；（3）引起失业。201蒸汽机时代尚缺乏今日定量科学化的机械安全体系，人类—机械共存很大程度上是建立在一种“心理安全（Psychological Safety）”上，例如蒸汽动力机械在西方卢德份子的眼中是造成人民失业的帮凶，而在中国一些农民眼里却又是破坏风水的祸首，这种心理安全的缺口也是造成当时人民对于机械社会接受度不足的主要因素之一。

2.3.2 微电机系统时代的人类—机械共存考察

近代计算机科学之兴起乃奠基于1936年英国数学家阿兰·图灵的“图灵机（Turing Machine）”设想以及1946年美国冯·诺曼团队提出的“EDVAC-储存程序通用电子计算机方案（即冯·诺曼架构）”。20320世纪中期计算机的出现使得电脑辅助人类的范围得以进一步地拓展开来，除了应用于军事弹道计算204，
民生人口统计之外，1961 年 George Devol 和 Joseph · F· Engelberger 合作成立的 Unimation 机器人公司售出全世界第一部工业机器人 “Unimate” 也象征着机械辅助人类生产活动已经迈入自动化的新里程碑。但可惜的是上述情节并不具备人类-机械共存的代表性，原因在于直到 1980 年代个人计算机（Personal Computer）的普及之前，被垄断的计算资源完全是由政府与 IBM 等少数企业的大型机台（Main Frame）来执行弹道计算和人口统计等计算性任务的，换句话说，计算资源不流通于民间而集中于政府和少数企业的手上。另一方面，尽管工业机器人能够有效地替代人类进行部分组装生产活动，但基本上机器人的活动范围极为有限，仅限于与外在社会隔绝的工厂内部，而且许多国家的劳工卫生安全法规出于安全考虑均强制要求在工业用机械臂架设护栏以保护劳工受到伤害，因此严格来说 21 世纪以前的工业机器人尚未能实现人类-机械共存。

不过值得关注的一点是和工业机械手臂采取相同控制架构的单片机（Single Chip System）和可编程逻辑控制器（PLC-Programmable Logic Controller）等微控制器（Micro Controller）技术，藉由社会对于民生消费电子用品与大众运输交通工具的大量需求一举实现了 20 世纪微电机系统时代的人类-机械共存。根据汇流排与暂存器的宽度，微控制器通常可分为 4 位、8 位、16 位、32 位四种规格，一般家电用品如电锅、冰箱、微波炉等采用 4 位微控制器；8 位、16 位微控制器则用于一般控制领域，如商场电动手扶梯的变速转换装置、大楼内部电梯楼层控制主机、停车场栅栏控制主机、自动门、自动旋转门、交通信号系统（红绿灯）、ECU 汽车用电子控制组件、ATS 列车自动停止装置等等，不胜枚举。

搭载微控制器的机械系统具有执行人类予设循环指令的“反射式智能”

207 翁岳暄 (2010) 迈向社会系统设计之云计算法律框架，北京大学互联网法律通讯 (6) 5：64-72
208 注：日本对工业机器人之安全监管框架乃以“劳动安全卫生法”为主体
（Action Intelligence）” 211，其优于蒸汽机时代机械的功能性使得人类的劳动负担得以进一步减轻，但是在过去数十年来微电子系统时代的人类-机械共存并非一路风平浪静，附着在巨型机械上的微控制器一旦遭遇失控或是人为误失对于肉身构成的人类将造成不可弥补之重大伤害，例如 1980 年代微控制器技术导入汽车产业促使自排车大量普及，然而在自排车流行的初期却也不时发生轿车失控事件，虽然汽车制造商一再强调这是“驾驶者的操作失误”，但是专家推测这可能与驱动系统-发动机和控制系统-微控制器之间缺乏一种有效连结所引发的技术风险有关。212 以下试整理若干代表性之相关机械事故案例：

（1）1994 年 4 月 26 日台湾中华航空 CI 140 班次空中巴士 A300-622R 型客机在日本名古屋机场上空准备进行着陆时，突然失速坠落至机场跑道最后造成 264 名乘客和机组员死亡，仅 7 人生还之不幸结果。根据日本名古屋空难调查委员会事故调查，事发当时原本飞机应当采用 “仪表着陆系统（ILS-Instrument Landing System）” 的手动驾驶模式进行降落，却因副驾驶误触 “重飞（Go-Around）” 按钮213 导致飞机开始进入中止降落，重新爬升的“重飞” 自动操作状态，即使由正驾驶接手后也无法解除重飞指令。而就在驾驶企图强行以手动方式压低机首的当下，飞机遇电脑却维持使机首抬升以利重飞的判断，就在人-机双方的僵持不下之间飞机失去平衡，最后失速坠毁地面。

（2）1995 年 12 月 20 日，一部由美国迈阿密飞往哥伦比亚卡利（Cali）市的美国航空 965 班次波音 757 型客机在卡利近郊失事坠毁于安第斯山脉一隅，造成 159 名机上人员死亡，仅有 4 人与 1 只狗幸运生还。214 事故发生前机长接到航管人员通知表示可以选择最短进场路线进入卡利机场，由于当天空机自迈阿密机场起飞时已经比原预定起飞时间迟延 2

212 畑村洋太郎（2010） 危険不可视社会、東京：講談社、pp. 57
小时，所以机长决定选择最短的进场路线以争取时间，并且在航管人员的指示下选择 ROZO 进场路线，当机长对 FMS 飞行管理系统（Flight Management System）输入 ROZO 的开头字母的“R”时，不料却误选了使用频率较高的飞往首都波哥大的 ROMEO 无线电定向信标，造成飞机进场航线严重左偏，而且驾驶员过度信任飞行电脑管理系统对于飞机航线偏误一事毫无察觉，即在地形险峻的安第斯山脉之中展开夜间下降，当发现位置严重左偏之后机长马上指示副驾驶向右修正路线，1 分钟后 GPWS 地面迫近警告系统（Ground Proximity Warning System）开始响起警报，机长和副驾驶试图拉起机头以避免撞山，结果因为爬升幅度太大，最后在接近山顶之处撞山坠毁。215

（3）1971 年 10 月 25 日，日本近铁大阪线一部开往名古屋的 114 列车的 ATS 自动制动系统由于电线接触不良造成故障，被迫暂停在三重县白山町西青山至东青山车站之间的隧道内，列车人员依照维修刹车故障的基本流程将活栓摘除藉以排除制动缸的空气并且重新测试制动，但是此时空气被排除的制动装置已经无法使列车停止，于是该列车便顺着隧道外部的陡坡一路下滑并且出轨翻覆，一共造成 25 人死亡 227 人受伤。216

（4）1993 年 10 月 5 日，日本大阪市南港港城线（南港ポートタウン線）住之江公园站一辆无人驾驶电车爆衝撞上车挡路桩导致 215 人受伤。根据调查报告，当日下午 5 点 30 分左右该辆开往南港港城线终点站-住之江公园站的无人驾驶电车（4 辆编成、乘客约 250 人）在行驶接近住之江公园站时发生制动器-常用制动系统（Service Braking System）失灵的情况，于是 ATC 列车自动控制系统（Automatic Train Control）启动紧急制动系统，但为时已晚，列车以时速 36 公里的速度通过原先预定停车点的 51 米处突然爆冲撞上车挡路桩。大阪市交通局的事故调查委员会发现刹车制动器电源指令系统的继电器部件出现损坏的情况，这导致电流信号受阻并使 ATO 列车自动运行系统（Automatic Train Operation）的刹车指令信号无法传达至

215 小林忍（2012）航空机事故に学ぶ、東京：講談社、pp. 83
ATC 列车自动控制系统。217

(5) 2006 年 6 月，日本东京都港区某单元楼内一名男性高中生遭电梯夹死。根据调查事故电梯符合固有安全设计，事发当时该名高中生跨坐在自行车上一个人搭乘电梯下楼而电梯却在开门的状态下突然自行上升，最后导致该生被夹在轿箱地板与外层门之间窒息死亡。218 专家分析指出钢缆式电梯利用缆绳连接两侧轿箱与对重装置，而对重装置的通常重量是轿箱本体重量加上 1/2 人员额定载重量，因此在搭乘电梯人员不足 1/2 额定人数时电梯轿箱在抵达指定楼层、位置固定的瞬间基于力学平衡原理较轻的轿箱会具有往上移动的倾向。一般的电梯设计，除了让轿箱在楼层间上下移动的驱动系统外，另外还有一套基于安全的制动系统，即透过和驱动系统独立的调速机测量缆绳移动速度，一旦速度超出预设的安全范围则将轿箱紧急停止。然而当时电梯的功能安全似乎未能发挥其作用。219

(6) 2004 年 3 月 26 日东京港区六本木新城（六本木ヒルズ）森大厦二楼入口自动旋转门发生夹死 6 岁儿童的意外事件，该大型自动旋转门的尺寸为：重量 2.7 吨、直径 4.8 米、高 2.4 米。事发当时该名男童走进自动旋转门侧边，头部正好被门板夹住距离地面约 1 米的高度，然而自动旋转门的红外线光学传感器架设在门上方 2.4 米处，感测范围似乎无法达到孩童的高度，在被重达 2.7 吨的铁门夹注且未能即刻停止的情况下男童头部受到极为严重的创伤最后送医不治。220

(7) 2008 年 2 月 23 日，一部在关岛安德森空军基地起飞的美军堪萨斯精神号（Spirit of Kansas）B-2 隐形战略轰炸机在起飞后不久突然失速并且坠毁于机场跑道上，根据调查事故原因是因为高度传感器受到湿气影响导致提供错误的高度信息给飞行控制电脑，而电脑根据接受到的信息做出判断

219 畑村洋太郎（2010）危険不可視社会、東京：講談社、pp. 41-48
220 中嶋洋介（2006）安全とリスクのおはなし、東京：日本規格学会、pp. 27
要求飞机抬升其角度飞行，以至于造成失速结果坠毁于地面，机上 2 名驾驶及时跳机逃生无人死亡。221

（8）2007 年 Jean Bookout 在奥克拉荷马州驾驶一丰田 Camry 轿车，因为汽车突然无预警加速冲撞到路边堤防，造成 82 岁驾驶 Jean Bookout 受伤同车 70 岁乘客 Barbara Schwarz 死亡结果。该事件随即进入司法诉讼并且在 2013 年 10 月 24 日由美国奥克拉荷马法院陪审团做出决定判定丰田汽车败诉，要求丰田汽车必须给予两位受害者各 150 万美元赔偿。222

首先，根据国际标准化组织ISO/TC 199对风险的定义是：

风险（R） = “危害的严重性 * 危害发生的频率”

危害的严重性指机械所造成的具体伤害，如挫伤、骨折、死亡等结果；而危害发生频率指发生的频度，如2天发生一次、1个月发生一次、5年发生一次等不同的周期。中嶋洋介指出现行机械安全框架中的风险必须伴随特定危险源，例如：被（机械）挤压的风险、触电的风险、跌倒的风险等等。在没有特定危险源的情况下却使用风险一词这是不可能的事情。此外，理想上的安全就是免除

226 中嶋洋介（2006）安全とリスクのおはなし、東京：日本規格協会、pp. 75
227 同上，pp. 138
228 同上，pp. 67
遭受危害的恐惧与风险，然而由于生活中遍布各种危险源，所以无论机械安全工
学如何努力，零风险的目标是不可能达成的。现行机械安全框架对于安全也有自
身的定义。根据 ISO/IEC Guideline 51 安全指针，“安全”的定义为229:

安全 (S) = “免除不可容忍风险之自由”

换句话说，诚如上面所提到的机械危险源遍布各个角落所以实际上不可能
有所谓零风险的绝对安全，机械安全是一种妥协，将安全定位在容许部分风险的
“相对安全”上。而如何定义“可容忍的风险 (Tolerable Risk)”便成了安全性
落实的第一道关卡。可容忍的风险的定义会随着社会的经济状态、价值观、文化、
技术水平等因素而做出改变230，在机械安全实务通常上定义可容忍的风险是以
ISO/IEC Guideline 51 的风险评估流程为参考依据。231

风险评估 (Risk Assessment) 是风险管理 (Risk Management) 的下位概念，
其目的在于透过科学、定量化的方法找出机械设备的潜在危险源并且特定之，接
着再估算与特定潜在危险源有关的风险，最后评价风险是否可被接受。232 这也
是目前业界决定机械“可容忍的风险”的最主要判断方法。ISO/IEC Guideline 51
的风险管理分为“风险评估 (ISO 14121)”与“风险对策 (ISO 12100)”，ISO 14121
风险评估的标准流程如下：

（1）定义机械预期的用途以及合理可预见的误使用（Definition of Intended Use
 and Reasonably Foreseeable Misuse）;
范围涵盖机械的寿命（机械零件疲劳等问题）、机械本身预期的用途以及
人类的可能误使用情况等等都必须被考虑进来。

（2）危险源的特定（Hazard Identification）;
在限定、明确化机械的使用范围和可能的误使用情形之后，必须仔细考察

注：ISO/IEC Guideline 51 - CH3: Terms and Definitions
229 中嶋洋介 (2006) 安全とリスクのおはなし、東京：日本規格協会、pp. 70
230 宮崎浩一、向殿政男 (2007) 安全設計の基本概念 ISO/IEC Guide 51 (JIS Z 8051) and
 ISO 12100 (JIS B 9700) 、東京：日本規格協会、pp. 49
机械设备的所有功能零件和实际投入使用的环境现场（例如工厂生产线），然后以此为基础找出危险源。关于寻找危险源的方式主要有三种，分别是（A）建立检查表（CheckList）逐一确认是否存在危险源的方式；（B）采用“危险源分析”，包含一种集合业界专家，藉由他们丰富的实务经验系统地分析危险源的“What-If 分析法”，和另一种“FTA-故障树分析法（Fault Tree Analysis）”。FTA 是分别将熟知机械系统与 FTA 操作的专家组成的至少2人以上的分组，以讨论分析的方式探究出危险源；（C）最后一种方式则是集合危险源特定组织的全体人员，由各个不同角度来分析出危险源。233

（3）风险的估算（Estimation of Risk）：

先前提到风险的定义是“危害的严重性 * 危害发生的确率”，中嶋指出风险的估算可以分为“危害严重性的估算”与“危害发生确率的估算”两部分。“危害严重性的估算”是采用将严重程度区分为数个层次的做法，而参考的分类标准有许多种，包含美国军用规格（MIL）或日本劳动安全卫生法的劳动灾害分类标准等等。“危害发生确率的估算”和前者一样，也采用分类的方法，依照发生时间间隔的长度来做区分。234 待获得两种分类之后，通常的风险估算方式是以危害严重性分为纵轴，危害发生确率为横轴，并且依照实际需要从加法、乘法、矩阵顺序法、风险矩阵法、风险区块法等方式加以估算。235

（4）风险的评估（Evaluation of Risk）：

作为最后一个阶段，风险评估对于不可容忍的风险和可容忍的风险有许多评价方法包含“以劳动伤害程度来作区分”、“以死亡率来作区分”、“ALARP – As Low As Reasonably Practical 原则来作区分”等等。236 风险的评估和上一个阶段风险的估算主要的不同之处在于风险的估算注重推算出风险的严重程度，而风险的评估着重于从风险的严重性判断出可容忍和不可容忍风险。

233 巫崎浩一、向殿政男（2007）《安全設計の基本概念 ISO/IEC Guide 51 (JIS Z 8051) and ISO 12100 (JIS B 9700)》、東京：日本規格協会、 pp. 62
234 中嶋洋介（2006）《安全とリスクのおはなし》、東京：日本規格協会、pp. 98
235 同 [255], pp. 104
236 同 [254], pp. 76
一旦机械设备有任何危险源被判断为“不可容忍之风险” 则必须从 ISO 14121 的风险评估移转到 ISO 12100 1-2 的风险对策三部曲（Three Steps Method）。风险对策三部曲分别为“固有安全设计”、“安全保障与补充保护措施”及“使用信
息之提供”。第一步是透过“固有安全设计（Inherently Safe Design）”达到机械安全的基本要求，“固有安全设计”，它可以区分为两个面向来减低风险，分别是“Fool Proof”与“Fail Safe”。这里我们可以参考机械安全的风险公式“（R）= D*p”“R”代表风险，“D”代表危害的严重性，而“P”指发生事件的机率。第一种方式的“Fool Proof”，或者减少P值，指尽最大力量来防止人类不当使用操作造成的危险。例如自动关闭气阀（Self-closing Valve）。

另一方面我们也可以思考“Fail Safe”或者减少D值，指即便系统异常发生我们还是必须将破坏减低到最低的情况，代表性的例子是保险丝（Fuse）。对于其它剩余风险则透过第二步“安全保障与补充保护措施（Protective Measures）”，例如透过安全栅栏、安全装置的方式来抑制风险的危害，其中包含“功能安全（Functional Safety）”。如果这两步骤都无效的话最后采用第三步骤“使用信息之提供（Information for Use）”让使用者知道机械产品可能存在风险以及如何妥适地与风险互动

和蒸汽机时代相比，微电机时代对于机械的风险已经形成了一套科学化的评估方法，两者比较之下或许可以称蒸汽机时代那种基于安抚人心、无科学根据的安全性为“心理安全（Psychological Safety）”，而微电机时代这种透过行业专家以系统化、经验性的方法制定的安全性为“物理安全（Physical Safety）”，而从接下来的2.4节我们可以观察到究竟这种物理安全在多大程度上影响到当代机械安全法制的规划和制定。

237 翁岳暄、Gurvinder Virk、杨书评（2014）人类-机器人共存的安全性：新ISO 13482 服务型机器人安全标准，网络法律评论第17卷，北京大学出版社[In Press]
2.4 当代机械安全法制分析

2.4.1 汽车安全法规

日本作为世界前三大汽车生产国之一，其国内汽车管制框架或有可资参考之处。参见图 8，日本汽车相关的法规体系可以区分为（1）“汽车的构造”、（2）“驾驶与行人”、（3）“道路”等三个大类别。“汽车的构造”相关法规依照“安全确保”、“公害防止”、“节能”等不同管制目的尚可分为“道路运送车辆法”、“大气污染防治法”、“噪音管制法”和合理化使用能源等法律；“驾驶与行人”相关法规依照交通关系可分为“道路交通法”、“道路运送法”、“货车运送事业法”。另外还有针对交通事故被害者救济的“汽车损害赔偿保障法”；至于“道路”相关法规则有以道路设施的建设与改善为目的的“道路法”。

![图 8. 日本汽车监管法律体系](image)

汽车的设计与制造过程由于牵涉到若干安全与环境保护等问题，时常会被要求遵守相关强制性标准，例如日本的“道路运送车辆法”，该法着眼于三个方向，

238 山本隆司、岡本裕、吉田均（2008）第一章 規格と法規、経済産業省委託事業である“平成 19 年度基準認証研究開発事業”
分别是（1）汽车的登记制度规范；（2）与汽车构造、装置、性能有关的安全和公害防止之最低基准规范；（3）汽车车体分解整备的规范。其中“道路运送车辆法”第3章：与汽车构造、装置、性能有关的安全和公害防止之最低基准规范（第40条至第46条）直接要求汽车的配备必须符合国土交通省（交通部）的“道路车辆安全基准（保安基准）”之要求，其安全对策可以分为三大类：（1）预防安全对策，如确保视野、车体稳定性；（2）被害减轻对策，如安全带、安全气囊、车体强度设计；（3）被害扩大防止对策，如车内采用不易燃材质。

欧洲的汽车安全技术法规体系比较复杂，除了每个国家拥有自身的汽车安全法规之外，还有两部区域性的汽车安全法规，分别为联合国欧洲经济委员会（ECE – Economic Commission for Europe）的“ECE 汽车技术法规”和当时欧洲经济共同体（Europe Economic Community）所制定的“EEC 指令”。ECE 汽车技术法规是根据“关于采用统一条件批准机动车车辆和部件互相承认批准的协议书”之条约签订而制定，任何一个缔约国都可以提出制定/修订草案或考虑采用或停止采用任何一个 ECE 法规，该法规在缔约国内是自愿采用的240。EEC 指令则必须在欧盟成员国内强制实施，并且优先于本国汽车法规。欧盟的汽车安全认证制度经由第三方独立认证机构进行形式认证并采取自愿召回的措施，而认证的标准依

据依不同的汽车安全法规而有所区别，有依照 EEC/EC 指令的强制性“e 认证”，范围包含整车、安全部件和系统，以及依照 ECE 法规的自愿性 “E 认证”，但是认证范围仅涉及部分零件而不包含整车。日本汽车认证制度类似欧洲的形式认证，但是区分为“汽车型式指定制度”、“新型汽车申报制度”和“进口汽车特别管理制度”，其中“汽车型式指定制度”是根据规格相同且投入量产的汽车，认证依据包含车辆保安基准；“新型汽车申报制度”针对形式多样但生产数量较少的车型，如卡车；“进口汽车特别管理制度”则适用于少量的进口汽车。美国汽车认证制度和欧洲、日本有所区别，美国交通部（DOT）采用车商自我认证的强制认证制度，没有 DOT 标志的车辆不得销售，有 DOT 标志的车辆万一有缺陷时必须召回。在自我认证的管制下企业自认为产品符合联邦法规即可投入销售，而联邦政府用抽查的方式监督，通报与强制召回是其手段。

2.3.2 铁路安全法规

2011 年 7 月 23 日晚上 8 点 30 分在温州市瓯江特大桥上一辆由北京南站发车开往福州站的 D-301 车次动车追撞前方由杭州站发车开往福州南站的 D-3115 车次动车，导致 D-301 车次动车的后四节车厢由瓯江特大桥上坠下，造成十分惨重的伤亡结果。CTCS 中国列车控制系统（Chinese Train Control System）是高速铁路动车组运行的中枢系统，CTCS 分为 0 至 4 不同等级，甬温线区段属于 CTCS-2 系统，适用时速 200 至 250 公里的提速干线与高速铁路，CTCS-2 系统尚分为由车站列车控制中心、轨道电路组成的地面子系统以及 ATP 列车超速防护系统（Automatic Train Protection）等设备组成的车载子系统。车载 ATP 列车超速防护系统根据地面子系统的信号控制列车的运行，假使 ATP 无法接受地面信号

或是接收到非正常信号时 ATP 将马上启动列车制动系统使列车停止运行以维护行车安全。根据同年 12 月 25 日 “国务院 ‘7 • 23’ 甬温线特别重大铁路交通事故调查组” 所发布的调查结果指出事故原因是出于通信集团所属通信设计院在 LKD2-T1 型列车控制设备研发的管理混乱，导致产品存在严重缺陷和重大安全隐患。首先雷击造成 5829AG 轨道电路之保险丝熔断，使得地面信号无法正常发送并使 D-3115 列车的 ATP 列车超速防护系统启动制动装置在 5829AG 区段内停车，而 LKD2-T1 型列车控制设备的缺陷使得温州南站未能采集到 D-3115 列车在 5829AG 区段的占用信息，并向后方行驶的 D-301 列车发出无车占用码，最后造成惨剧发生。245

“7 • 23” 甬温线特别重大铁路交通事故也再次让人们意识到铁路安全管制的重要性，然而铁路安全的法律规制相对其它机械安全来说是相对不足的，例如在 2000 年之前关于铁路安全的法律主要为自 1991 年 5 月 1 日起施行的“中华人民共和国铁路法”，其内容分为第一章 总则、第二章 铁路运输营业、第三章 铁路建设、第四章 铁路安全与保护、第五章 法律责任、第六章 附则。246 从该法的架构约略可以看出其内容以铁路营运管理为重心，即便第四章 铁路安全与保护中也未有对于列车和铁路控制机电设备等之一技术性规范。之后分别于 2002 年 11 月 1 日与 2005 年 4 月 1 日起施行的 “中华人民共和国安全生产法”247 与 “铁路运输安全保护条例”248 开始对铁路控制机电设备等产品质量做出了行政管制，例如 “中华人民共和国安全生产法” 第五十四条 规定：

依照本法第九条对安全生产负有监督管理职责的部门（以下简称负有安全生产监督管理职责的部门）依照有关法律、法规的规定，对涉及安全生产的事项需要审查批准的（包括批准、审核、许可、注册、认证、颁发证照等，下同）或者验收的，必须严格依照有关法律、法规和国家标准或者行业标准对安全生产条件和程序进行审查；不符合有关法律、法规和国家标准或者行业标准

245 国务院 “7 • 23” 甬温线特别重大铁路交通事故调查组（2011）“7 • 23” 甬温线特别重大铁路交通事故调查报告, 2011 年 12 月 25 日
规定的安全生产条件的，不得批准或者验收通过。对未依法取得批准或者验收合格的单位擅自从事有关活动的，负责行政审批的部门发现或者接到举报后应当立即予以取缔，并依法予以处理。对已经依法取得批准的单位，负责行政审批的部门发现其不再具备安全生产条件的，应当撤销原批准。

“铁路运输安全保护条例”也有相关规定，如下:

第 35 条：设计、生产、维修或者进口新型的铁路机车车辆，应当符合国家规定的标准，并分别向国务院铁路主管部门申请领取型号合格证、生产许可证、维修合格证或者型号认可证，经国务院铁路主管部门审查合格的，发给相应的证书。

第 39 条：本条例第三十八条规定以外的其它直接关系铁路运输安全的铁路专用设备、器材、工具和安全检测设备，实行产品强制认证制度（已实行工业产品生产许可证制度的铁路专用产品除外），相关产品的认证实施规则由国务院认证认可监督管理部门会同国务院铁路主管部门依法共同制定。

第 40 条：用于铁路运输的安全防护设施、设备、集装箱和集装箱化用具等运输器具，篷布、装载加固材料或者装置、运输包装及货物装载加固，应当符合国家有关技术标准和规范。

另外在 2014 年 1 月 1 日实施的新“铁路安全管理条例”取代了原先的“铁路运输安全保护条例”，新“铁路安全管理条例”中除了第 21 条、第 23 条、第 25 条内容与旧“铁路运输安全保护条例”的第 35 条、第 39 条、第 40 条相呼应之外，新“条例”并且在第 26 条增加了要求设备制造者召回缺陷产品并改正的规定：

第 26 条：铁路机车车辆以及其它铁路专用设备存在缺陷，即由于设计、制造、标识等原因导致同一批次、型号或者类别的铁路专用设备普遍存在不符合保障人身、财产安全的国家标准、行业标准的情形或者其它危及人身、财产安全的不合理危险的，应当立即停止生产、销售、进口、使用；设备制造者应当召回缺陷产品，采取措施消除缺陷。具体办法由国务院铁路行业监督管理部门制定。

2.3.3 电梯安全法规

2011年7月5日上午9时36分，北京地铁4号线动物园站A口一部由奥的斯（OTIS）公司生产的上行电扶梯发生故障，突然向后逆行导致扶梯上多位乘客失去平衡并且滚落摔倒，最后造成1死30伤的结果。电梯可以说是与现代都市人日常生活密不可分的微机电，一般常见电梯种类包括设置于公共场所、商场的电扶梯以及用途更多元的垂直升降电梯两大类。然而电梯是一种复杂的机电设备，以垂直升降电梯的构造为例，除了升降机轿箱的安全设计之外，尚包含曳引系统、导向系统、门系统、平衡系统、驱动控制系统、操作控制系统、安全保护系统等装置，因此对于复合式机械风险之管控需要一套完善的监管法制。

美国联邦政府对于电梯监管并无统一法规，相关的只有美国职业安全卫生法规（Occupational Safety and Health Act of 1970）及其授权制定的劳动安全卫生规章对于电梯相关的劳动安全做出明确规范，至于劳动安全范围之外的电梯管理安全则透过各州法律来加以管理。

日本对于电梯的管理使用则受到政府的严格管控，分为“建筑基准法”、“建筑基准法施行令”、“国土交通省（原建设省）告示”等三层级法令，其中“建筑基准法”规定了电梯的使用与维护保养；“建筑基准法施行令”规定需要确认的建筑设备及其手续，如电梯的升降机轿箱、机

房、安全装置等；“告示”则规定若干细部的技术规则，如电梯的结构标准等。日本政府除了对于电梯设备的技术标准以及日后维修保养做出规定之外，电梯的生产还必须另外获得厚生劳动省的批准许可。253

和美日电梯监管相比，中国国内对于电梯安全监管的法制框架主要是来自“中华人民共和国特种设备安全法”、“中华人民共和国安全生产法”、“特种设备安全监察条例”254，以及前两部法规授权下由地方政府制定的电梯安全监督管理办法。以“北京市电梯安全监督管理办法”为例，该“办法”内容分为总则、电梯的生产、电梯的使用、检验检测、监督检查、法律责任等几个主要部分，并且对电梯的生产（含制造、安装、改造、维修、日常维护保养）、使用、检验检测及其监督检查等做出了进一步规范。255然而地方政府制定的电梯安全监督管理办法中对于法律责任的规定着重在未遵守监管规范的行政处罚，对于电梯致生意外的相关民事责任并无规定。以香港为例，大楼内电梯发生意外时，大厦业主、管理公司以及电梯保养商可能因为未符合“建筑物管理条例”、“升降机及自动机（安全）条例”和“占用人法律责 任条例”等规定而承担民事赔偿责任。256面对不明确的电梯安全责任承担问题，2014年1月1日施行的新“中华人民共和国特种设备安全法”第22条、第36条与第99条等法条：257

第二十二条：电梯的安装、改造、修理，必须由电梯制造单位或者其委托的依照本法取得相应许可的单位进行。电梯制造单位委托其它单位进行电梯安装、改造、修理的，应当对其安装、改造、修理进行安全指导和监控，并按照安全技术规范的要求进行校验和调试。电梯制造单位对电梯安全性能负责。

第三十六条：电梯、客运索道、大型游乐设施等为公众提供服务的特种设备的运营使用单位，应当对特种设备的使用安全负责，设置特种设备安全管理机构或者配备专职的特种设备安全管理人员；其它特种设备使用单位，应当根据情况设置特种设备安全管理机构或者配备专职、兼职的特种设备安全管理人员。

第九十七条：违反本法规定，造成人身、财产损害的，依法承担民事责任。违反本法规定，应当承担民事赔偿责任和缴纳罚款、罚金，其财产不足以同时支付时，先承担民事赔偿责任。

也具体规范了电梯制造单位的安全责任、电梯使用单位的使用安全责任、事故相关的民事赔偿处理方式等，使得对于侵权、产品责任等民事责任的处理进一步发展完善。

2.3.4 工业机器人安全法规

1981年日本川崎重工（Kawasaki Heavy Industries, Ltd）厂房内一名37岁的工程师浦田健司（Kenji Urada）走入安全限制区域试图去对一部工业机器人进行维修，然而在慌乱之中他一时忘了关掉机器人的电源，于是在工业机器人液压机械臂的强大出力之下这名日本工程师被推挤到一旁的机械设备上并且不幸地成为历史上第一位死于机器人之手的人类。258

1961年George Devol和Joseph · F. Engelberger合作成立的Unimation机器人公司售出全世界第一部工业机器人“Unimate”259并正式开启了工业机器人进入人类工厂生产线的新页。根据IFR国际机器人联合会统计，目前世界各国投入工厂生产线使用的工业机器人已经达到140万部之多。260从战略面向来看中国工业机器人的未来产业发展除了富士康所关注的生产线零件组装机器人之外，点焊机器人、弧焊机器人、搬运机器人、喷漆机器人与AGV自动导引车机器人都有

很大的发展潜力，另一方面这也突显了过去以来一直未受到社会重视的工业机器人之安全监管需求。

以日本为例，其国内对于工业机器人投入汽车制造业的溶接涂装、电器用品组装、货品搬运等用途之机械安全监管的法规依据为“劳动安全卫生法”、“劳动安全卫生规则”、厚生劳动省“告示/指针”。首先在“劳动安全卫生法”第28条第1项规定之要求下行政单位制定了针对工业机器人的安全标准技术法规—“産業用ロボットの使用等の安全基準に関する技術上の指針”，企图透过行政监管来确保国内各领域之工业机器人维持一定的安全性。

以日本为例，其国内对于工业机器人投入汽车制造业的溶接涂装、电器用品组装、货品搬运等用途之机械安全监管的法规依据为“劳动安全卫生法”、“劳动安全卫生规则”、厚生劳动省“告示/指针”。首先在“劳动安全卫生法”第28条第1项规定之要求下行政单位制定了针对工业机器人的安全标准技术法规—“産業用ロボットの使用等の安全基準に関する技術上の指針”，企图透过行政监管来确保国内各领域之工业机器人维持一定的安全性。

另一方面，日本政府对于工业机器人的定义则参照“劳动安全卫生规则”第36条第31号之规定和昭和58年“劳动省告示第51号”将工业机器人区分为三类，第一类是额定功率上限为80瓦的附驱动电机之小型机械设备；第二类则是附有记忆功能采顺序控制，相当于人类手腕的机械臂，并且自动地反复执行伸缩、屈伸、上下移动、回旋等单一单调动作的机械；第三类则是交由厚生劳动省进行审查认定的研究开发中机械设备。

另一方面，日本政府对于工业机器人的定义则参照“劳动安全卫生规则”第36条第31号之规定和昭和58年“劳动省告示第51号”将工业机器人区分为三类，第一类是额定功率上限为80瓦的附驱动电机之小型机械设备；第二类则是附有记忆功能采顺序控制，相当于人类手腕的机械臂，并且自动地反复执行伸缩、屈伸、上下移动、回旋等单一单调动作的机械；第三类则是交由厚生劳动省进行审查认定的研究开发中机械设备。

に基づき、マニプレータその他の産業用ロボットの各部の動くことができる
最大の範囲をいう。以下同じ。）内において当該産業用ロボットについて行
うマニプレータの動作の順序、位置若しくは速度の設定、変更若しくは確認
（以下「教示等」という。）（産業用ロボットの駆動源を遮断して行うものを
除く。以下この号において同じ。）又は産業用ロボットの可動範囲内におい
て当該産業用ロボットについて教示等を行う労働者と共同して当該産業用
ロボットの可動範囲外において行う当該教示等に係る機器の操作の業務

昭和58年労働省告示 第五十一号：労働安全衛生規則（昭和47年労働省
令第32号）第36条第31号の規定に基づき、厚生労働大臣が定める機械
を次のように定め、昭和58年7月1日から適用する。労働安全衛生規則
第36条第31号の厚生労働大臣が定める機械は、次のとおりとする。

1 定格出力（駆動用原動機を二以上有するものにあっては、それぞれの定
格出力のうち最大のもの）が80ワット以下の駆動用原動機を有する機械

2 固定シーケンス制御装置の情報に基づきマニプレータの伸縮、上下移動、
左右移動又は旋回の動作のうちいずれか一つの動作の単調な繰り返しを行
う機械

3 前二号に掲げる機械のほか、当該機械の構造、性能等からみて当該機械
に接触することによる労働者の危険が生ずるおそれがないと厚生労働省労
働基準局長が認めた機械

“劳动安全卫生规则”第150条之四规定对机器人安全监管中最具代表性的“栅
栏隔离”管制方法：

第百五十条の四：事業者は、産業用ロボットを運転する場合（教示等のた
めに産業用ロボットを運転する場合及び産業用ロボットの運転中に次条に
規定する作業を行わなければならない場合において産業用ロボットを運転
するときを除く。）において、当該産業用ロボットに接触することにより労
働者に危険が生ずるおそれのあるときは、さく又は囲いを設ける等当該危険
を防止するために必要な措置を講じなければならない。

在此第150条之四法律依据规定下逐渐形成了过去数十年来业界对于工业
机器人使用上奉行以久的安全对策，分为第一种（人员进入栅栏安全限制范围内
之安全対策）および第二种（通常運転時之安全対策）。以第一種而言從不同目的可以区分为（1）人员进入限制区域内对工业机器人进行教示工作和（2）人员进入限制区域内对工业机器人进行检修作业，对应的安全对策为要求事先对工作人员进行安全讲习教育和防止不当操作、突发状况的应对（例如：编制安全操作手册、设置紧急停止按钮、设置号灯号反応特殊状况）等，对于教示工作的进入尚需要另一道防止机械异常动作的措施（例如：作业开始前的点检确认工作）；至于第二种（通常運転時之安全対策），由于在人员在栅栏的外部所以遭机械误伤的风险大为降低，唯一需要注意的是实务上不见得所有厂房或者作业领域皆适合设置栅栏，因此有若干替代性措施，例如：（1）在工业机器人可动范围内设置光线是感应装置，一旦人员靠近工业机器人立即停止动作；（2）在工业机器人可动范围内设置绳索，并且具备明显警告标示；（3）设置管理监控接近工业机器人可动范围的任何人员；（4）设置监视装置，以及管理人岗位，并附上一旦人员靠近工业机器人则立刻停止动作的功能。

265

“劳动安全卫生法”体系下的日本工业机器人安全监管框架是建立在人类-机器人分离的前提下，唯一例外的情况是额定功率上限为 80 瓦的附驱动电机之小型机械设备可以在不需隔离的前提下与人共同作业，然而这种被许多人视为理所当然的“栅栏隔离”安全监管框架正面临着来自科技变迁的挑战。近年来随着机器人智能化程度的提高，工业机器人领域也开始出现了所谓人类-机器人共同作业的新型工业机器人。以汽车制造业为例（参考图 9），生产线可以大致分为

（1）车体：1-A 冲模、1-B 车体骨架组装、1-C 涂装；（2）发动机：2-A 冲模、2-B 锻造、2-C 铸造、2-D 热处理、2-E 机械加工与组装、2-F 涂装、2-G 外观；
（3）车用电子零件：3-A 车用电子零件组装；（4）树脂：4-A 树脂成型、4-B 涂装；（5）封装工程：5-A 封装工程组合（1）车体、（2）发动机、（3）车用电子零件、（4）树脂等成品；（6）检查：6-A 确认成品品质。

在传统人类-机器人分离的安全体系下，机器人在汽车制造生产线上可以辅助人类的环节有 1-B 车体骨架组装、1-C 涂装、2-F 涂装、4-B 涂装等，但是上述的人类-机器人协作新型工业机器人一旦导入生产线上，除了前面 4 个环节之外，还能扩展至 3-A 车用电子零件组装和 5-A 封装工程组合，换言之，以往生产线上大量负责装配零组件的人力将可望被这种新型工业机器人所取代并且提升制造业的自动化效能。

国内现行工业机器人安全监管法律规范来源于日本相似，即透过劳动安全卫

生管理制度来对工业机器人的安全性做出规范，劳动安全卫生管理制度的内容可分为（1）安全生产责任制、（2）编制安全技术措施计划管理制度、（3）安全生产教育制度、（4）安全生产检查制度、（5）劳动安全卫生监察制度、（6）伤亡事故报告和处理制度等。其中“中华人民共和国劳动法”第 52 条和第 53 条规定：

第五十二条：用人单位必须建立、健全劳动安全卫生制度，严格执行国家劳动安全卫生规程和标准，对劳动者进行劳动安全卫生教育，防止劳动过程中的事故，减少职业危害。

第五十三条：劳动安全卫生设施必须符合国家规定的标准。新建、改建、扩建工程的劳动安全卫生设施必须与主体工程同时设计、同时施工、同时投入生产和使用。

劳动安全卫生标准区分为三个等级，分别是（1）国家标准，（2）行业标准，（3）地方标准。国家标准有“强制性国家标准（GB）”和“推荐性国家标准（GB/T）”，内容涵盖劳动安全卫生基础标准、通用性标准、管理标准、劳动安全卫生条件、设施、设备、安全卫生防护措施标准及劳动防护用品标准等。劳动安全卫生行业标准是在没有国家标准且对于全国统一事项有所需求而作为对国家标准的补充，分为“强制性行业标准（LD）”以及“推荐性行业标准（LD/T）”。劳动安全卫生地方标准则是在没有国家标准和行业标准的情况下，由省、自治区、直辖市人民政府之标准化部门制定并限在本地实施的统一规定。

2.5 综合讨论：微电机的风险监管框架

蔡志芳与蔡达智提到虽然 Nader v. General Motors 案\(^{273}\)引起美国政府重视并且在 1966 年通过 “汽车安全法”\(^{274}\), 但美国政府对于汽车安全监管措施的落实过程中却曾不断地遭受汽车制造业者的强烈抵制, 其原因或与美国资本主义自由经济和崇尚少量政府管制的传统有关。\(^{275}\)

20 世纪“微电机”与人共存的广度和深度皆比“蒸汽机”来得大, 同时微电机时代的机械安全性和蒸汽机时代相比已经由类似 “红旗法”那种缺乏科学根据只求悦服大众对于机械未知恐惧的 “心理安全（Psychological Safety）” 进一步跃升到透过技术专家、行业团体共识之下融合科学和经验制定的风险评估体系之 “物理安全 (Physical Safety)”, 而由行政机关从众多的技术标准里面选取与安全性确保有直接关系的技术标准并引用该安全标准内容形成 “技术法规” 来落实风险控管乃是当代确保微电机物理安全的一种必要手段。换句话说, 法律对于这种具有反射式智能同时遍布人类社会的微电机之风险控管不能仅仅是采取一种 “事后的面向” 以私法自治为原则交由侵权法来处理善后, 而必须同时结合 “预防的面向” 在机械生产制造的过程中透过行政上安全监管措施来抑制风险至可容忍范围之内。

孙斯坦亦认为相较于事件发生之后的 “治理”, 或许 “预防” 是处理社会领域风险应当优先考虑的办法, 他以疾病管制为例说明打一剂流感预防针通常比得了流感再治来得好。\(^{276}\)但必须先补充说明的是 “机械安全管理 (Machine Safety Management)” 和 “机械安全监管 (Machine Safety Regulation)” 两者的不同, 前者指透过安全标准、安全认证以及保险机制来满足特定行业对于机械安全的需求, 在机械安全管理的框架下业者可以衡量利害轻重来决定是否采用某种标准或采取认证, 惟一旦做出错误判断将遭到经济损失的不利益; 后者则强调行政体系权力的介入并且以技术法规引入、引用安全标准或以管理规章推动强制认证的方

\(^{273}\) Nader v. General Motors, 255 N.E.2d 765 (1970)
\(^{274}\) National Traffic and Motor Vehicle Safety Act of 1966
\(^{275}\) 蔡志芳、蔡达智 (2010) 汽车科技安全法制、台湾桃园：正典出版社，PP. 114
\(^{276}\) Cass R. Sunstein 孙斯坦著；帅帅译 (2005) 风险与理性—安全，法律及环境，北京：中国政法大学出版社，pp. 122
式来施与机械安全管理强制性的色彩。

首先，预防的面向强调在事故发生之前透过行政法规对于机械设计、制造、环境、人员的使用行为之监管来管控微电机产生的风险。以工业机器人为例，行政法规可以制定若干管理性规范来降低来自作业环境以及工作人员的风险危害，如台湾的“工业用机器人危害预防标准”第 1 条：

第 1 条：为防止工业用机器人引起之危害，依劳工安全卫生法第五条之规定订定本标准。

“工业用机器人危害预防标准”第 7 条、第 18 条以规范作业环境的方式。如控制面板的设置、电气配线与油压管线的装设方式来减低工业机器人可能产生的危害：

第 7 条：雇主设置之机器人之控制面盘，应依下列规定：

一、控制面盘具有下列机能者，其开关之位置及使用状态等应明确标示：

（一）电源之开、关。
（二）油压或气压之开、关。
（三）起动、停止。
（四）自动、手动、教导或确认等动作状态之变换。
（五）操作机动作速度之设定。
（六）操作机之动作。
（七）紧急停止装置之动作。

二、紧急停止装置用开关，应为易操作之构造，且应设在易操作之位置，并应设置红色标示。

三、紧急停止装置用开关，其四周不得设置可能发生错误操作之其它开关。

第 18 条：雇主对机器人之配置，依下列规定：

一、应确保能安全实施作业之必要空间。

二、固定式控制面盘应设于可动范围之外，且使操作劳工可泛视机器人全部
动作之位置。
三、压力表、油压表及其它计测仪器应设于显明易见之位置，并标示安全作
业范围。
四、电气配线及油压配管、气压配管应设于不致受到操作机、工具等损伤之
处所。
五、紧急停止装置用开关，应设置于控制面盘以外之适当处所。
六、设置紧急停止装置及第五条第三款规定之指示灯等，应于机器人显明易
见之位置为之。

而“标准”第17条对于工业机器人自动化的风险控管则透过另一种要求相关人
员遵守若干行为的方式达到目的：

第17条：雇主设置机器人，应就下列事项依说明书确实查对：

一、型式。
二、构造（包括主要部分之名称）及动作原理（控制方式、驱动方法等）。
三、驱动用原动机之额定输出。
四、额定搬运重量。
五、于自动运转中操作机前端部之最大动作速度及教导运转中操作机前端部之动
作速度。
六、操作机最大之力或力矩，以及教导运转中操作机之力或力矩。
七、可动范围。
八、油压、气压及电压之容许变动范围。
九、噪音音压级。
十、安全机能之种类及性能。
十一、设置方法及设置时安全上应注意事项。
十二、搬运方法及搬运时安全上应注意事项。
十三、自动运转时（包括起动及发生异常时）安全上应注意事项。
十四、教导相关作业方法及实施该作业时应注意事项。
十五、检查相关作业方法及实施该作业时应注意事项，以及确保安全所应保留之
作业空间。
十六、作业前之检点及定期检查项目、方法、判定基准及实施时期。
十七、其它与设置机器人有关之事项。

但是无论是限制环境或者是限制人员行为都只是对于工业机器人风险的外围管控，还有一种微电机机械存在的根本风险，即源自人们内心深处那种对于微电机机械“突发、无情、不知变通”之威胁的恐惧，就如同在川崎工厂安全限制区内无视于工程师浦田健司慌张、惊恐的表情仍然大臂一挥，数秒间便将他推上死亡深渊的工业机器人事故一样。有鉴于微电机功能和构造的复杂性，对于这种风险法律并没有办法以一种直接的方式来管控，只能间接地利用事前的技术法规与事后的民事责任来管控风险的源头—“微电机设计与制造上的机械安全性”。

![图10. 微电机的风险监管框架](image)

ISO 国际标准化组织 Alfred Sutter 主张的“Safety must be integrated into the machinery at the design stage”。279 费斯科霍夫等人指出“可接受风险/可容忍风险是个决策问题”，而这个决策通常是经过包含技术界、市场、政府等许多团体和机构在一种不协调的断断续续过程中所形成的。280 ISO/IEC Guide 51 机械安全指针架构下的 ISO 14121 风险评估机制（Risk Assessment）便是在机构组织间的决策共识前提下确认机械是否处于“安定领域”/“可容忍风险”，至于“不安定领域”的剩余风险则交由 ISO 12100 的三阶段方法（Three Steps Method）来确保安全性（图 11）。281

图 11. ISO 框架下的可容忍风险

一旦机械设备有任何危险源被判断为“不可容忍之风险”则必须从 ISO 14121 的风险评估移转到 ISO 12100 1-2 的风险对策三部曲（Three Steps Method）。风险对策三部曲分别为（1）固有安全设计；（2）安全保障与补充保护措施；（3）使用信息之提供。第一步是透过“固有安全设计（Inherently Safe Design）”达

280 Baruch Fishhoff (巴鲁克・费斯科霍夫)、色拉利・希腾斯坦、保罗・斯诺维克、斯蒂芬・德彼、拉尔夫・基尼著；王红漫译（2009）人类可接受风险，北京：北京大学出版社，pp.184
281 日科技連 PL 編集委員会（1992）製造物責任と製品安全-安全確保のための技術とシステム、東京：日科技連出版社

藤田嘉美指出透过ISO 12100的风险对策三部曲使得不可容忍之风险在设计与制造阶段得以有效地被控制（参考图12），而剩余风险则可透过“事后责任”加以约束。**282** 必须注意的一点是第三步骤“使用信息之提供（Information for Use）”让使用者知道机械产品可能存在的风险以及如何妥适地与风险互动。
Use）”，该措施并未降低机械本身的风险而是透过相关安全信息的提供藉由使用者的行为来达到减低风险的结果。283

木村哲也指出对于机械安全的事前规制虽然必须耗费一定的社会成本但却可有效地减少事故发生后的混乱情形。以汽车安全管制为例，和美国透过事后面向的高额惩罚性赔偿金相比，欧洲的 CE 认证制度、国内的 CCC 强制认证制度以及韩国的 S 认证制度皆是采取事前规制的代表性例子。284 综合监管成本效益分析以及手段上的比例原则考虑，行政规制在预防的面向上已经能够有效地确保微电机绝大部分之机械安全性，而对于少量的“剩余风险”透过产品责任以及保险机制似已足够。换言之，对于微电机“技术的治理”可以看成一种结合行政-事前安全性确保以及民事/商业保险-事后究责的监管框架。

部分机器人制造商似乎存在着一种错误认知，就是只要依照 ISO 行业公认标准或国内强制性安全标准生产机器人，那么事故发生时就可以免除产品责任。虽然 ISO 安全标准代表一种国际间对于安全性确保的客观指标，但本质上它并不具备法律上的强制力；至于遵守国内强制性安全标准也不代表民事产品责任的免责，即使未依照强制性安全标准生产机器人，所涉及的后果只是因违反行政规制而无法获得认证标章进行销售活动或者依情节轻重及相关规定接受行政处分。至于美国产品责任法中符合强制规定而生的特别免责事由，则必须由机器人制造商举证证明适用该强制性法规后造成无法避免的产品瑕疵，但实务上并不常见。285 对机器人制造商而言遵守安全标准规范是免除民事产品责任所需的必要条件，即便无法完全免除产品责任，遵守安全标准至少能提高减免产品责任的可能性。286

285 肖雅毓 (2005) 论产品责任中产品瑕疵之判断与举证责任之分配 - 以民法第 191 条之 1 与消费者保护法为中心，台湾：成功大学法律系硕士论文，第 139 页
286 小林正啓 (2007) 安全规格を守れば次世代ロボットメーカーは法的責任を免れる
近代民法基本三原则为“过失责任主义”、“所有权绝对原则”、“契约自由原则”，但工业革命后大型危险性工业的兴起却不断挑战传统过失责任主义，直到1838年普鲁士王国制定的“铁路企业法”首度确认了无过失责任。另一方面，被告所犯过错须由受害者举证的过失责任在19世纪最后10年的法国也已经完全不敷社会现实条件的需要，而美国在1963年Greenman v. Yuba Power Products判决开始更进一步地导入无过失产品责任以建立对于消费者较为有利的保护制度，其实从上述的过程中不难发现风险意识的转变对于责任所产生的影响。蒸汽机时代的人类受限于技术水平，缺乏对于机械的了解，所以当时的安

全性主要是一种以解消人类对于机械不安恐惧的“心理安全”为基础，如19世纪中叶江户幕府代官韭山江川太郎左卫门在《蒸汽车试运転记》中描述当时日本人认为在横滨试运行的蒸汽火车是“红毛人所施展的魔法”同一时期徐珂所著的《清稗类钞》记载北京民众对于宣武门外蒸汽火车的反应则是“京人诧为妖物”。在这种风险意识下许多人造物/蒸气机引发的事故危害于是就简单地被划分进入“意外、天灾”的领域之中，因此也就自然地缺乏对于过失判断足够的客观标准，特别是制造者生产机械以及使用者操作机械的注意义务，最后导致使用者只好自行吸收对于这块灰色地带所引发的不利益情事，同时事故因果关系不明，除非有相当明显的过失否则难以对制造者归责。从监管心理安全的角度切入，立法者对于无过失责任的建构或可视为一种对于维护人类与蒸气机共存的衡平机制。

而微电机时代为了应对各式各样充斥于社会中机械产生的风险，采用一种透过行业专家透过科学性、经验性发展出来的风险评估机制，或称之为“物理安全”。然而蒸气机时代那种以私法自治附带无过失责任的纠纷解决模式似乎不足以应

\[\text{楊立新 (2010) 侵权损害赔偿, 北京: 法律出版社}\]

\[\text{勒内·达维著; 潘华仿、高鸿钧、贺卫方译 (2002) 英国法与法国法: 一种实质性比较, 北京: 清华大学出版社 pp. 188}\]

\[\text{（清）徐珂(1917)《清稗类钞》北京: 商务印书馆}\]
付微电机时代更大规模的人机共存，为了从源头管控微电机的潜在风险，于是行政权也开始积极介入风险管控并且将物理安全之确保实践于预防原则之中，待微电机的风险被削减至可容忍的程度再交由民事责任或保险机制应对处理行政管制后的“剩余风险”

大场光太郎认为个人护理服务机器人应该透过第三方机构认证评价其安全性，不应该由企业本身主导安全认证。295 木村哲也指出安全认证对于制造者的好

292 小林秀之（1998）新制造物責任法大系Ⅱ（日本篇）东京：弘文堂
293 宫崎浩一、向殿政男（2007）安全设计の基本概念-ISO/IEC Guide 51; ISO 12100、东京：日本规格学会、pp.49
295 中村浩彦（2010）介護・家事など生活支援ロボットの安全性試験 茨城に検証センター、朝日新聞、Available via
处在于厂家可以在事前确认自家产品的安全性以避免事故发生后的混乱情形（例如产品召回）。但是即便安全认证手续出现重大瑕疵，安全认证机构仍不需对他人负起事故的责任，产品责任最终还是应当由制造者本身承担。296

责任保险的出现其实与19世纪后半工业化国家频发的大量人身伤亡事故有关，因此在侵权法制度无法满足民众现实赔偿需求的情况下，责任保险于是成为一种分担风险的有效机制，同时在事后的面向上与产品责任彼此间维持一种紧密的互动关系。虽然有人认为责任保险的形成在一定程度上削弱了民事责任的社会作用，但邹海林指出从示例经验来看责任保险并不会助长反社会的行为，使行为人心存侥幸故意降低注意程度而造成事故频发的结果，例如差别保险费率、刑事及行政制裁措施等都是防止行为人降低注意程度的其它因素。298 他并补充说明对受害人的补偿无法单纯适用于责任保险合同，而当某民事责任制度超出保险公司承受能力时保险公司可能考虑其经营风险而做出拒绝承保的决定。299

2010年6月15日至8月7日期间，比萨圣安娜高等大学团队在一个意大利的中古世纪遗留城镇——“佩乔里（Peccioli）”将自律型移动机器人DustCart投入户外收集垃圾测试。然而被认定为“自律车辆（Autonomous Vehicle）”的DustCart却与维也纳道路公约和意大利公路法的规范产生冲突，最后透过意大利当地警方的协助与支持此实验得以顺利在小镇街道上进行。附带一提的是该机器人实验伴随着一些特殊的权宜措施，例如：“设计特殊的道路标志”，“设置机器人专用通道”，“协商针对机器人专属的保险方案”。300 从这个案例也可看出保险机制对于未来服务机器人投入户外环境中的必要性。

297 邹海林著（1999）保险责任论，北京：法律出版社，pp.45

298 王利明主编（1995）民法 侵权行为法，北京：中国人民大学出版社

299 同 [298]，pp.38

300 同 [298]，pp.42

301 Gabriele Ferri, Alessandro Manzi, Pericle Salvini, Barbara Mazzolai, Cecilia Laschi, and Paolo Dario（2011）DustCart, an autonomous robot for door-to-door garbage collection: From DustBot Project to the experimentation in the small town of Peccioli, *IEEE International Conference on Robotics and Automation (IEEE ICRA '11)*, Shanghai, China
综上所述，关于“微电机的风险监管框架”首先要解决的事情是建立对“可容忍风险”的共识，然后在事前的面向上以安全标准为主，技术法规为辅之手段确保机械的生产制造得以落实在容忍风险之目标，至于“剩余风险”则透过产品责任为主保险为辅之手段加以吸收。但是必须釐清的一点是安全标准与技术法规的區別。根据世界贸易组织《技术性贸易壁垒协定》（WTO/TBT）对“技术法规”的定义：

“技术法规——强制执行的，规定产品特性或相应加工和生产方法的，包括可适用的行政管理规定在内的文件。技术法规也可以包括或专门规定用于产品、加工或生产方法的术语、符号、包装、标志或标签要求。”

虽然技术法规外观上可能与标准有许多相似共通之处，例如规定产品特性或生产方法等，但是他们的区别在于技术法规属于强制性而标准属于志愿性质。技术法规可能在具体技术内容之外包含行政管理规定，或者只做原则性的规定而直接引用其它标准的具体技术内容。在一般情况下强制性标准属于技术法规范畴，而安全标准与其它一般技术标准相比有更容易成为强制性标准的倾向。

就“技术的治理”而言，吴汉东认为对知识产权的技术性风险可采取法律控制和技术规制的综合治理机制，事实上不仅止于知识产权的技术性风险，其它的科学技术风险如机械的物理安全、互联网的服务器与网络层的信息安全、基因科技的风险治理等都曾采用过法律控制和技术规制并行的风险治理机制，原因在于科学技术的高技术知识性、复杂性与不确定性使得管制者不得不考虑授权让具有丰富知识背景的技术专家来负责制定技术规则。然而这种由“法律描述总体规则，细部技术规则由专家定义”的协作模式背后所隐含的问题在于，诚如贝克所观察到的“一种极大的危险在于将解释危险的专利由全体人民让渡给制造危险的

人”304，最后形成所谓的“有组织的不负责任”现象。

现今机械安全之确保在很大程度上是采取委由专家技术自治的模式来落实机械的风险治理, 最具代表性的莫过于 ISO/IEC Guide 51 三阶段机械安全风险评估指针305, 机械的安全性透过客观、科学化的分析与评估得以落实在其设计与生产制造的所有环节中。这种以工学为核心的机械安全性确保障手段，本质上就是将机械风险视为一种物质特性，并且用成本效益评估的逻辑来治理其潜在风险，特别是“工业机器人安全监管”。由于过去以来工业机器人的功能设计就是着眼于不与人类互动、不介入人类日常生活环境的封闭空间，如工厂生产线。在过去数十年来长期依循这种固定模式之下，机械的安全监管与风险治理也就自然而然地视将风险视“某事件造成损害的概率”的精确控管为理所当然，而与现存于人类社会的微电机相比，智能机器人科技的新风险主要来自于贴近人类并与人共存的机器自律行为之不确定性，如“开放组织风险（Open-Texture Risk）”，这种科技风险的基本性质、对应的新（人机共存）安全性，以及（人机共存）安全性所对应的风险监管框架对于将来发展人类-机器人共存前提之下的机械安全法制将是不可或缺的，也因此值得我们进一步思考继蒸汽机时代“心理安全”的汽车红旗法与微电机时代“物理安全”以技术法规作为支持的安全监管法制之后(图 13) 对于即将到来的“人类-机器人共存安全”306, 我们究竟需要何种的机械安全监管的法制建设？

304 Ulrich Beck 著；吴英姿、孙淑敏译 (2004) 世界风险社会, 南京：南京大学出版社, pp 78
305 ISO/IEC Guideline 51, Available via \url{http://webstore.iec.ch/preview/info_isoiecguide51%7Bed2.0%7Den.pdf} (Accessed at February 10, 2014)
306 翁岳暄、Gurvinder Virk、杨书评 (2014) 人类-机器人共存的安全性：新 ISO 13482 服务型机器人安全标准", 网络法律评论 第 17 卷, 北京大学出版社 [In Press]
图 13. 从“心理安全”、“物理安全”到“人类-机器人共存的新安全性”
叁．非结构化环境与开放组织风险

3.1 机器人时代的人类—机械共存考察

3.1.1 编年史：机器人与社会 – 1973 年至 2013 年

1973 年：

- 日本早稻田大学成功开发出世界第一部人型机器人—“WOBOT-1”。

1974 年：

- 1974年7月美国英特尔公司正式发布包含4500个电晶体，时脉2MHz的8位微处理器“Intel 8080”。

1977 年：

- 美国科幻电影“星球大战（Star Wars）”上映，里面出现两部智能机器人：C-3PO

和 R2-D2。

1978 年:
- 美国英特尔公司推出包含 2 万个电晶体的 16 位微处理器“Intel 8086”。

1979 年:
- 日本动画片“机动战士高达（機動戦士ガンダム）”首映。

1980 年:
- 工业机器人真正在日本开始普及，该年被通商产业省称为“机器人元年”。

1981 年:
- “机器人元年”的次年，日本川崎制造厂工人浦田健司（Kenji Urada）进入安全限制区进行检修时不幸被工业机器人挤压致死，因而成为史上第一位死于机器人手下的人类。

1984 年:
- 美国科幻电影“终结者（The Terminator）”上映。

1985 年:
- 筑波科学技术世界博览会（EXPO’85）在日本筑波市举行，早稻田大学的人型机器人“WOBOT-2”具备以电脑视觉阅读乐谱、弹奏电子琴并且与交响乐团合奏演出的能力。

311 白根禮吉（1985）筑波科学博と日本の科学技術, 日本ロボット学会誌 3 巻 4 号、
1987 年：
- 美国科幻电影“机器战警 (ROBOCOP)” 上映。

1994 年：
- 美国 MQ-1 掠夺者军用无人机进行首次试飞。

1995 年：
- 日本动画片“新世纪福音战士 (新世紀エヴァンゲリオン)” 首映。
- 美国 Intuitive Surgical 公司开始开发医疗手术用机器人系统 DaVinci。

1996 年：
- 日本田本公司推出 ASIMO 的前身，P-1 人型机器人。
- 日本早稻田大学理工学部高西淳夫研究室开发出高 1 米 84、重 127 千克、43 个自由度的人型机器人 WABIAN-RII。

1997 年：
- 1996 年 12 月 4 日由地球发射的美国“火星拓荒者号 (MESUR Pathfinder)” 宇宙飞船成功地在 1997 年 7 月 4 日顺利登陆火星，并且释出携带的“旅居者号 (Sojourner)” 漫游车在火星地表进行探索。
- 由美国 IBM 开发，专门分析西洋棋的超级电脑“深蓝 (Deep Blue)” 与西洋棋王卡斯珀罗夫 (Гарри Кимович Каспаров) 对弈数回。在 5 月 11 日的棋局中“深蓝”以 3.5-2.5 击败卡斯珀罗夫。

1998 年：
- 美国 RQ-4“全球鹰” 军用无人侦察机进行首次试飞。
- 日本通商产业省投入 5 年 20 亿日圆进行“人类协调-共存型机器人系统研究开发项

pp. 300-303
目”，别名“HRP 人型机器人计划（Humanoid Robotics Project）”的大型项目。312

1999 年：

- 美国科幻电影“机器管家（Bicentennial Man）”上映。
- 日本索尼公司开始贩售犬型机器人“AIBO”。314

2000 年：

- 日本早稻田大学成立“人型机器人研究所（Humanoid Robotics Institute - HRI）”并且在机器人技术开发研究之外，同时进行研究人类-机器人共存关系的“Wabot-House”项目。
- 日本田公司在 P-1 系列的基础上开发出 ASIMO 人型机器人，高 120 厘米、重 52 千克，在当时能以时速 1.6 km/h 行走。
- 美国 Intuitive Surgical 公司的 Da Vinci 手术医疗机器人获得美国联邦食品药品监督管理局之许可，投入各大医院替病人进行微创手术之用。

2001 年：

- 美国科幻电影“A.I.人工智能”上映。
- 美国麻省理工学院人工智能实验室开发出全世界第一部能展现表情并且与人互动的机器人—“Kismet”。
- 美国 MQ-9 “死神”军用无人侦察机进行首次试飞。

2002 年：

- 美国 I-Robot 公司开始贩售自动吸尘机器人“ROOMBA”。315

312 梶田秀司（2005）ヒューマノイドロボット、東京：Ohmsha
313 井上博允（2004）人間型ロボットが拓く未来社会と新産業の創成、日本ロボット学会誌 22 巻 1 号、pp. 2-5
日本政府通过“构造改革特别区域法”，该法规的目标在促进社会-经济的体制性改革以及透过建立特区振兴地方经济，同时在促进地方经济发展的前提下特区内特殊的特殊法律规制将被政府所允许。

2003 年：

日本经济产业省（原通商产业省）成立机器人政策研究会，着眼于未来 20 年“人类-机器人共存社会”的长期战略思考。

全世界第一个“机器人开发与实证测试特区（ロボット開発・実証実験特区）”在 2003 年 11 月 28 日通过日本政府内阁府认证成立。该机器人特区范围涵盖福冈县，福冈市与北九州市，同时三个地方自治体联合成立了机器人产业发展组织（Robotic Industry Development Organization）来负责福冈机器人特区的营运及管理。316

依照“构造改革特别区域法”第 3 条第 3 项规定，针对机器人开发与实证测试特区设置一个特别规制措施称为“机器人公共道路圆滑化事业（ロボット公道実験円滑化事業）”。其主要内容在明确规范机器人在户外公共道路上的道路使用许可条件，并且同时策定了申请机器人在户外公共道路上进行实验所需的相关行政手续。透过权宜的管制措施机器人在户外公共道路上进行实验终于得以落实。317

2004 年：

美国科幻电影“i, Robot（机械公敌）”上映。

日本经济产业省发布的“机器人政策报告书”预测“人类-机器人共存社会（The Human-Robot Co-Existence Society）”将在 2020 年至 2030 年之间形成。318

“机器人公共道路圆滑化事业（ロボット公道実験円滑化事業）”于 2004 年 2 月首度实施。早稻田大学人型机器人研究所高西淳夫研究室 2004 年至 2007 年间分别投入WL-16RII 与 WABIAN-2R 两部机器人在福冈机器人特区进行户外公共道路测试。在 3 年间的数次实验中早稻田团队的人型机器人分别在福冈市内 7 个以上的处

316 注：请参照本文“伍.个案研究（二）: “Tokku” 机器人特区与科技立法研究”
317 「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第 63 号（平成 15 年 8 月 28 日）
所进行户外环境测试，范围包含渡桥口、商店街、神社、购物商场。第一期实验乃自 2004 年 7 月 7 日开始并于同年 12 月 21 日结束，这也是文献记载的全世界第一起关于二足步行人型机器人的户外公共道路测试。319

- 美国国防部高级研究计划局（DARPA）于 3 月 8-13 日在加州举办“Darpa Grand Challenge”，要求参赛的自主驾驶车辆横越 142 英里的沙漠，但 15 部通过初检的车辆中最后只有 3 辆在比赛当日行驶距离超过 5 英里。320

2005 年:

- 世界博览会（EXPO’05）在日本爱知县举行，会中并且建立以 ISO 12100 为基础的服务型机器人安全认证手续。321

- 畅销书“Love + Sex with Robots: The Evolution of Human-Robot Relationships”的作者 David Levy 大胆预测在未来数十年内机器人将成为人类忠实的性爱伴侣随后引发和质疑者之间的正反论战。322

- 美国波士顿动力公司推出可以克服各种崎岖地形运送补给物资的犬型机器人“BigDog”。323

- 美国 Vecna Technologies 公司推出可以在战场上紧急抱起带走伤兵的 The BEAR 机器人。324

- 北京理工大学-科技部“十五”863 计划先进制造与自动化领域机器人技术主题重点项目“汇童仿人机器人”研制完成，高 1.6 米，重 63 千克，可以施展打太极拳

319 高西淳夫，菅原雄介，砂塚裕之，川瀬正幹，橋本健二，太田章博，田中智明（2005）「ロボット開発・実証実験等に関する福岡市のポテンシャルと課題等の調査研究」報告書（平成 17 年），早稲田大学理工学部高西淳夫研究室
等细腻的仿人动作。

2006 年：

- 日本经济产业省机器人政策研究会发布机器人产业报告书，内容包含建构下一代机器人产业的三大战略性发展方向：（1）创造市场需求、（2）安全性确保、（3）任务指向型机器人开发。
- 根据日本警察厅交通局在 2006 年 1 月 23 日发布的一份文件，作为特殊权宜性的规制措施—机器人公共道路圆滑化事业正式被废止，取而代之的是新修改且适用全国的交通法规。

2007 年：

- 微软创办人比尔・盖茨在“美国科学人杂志（Scientific American）”上发表文章“家家都有机器人（A Robot in Every Home）”。
- 面对构筑“人类-机器人共存社会”，韩国政府从顶层的“机器人道德伦理问题”出发，宣布将成立专家组研究制定“机器人伦理宪章”。
- 面对构筑“人类-机器人共存社会”，日本政府从底层的“机器人安全监管问题”出发，由经济产业省机器人政策研究会发布“下一代机器人安全性确保准则”。
- 日本东京大学成立校级 IRT 机器人研究中心，研究方向包含机器人科技的产官学合作以及社会科学研究。
- 美国斯坦福大学法学院主办“人工智能与法律国际学术会议（ICAIL）”，台湾新竹交通大学资讯工程系研究团队在斯坦福 ICAI 会议中提出下一代机器人所涉及的“开放组织风险”隐患。

325 「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第 3 号（平成18年1月23日）
日本筑波大学油田信一教授（Shinichi Yuta）创立了“实世界机器人挑战”（亦称为“筑波机器人挑战”），该挑战之目标在提升自律型行动机器人在真实世界中执行任务的能力。

2008年：
- ISO 开始成立专家组进行服务机器人安全标准研究。

2009年：
- 美国科幻电影“Surrogates（未来战警）”上映。
- 美国科幻电影“The Terminator - 4（终结者4）”上映。
- 国际机器人学界中最具代表性之一的“IEEE ICRA 机器人与自动化会议”组织 Workshop on Service Robots in Urban Environments: Legal and Safety Issues 邀请来自日本、法国、意大利、台湾等地的专家讨论机器人之法律和安全问题。[^329]
- 美国斯坦福大学法学院网络与社会研究中心下设机器人法律研究小组。[^330]
- 台湾新竹交通大学资讯工程系研究团队在 Springer 出版社的“社会机器人国际期刊（International Journal of Social Robotics）”发表论文，针对下一代机器人的安全监管提出“安全智能（Safety Intelligence）”的基本理论框架。[^331]
- 美国 Avenger 复仇者军用无人战斗机进行首次试飞。
- 美国杜克大学和日本京都 ATR 研究所合作建立脑机界面并且由美国的猴子发送其脑波透过跨洋传输到日本的机器人上面，成功驱动机器人做出动作。
- 法国 ROBOSOFT 公司研制成功的无人驾驶机器车，面临受到欧洲交通法规限制而

无法上路的困境。332 333

2010 年：

- 德国维尔茨堡大学法学院成立德国境内第一所机器人法律研究中心。334
- 意大利 DustBot 项目科研团队在佩丘里古镇投入 DustCart 机器人的户外实证测试，让机器人自动地替居民收集社区的垃圾。
- 2010 年 10 月某日 “欧洲装设高科脑波控制机械假肢的第一人” - 奥地利人坎德鲍（Christian Kandlbauer）开车上班途中因为不明原因导致汽车冲撞路树使其本人伤重不治。335
- 日本新能源与工业技术发展组织（NEDO）在 2010 年出资在筑波市成立一座机器人安全认证与测试中心。该中心的目标为（1）“寻找生活支援服务机器人的风险评估机制”以及（2）“发展生活支持服务机器人所需的功能安全措施”。336
- 联合国开始关注军事无人机的使用监管问题。337

2011 年：

- 美国波士顿动力公司推出 PETMAN 人型机器人338

日本筑波市在2011年3月正式设置机器人特区（つくばモビリティロボット実験特区），它的两个目标包含研究（1）在现实社会中载人/个人移动机器人的社会效用，对行人的亲密性，对乘客的安全性以及（2）研究机器人的潜在服务商业模式。

富士康总裁郭台铭对外表示在三年内要投入百万部工业机器人进入该公司的生产线已取代日渐提高的人力成本。339

2012年：

日本警察厅在2012年12月27日针对搭乘型移动支持机器人制定了一些新的交通管制措施，例如就机器人在户外公共道路上进行的实验，如果载人的搭乘型移动支持机器人最高速度低于10km/h的话将可以免除架设边界标语的义务。340

欧盟FP7“机器人法律（ROBOLAW）”项目启动，研究机器人科技对于欧洲社会可能产生的法律和伦理问题。341 北京大学法学院互联网法律中心亦与该项目签署合作协议并获互联网法律中心李教授批准，成立“YSAiL 亚洲机器人法律与政策工作组”负责接洽与欧盟FP7机器人法律项目以及日本早稻田大学人型机器人研究所的跨国、交叉学科合作事宜。

美国谷歌无人驾驶机器人车继获得内华达州的许可后，再度获得佛罗里达与加州的许可。342 343 344

340 「「搭乗型移動支援ロボットの公道実証実験」に係る特例措置について」警察庁丁规発第62号（平成23年3月29日）
以法国达梭为主体的多国计划开发的“神经元(nEUROn)”军用隐形无人战斗机进行首次试飞。

美国亚马逊公司以 7.75 亿美元收购 KIVA System 机器人公司以获得该公司的先进机器人仓储技术，提升亚马逊的仓储自动化层级。

2013 年：

- 手术机器人诉讼问题在美国受到广泛关注，律师事务所分别成立 De Vinci 诉讼法律中心，鼓励民众进行集体诉讼向 Intuitive Surgical 公司求偿。

- 联合国特别报告员 Christof Hynes 公开呼吁以美国为首使用军事无人机的国家应暂停相关的开发与使用。

- 美国波士顿动力公司推出 Atlas 人型机器人。

- 美国亚马逊公司考虑将无人机投入送货的商业应用。

- 经过为期 4 年的准备，ISO 专家组于 2013 年 10 月中旬在北京市海淀区三里河路西苑饭店召开最后一次会议，随即准备在 2014 年 2 月面向全球发布世界第一个服务机器人安全标准 - ISO 13482。

- 欧盟 FP7 科技框架计划项目：“机器人地球（ROBOEARTH）”顺利结项，建构出专属机器人的互联网。

- 嫦娥三号月球探测器于 2013 年 2 日透过长征三号火箭乙增强型载运火箭从西昌卫星发射中心发射，嫦娥三号内部搭载玉兔号月球探测车可在月球地表进行地质调查。

等科学探索任务。

- 英国“雷神（Taranis）”军用隐形无人战斗机进行首次试飞。
- 中国“利剑（Sharp Sword）”军用隐形无人战斗机进行首次试飞。
- DRAPA-DRC，人型机器人挑战项目双足步行机器人。
- DRAPA-DRC挑战结束后不久，美国国防部发布Unmanned Systems Integrated Roadmap（FY 2013-2038），思考未来25年无人自动机械如何融入美军的战略规划与部署；附带一提的是美国国会在先前已通过法案，规定2015年前1/3的地面战将使用机器人。\(^3\)\(^4\)\(^5\)

3.1.2 新机器人学：机器人作为“第三的存在”

美国与日本机器人学家曾经不约而同地预测未来社会中人类与机器人的关系可能建立在“与人共存的服务机器人”和“与人类合而为一的机器人身躯”两种基础上\(^3\)\(^4\), 限于篇幅作者对于机器人安全监管的讨论仅以“与人共存”的自律型服务机器人为主，较具体描述如日本经济产业省在2004年发布的“机器人政策报告书”（第一版）按照与人接触程度将服务机器人区分为三类：（小）：家庭用会话交谈机器人、扫除机器人；（中）护理机器人；（大）汎用人型机器人。\(^3\)\(^5\)

\(^3\)\(^2\) Unsigned Editorial (2013) U.S. military may have 10 robots per soldier by 2023, COMPUTERWORLD (2013.11.14) Available via http://www.computerworld.com/s/article/9244060/U_S_military_may_have_10_robots_per_soldier_by_2023 (Accessed at February 9, 2014)

\(^3\)\(^4\) Rodney Brooks著、蔡承志译（2003）我们都是机器人-人机合一的大时代, 台北：究竟出版社

自从1954年美国商标专利局发出第一个工业机器人专利后，工业机器人开始被应用于工厂的生产线自动化上，并且已经累计达到总数140万部之谱。这种微电机能够依照工程师预设的指令进行长时间、单调、反复的工作，到20世纪结束后为止机器人的活动范围都仅限于工厂或者高校科研机构的研究室内，严格上来说在微电机时代的人机—机械共存只限于电梯、铁路、汽车之间，而一个技术变革契机正在促使机器人科技走出工厂和实验室转而进入人类日常生活领域中。

目前机器人之所以无法像电梯、铁路、汽车一样落实与人类全面共存的主要理由在于机器人所遭遇的技术瓶颈在过去很长的一段时间内都无法突破，缺乏效率、成本高昂、难以控制等因素导致微电机机器人无法与人互动或者配合人类执行任务，而这却是机器人与人类共存所必需的基本功能。进入21世纪以后机器人科技也正经历日新月异的快速发展，2010年为止机器人科技至少达成了四项突破，分别是（1）“Simplexity”：例如减少机器本体计算负荷；（2）“Morphological Computation”：机器具备较高阶层的决策智能，特别是在如何维持与身体协定平衡方面；（3）“Sentience Perception”：传感器技术大跃进，机器具备强大的环境感知能力；（4）“Multipurpose Nanomaterial”：人工物的材质技术突破，过去机器人若干具潜在伤害性的材质可用较安全的柔软新材质取代。356这四种技术的提升连带使机器人突破“微电机”的技术框架限制，而形成“新机器人学”的基础。欧盟FP7机器人法律项目保罗·达里奥（Paolo Dario）教授补充指出机器人感知能力的提升使得机器人和人类的互动得以突破原先仅仅提供人类在生活上劳动服务的限制，它们同时也具有处理情感交流的能力来满足人类的需求，感知也意味着机器人能够与环境互动、主动躲避障碍物、避免伤害到人类。357

为了适应非结构化外在环境以及更贴近地提供服务、与人类互动“共生”，下一代机器人在设计上必须考虑到“仿生”的特性。Lewis与Simo定义“仿生机器人（Biomorphic Robots）”为：“Imitations of biological systems capable of predicting the sensory consequences of movement, learning through the use of
neural-type methods, and exploiting *natural system dynamics to simplify computation and robot control*.

一些仿生机器人的实例如蛇型机器人、昆虫机器人以及人型机器人。除了运用“群智能”——透过合作策略来解决问题的蚁型机器人之外，人工智能学家也尝试透过结合外显的感官现象与内显的思维活动，创造出能以脸部表情对人类展现社交活动的仿生机器人。

神经科学家对于人类大脑的一种区分方式是将其分为原始皮质（*Primitive*）、古皮质（*Paleopallium*）以及新皮质（*Neopallium*）。MacLean 认为“这就有如三部彼此互联的生物计算机，每一种皮质都有其特殊智能，亦拥有其主体性，对于时间/空间的感知，以及记忆”。从人工智能的观点来看这种仿生构造正好对应了三种智能阶层，分别是“反射式智能（*Action Intelligence*）”、“自律式智能（*Autonomous Intelligence*）”以及“类人智能（*Human-Based Intelligence*）”（如图 14）。反射式智能的功能在于以类比的方式处理神经系统的信号反馈，因此可以赋予机器人控制其头、眼的移动，在空间内移动，控制机械臂去操作

“自律式智能（Autonomous Intelligence）”则指在先前经验的基础上解决模式识别、自动排程、规划等问题的能力。虽然这些行为具逻辑性且可透过程序编写而成，但却不具备自我意识。目前人工智能的发展正悄悄地由反射式智能过渡到自律式智能，而刚刚突破两者界限的机器人如索尼的 AIBO 机器狗、QRIO 机器人、i-Robot 的 ROOMBA 吸尘器机器人，尽管这些机器人处于自律式智能阶层的最低位阶处，它们还是有相当的能力凭内建的自律式智能来完成特定的任务，例如 AIBO 机器狗能与人互动并提供人群娱乐的功能，然而它们却无法依照对自身有利的行动制定决策，或透过自己的价值体系来区分事物的对错。

最高阶—具备高等认知能力的“类人智能（Human-Based Intelligence）”容许以一种新的方式来认识身处的环境并支持抽象思考，通常也被称为“心灵”或“真正的智能”。尽管目前对于类人智能仍然缺乏统一共识，但许多科幻小说总是把

具备类人智能的机器人描述成一个最终将超越人类的新物种。在现实世界的研究人员则尝试结合反射式智能、自律式智能以及类人智能，使得智能的表现更贴近人类，并且促成“理解复杂概念、快速地学习以及透过经验来学习”。

类人智能的研究始于1950年代，早期最具代表性的例子莫过于“图灵测试（Turing Test）”。从一个行为主义者的角度出发，图灵（Alan Turing）定义人类智能为具备“像人类一样应答”的能力，特别是使用自然语言进行沟通交流。虽然过去数十年来研究人员一直尝试开发出能够完全像人一样自然对话的程序，但截至目前为止尚无任何人工智能程序能够通过图灵测试并且成为类人智能的真实个案。

人工智能研究的两个主流方向为“早期人工智能（Conventional AI）”与“计算人工智能（Computational AI）”，由于学术界对于智能定义较为广泛，这两个方向分别呼应类人智能整体的不同部分。Conventional AI意味着一种以陈述的形式表达人类知识之符号系统为基础的理性逻辑推论，具体的应用如电脑西洋棋（推论机制）、对话程序（文本挖掘）、组织特定领域知识（法律条文自动推论专家系统）等。有鉴于Conventional AI只能从事有限的推论、规划与抽象思考，研究人员也体认到使用符号并不能实现心灵层次的理解，同时其透过经验的学习能力也是受限的。

370 Alan Turing (1950) Computing Machinery and Intelligence, Mind, vol. 1, pp. 433-460

105
Computational AI 强调师法自然界的学習机制（例如：基因、神经元），并且容许在缺乏明确规则的自然环境中所存在之信息为基础的学習与适应，而这却是生物的一种重要天赋。和 Conventional AI 相比，Computational AI 在克服杂讯问题, 应用在难以简化成逻辑规则的系统方面有较良好的表现，Computational AI 的具体应用包含对机械臂的控制、双足机器人在不平坦地面的行走、以及模式识别等。然而透过电脑西洋棋的验证发现 Computational AI 在抽象思考以及遵循规则上明显地不如 Conventional AI，即便如此人工智能与机器人领域大部分学者仍然相信假使有朝一日类人智能得以被实现，那将会是透过 Computational AI 的方式。不过也有批评者指出 Conventional 和 Computational AI 都只是行主义的例子，因此它们将永远无法抓住类人智能的本质，他们认为欲达成此目标必须发展出一个全新框架来理解智能。

无论乐观与否，对于类人智能终将被实现的信仰也暗示了研究人员在思考与未来机器人科技有关的法律及安全事项时必须将类人智能的可能性一并纳入考量，而其中一种可能的结论 – 如东京工业大学机械工学教授广濑茂男的主张 – “对于类人智能之开发与应用是必须禁止的”。广濑是众多抗拒“仿人情结（Humanoid Complex）”的机器人学家当中最具代表性的一位，他始终坚持机器人学的初始目标应该是“创造出有用的工具并且供人使用”。美国人工智能协会（AAAI）前主席 Alan Mackworth 则界定人工智能是个“应该/不应该”的问题，而非“能/不能”的问题。Mackworth 强调目标导向（Goal-Oriented）机器人的设计并不涉及到“自我意识”，这也挑战了传统上认为必须创造出类人智能

383 Jeff Hawkins, Sandra Blakeslee著；洪兰译（2006） 创智慧：理解人脑运作, 台北：远流出版社
384 田近伸和（2001）未来のアトム，东京：アスコム
385 鴨志田英樹（2005）ロボット業界最前線の28人が語る！ロボットの現在と未来，东京：X-Media
并应用在机器上的设计思维。《机器人：通向非凡思维的纯粹机器》一书作者，卡内基梅隆大学机器人学教授汉斯·莫拉维克（Hans Moravec）预测机器人智能进化的速度大约是在 2010 年达到蜥蜴的水平，2020 年达到老鼠的水平，2030 年达到猴子的水平，最后在 2040 年达到人类的水平。换句话说，在 21 世纪中叶部分机器人将会达到与“第一的存在”- 人类类似的程度。如果这样的未来成真，到时候立法者在修改/制定与机器人科技有关的法律时将遭遇一个困难就是如何在人类与机器人中间维持一个适切的距离？

尽管大部分人对于机器人衍生法律责任的认知是一种分配在人类的责任而非由机器人自身承担的责任，如果我们允许类人智能机器人的制造和销售的话，机器人的自我意识将会对于法律责任体系将造成新的冲击，例如刑罚的可归责性？以及原本以人类为中心的责任分配是否转变成人类-机器人二元的价值体系？这也是作者支持禁止类人智能的主要理由之一。另一方面，未来或许有必要像电影“机械公敌”的场景一样让机器人服从人类以程序方式写入预设的法律/道德规范，这种方式的优点在于机器人的高自律性被以人类价值为中心的规范所绑定，机器人的行为将以迎合人类的价值观为核心。令人担心的是，一旦机器人拥有自我意识势必形成一种属于机器人自身的价值体系，这也会造成机器人逸脱人类预设规范的情况层出不穷。由于类人智能的实践仍然充满许多争议性，因此接下来的讨论将回到现实面 - 对自律式智能的关注。

综上所述，机器人的人工智能可区分为三个层次，分别是类人智能（Human-Based Intelligence）、自律式智能（Autonomous Intelligence）与反射式智能（Action Intelligence）。类人智能通常出现在科幻小说与电影的情节中，机器人有自我意识和价值观，必须服从人类的指示但却又不时思考反叛。反射式智能则

是将人类的智能以逻辑、符号的形式透过程设在机器人体内，机器人只能呆板地一再重复程序中预先设定的逻辑内容，具体的应用是 1980 年代以来盛行在各工厂生产线的工业用机器人。至于自律式智能则介于类人智能与反射式智能之间，机器人藉由演化式计算（Genetic Algorithm）或神经网络（Neural Network）等机制以具备学习能力，能将先前案例经验加以修改而表现出超越人类默认的程序内容范围，虽然自律式智能机器人在技术架构上超越了有限自动机（Finite State Machine）但是它仍然不具备自我意识。

从法学的角度来看，这三种人工智能层次恰好包含了整个机器人的法律地位由财产变成“假人（Pseudo-Human）”的演化过程，但是机器人智能进化的过程中必须经过两道分水岭，一道是介于自律式智能与反射式智能间的“开放组织风险（Open-Texture Risk）”389，另一道则是介于类人智能与自律式智能间的“奇异点（Singularity Point）”（图 15）390。

奇异点原本为数学、物理学的用语，意指产生质变的关键点，用在机器人人工智能则表示机器人产生灵魂具备自我意识的关键转换点。391 对于奇异点来临的预测有两派对立的看法，乐观派如英国政府的科学政策研究团队，认为随着机器计算能力不断地跃进提升，计算的量变将引发质变，机器人约在 2050 年可以突破奇异点取得类人类智能，同时法律系统也必须重新界定调整人类与机器人的关系，例如机器人需要取得自身的权利。392 另一方面，务实派则认为探讨奇异点并没有意义，因为在图灵机（Turing Machine）的计算架构下机器最多只能发展到自律式智能的层次，前者的主张完全缺乏明确的科学根据。

早稻田大学常务副校长、人型机器人研究所前所长桥本周司（Shuji Hashimoto）曾经指出“第三的存在（Third Existence）”机器人并非“生物”（第

390 翁岳暄（2011）人机共存社会中隐含的开放组织风险：评《开放式机器人》, 网络法律评论 第 13 卷, 北京大学出版社
一的存在）亦不属“非生物”（第二的存在），尽管“第三的存在”机器人在外观与行为上类似活着的东西，但它们本身却不存在自我意识。393

MIT 麻省理工学院媒体实验室教授 Cynthia Breazeal 也有类似的观察:

“There’s a “fuzzy” boundary that’s very compelling for us, where we are willing to see robots as not human, but not exactly machine either”。394

但作者认为这样的定义应该再加上人类-机器人共存的一个重要前提：“下一代机器人应该被明确限制在自律式智能的层次上”（参考图 16）。这样除了可确保“它们（机器人）”和“我们（人类）”维持一定的距离之外，另一方面也可利用奇异点为界线以避开充满不确定性与争议性的类人智能。如果将“第三的存

在“特性应用于机器人安全监管不但能使被管制对象明确化并且有助于机器人法律地位的定性与责任分配，至少能在预先排除奇异点的情况下思考开放组织风险或其他外在因素对于自律型服务机器人安全监管所造成的影响。

图 16. 机器人作为“第三的存在”
3.2“开放组织风险”与风险增生

就安全性确保方面，传统工业机器人和自律型服务机器在风险产生之间的最大区别是前者与安全规格（宽松）有关，而后者则结合了开放组织风险与安全规格。

“开放组织风险（Open-Texture Risk）”395 – 以语言为例，自然语言中的任何字词都有其核心意义，但语言开放组织的特质却使其诠释伴随着特定知识领域、不同观点、时期而呈现出若干差异性，这种特质也时常造成法律语言诠释上的模糊性以及不确定性。对服务机器人之自律行为的风险评估（Risk Assessment）势必也将面临类似的困境，即“尽管对于危险源有个大概的认知，但是其范围难以清晰地加以定义”，而最后产生的潜在性额外风险也就是所谓的“开放组织风险”。

如前面所提到的，对于微电机之风险控管不能仅仅是采取一种“事后的面向”以私法自治为原则交由侵权法来处理善后，而必须同时结合“预防的面向”在机械生产制造的过程中透过行政上的安全监管措施来抑制风险至可容忍的范围之内。工业机器人安全监管在很大程度上是依靠“预防的面向”来解决，例如日本对于其国内工业机器人投入汽车制造业的溶接涂装、电器用品组装、货品搬运等用途之机械安全监管的法规依据为“劳动安全卫生法”396、“劳动安全卫生规则”397、厚生劳动省“告示/指针”，并藉由行政部门制定的工业机器人安全标准技术法规来确保国内各领域之工业机器人维持一定的安全性。英国职业安全卫生检查署（HSE – Health and Safety Executive Office）也曾经发布对于工业机器人之安装、调整、测试乃至编程的安全性确保指针。398 但必须补充说明的是，在机械安全监管体系下法律只是一种工具，不同国家基于政策性考量可能在“预防的面向”以及“事后的面向”两者之间做出不等比例的权衡，因此在预防面向上也有不完全采用强制性安全标准/技术法规的可能性，在这种情况下制造商对其机器人的制造生产上就必须考虑采用国内推荐性安全标准或者回归到ISO国际标

准化组织所制定的安全标准。

ISO 10218-1: 2006 为最具代表性的传统工业机器人安全标准（非人机共工型），它包含与安全有关的设计、安全对策、工业机器人应用，以及机器人基本危险源描述。ISO 安全标准之目标在于对识别出的危险源进行防范，同时合理地减低与其有关的风险。ISO 10218-1: 2006 使得 ISO 安全性确保要求由原先对一般机械安全的覆盖进一步扩大到工业机器人环境的层面。虽然这些要求涵盖了与安全有关的系统控制及软件设计，但其仅限于工业机械臂之应用，对于服务机器人来说效果非常有限。

Harper 亦指出目前机器人安全标准的风险评估方法无法有效确保自主移动服务机器人（Autonomous Mobile Robots）的安全性，他主张理由在于机器人非任务（Non-Mission）面向的延伸操作无法被有效地预先辨别。作者认为这与服务机器人所处的“非结构化环境（Unstructured Environments）”有直接关系。相较于传统工业机器人所适应的简单、高可预见性“结构化环境（Structured Environments）”（如工厂内部生产作业线），服务机器人必须进入人类日常生活空间、提供服务并与人共存，但人类所处之开放式环境的“复杂性、不确定性”使得预防式安全监管的效用打了不少折扣，例如在非结构化环境中“电池充电危险”、“能量储存和供给的危险”、“机器人启动造成的危险”、“机器人外形造成的危险”、“噪声造成的危险”、“认知缺乏造成的危险”、“危险的振动”、“危险物质和液体”、“危险环境状况”、“极端温度”、“危险非离辐射”、“危险电磁辐射”、“电磁干扰/电磁兼容性危险”、“压力、姿势和使用危险”、“机器人运动造成的危险”、“与安全相关障碍的碰撞”、“人-机器人交互时的危险身体接触”、“耐用性不足”、“与运动部件的危险接触”、“定位和导航错误造成的危险”、“其他危险项”等危险源之确认皆比结构化环境难上许多，即便机器人安全专家努力地分析可能的潜在危险源，到时仍不免会出现预想外的危险情况。

上述危险源“判断难”对风险评估的挑战仅止于来自“开放环境的不确定性”，然而自律型服务机器人安全监管真正的挑战在于“危险的自主行为”之风

险评估，因为它同时包含“开放环境的不确定性”以及机器人自主决策的不确定性，即本节开头提到的“开放组织风险”。

工业机器人的设计与制造过程皆依据明确特定的标准，这也导致它们执行任务范围受到限制，通常是单一的、反复的工作态样。换句话说，它们无法透过自主决策或功能调整来适应不断变动的外在环境。相较于工业机器人的安全在很大程度上是仅透过“预防的面向”在机械生产制造的过程中将风险抑制至可容忍的范围内，自律型服务机器人本身的动作复杂性、与多重人物之间的互动、回应外在环境的变动性等因素导致与人类之间的复杂互动无法被抽象化为简单的参数作为危险源识别的依据。此外，开放组织风险—“尽管对于危险源有个大概的认知，但是其范围难以清晰地加以定义”—有个可预见的中核和不可预见的外延，随着未来“机器人运动（Robot Motion）”、“机器人感知（Robot Perception）”、“机器人操作与抓取（Robot Manipulation and Grasping）”、“人类-机器人互动技术（Human-Robot Interaction）”等涉及自主决策功能之技术应用范围扩大，将无可避免地造成开放组织风险的“风险增生”，这也是开放组织风险对服务机器人安全监管所造成的一个重大隐患。

3.3 风险监督

在欧盟委员会资助下，大型跨国 FP7 科技框架计划“机器人法律”项目⁴⁰¹ 已经在 2012 年 3 月于意大利比萨圣安娜（SSSA）、德国柏林洪堡与慕尼黑、荷兰蒂尔堡与英国瑞丁五地启动，该组织的目标是着眼于 10 年后即将到来的“人类-机器人共存社会”所将面临的法律及伦理挑战，并且进行初期梳理研究以图分析机器人科技法制的基础性问题。

欧盟 FP7 机器人法律项目是全欧第一个接受欧盟委员会资助完全以“机器人学和法律学”跨学科研究为主题的科研项目，虽然以往其他第七、第六科技框架计划也有机器人法律或伦理的研究成果，但就规模而论它们都只是小型的附属科研活动。该项目负责人指出 FP7 机器人法律项目的成立乃受前期 FP6 DustBot 项目之影响，2010 年 6 月 15 日至 8 月 7 日 DustBot 项目的一个附属机器人实验证实实验在意大利中世纪遗留城镇—“佩乔里（Peccioli）”进行，并由比萨圣安娜高等大学（Scuola Superiore Sant’Anna）团队将自律型移动机器人 DustCart 投入户外进行自主垃圾收集测试。然而被认定为自律车辆（Autonomous Vehicle）的 DustCart 却与维也纳道路公约和意大利公路法等法律规范产生冲突，最后在当地警方协助下此实验得以顺利完成。参与佩乔里实验的研究人员也深刻认识到让自主移动机器人正式进入城市提供服务之前势必得解决一连串的法律阻碍，如民事责任、保险、隐私保护、交通规制以及对机器人的法律定性等问题。⁴⁰² 欧盟 FP7 机器人法律项目组织架构分为七个课题组，第一课题组（WP0 & WP1）：为项目中枢，负责掌理行政事项以确保整体进度和科研成果；第二课题组（WP2）：负责收集与整理和高新机器人科技有关或可能产生冲突的法律规范；第三课题组（WP3）：在比较法视角下透过个案分析的方式研究欧盟成员国以及外国（中国、美国、日本）法律的适用情况；第四课题组（WP4）：由机器人学家组成，负责机器人领域常用专有名词的编纂确认工作（如：“Humanoids”、“Artifical Mind”、“Intelligent Robots”、“Cybernetics”、“Robotics”），目标为解决科技管制

上困难的“定性”问题；第五课题组（WP5）：由柏林洪堡大学和慕尼黑大学哲学系执行，研究与机器人科技有关的核心哲学问题，包含伦理学、本体论与人类学；第六课题组（WP6）：负责提供欧盟委员会对于机器人科技监管的准则和政策性建议，机器人法律项目预计在2014年5月发布“机器人科技监管准则（Guidelines on Regulating Robotics）”，“准则”内部包含上呈欧盟委员会的立法政策建议；第七课题组（WP7）：负责科研成果的传播和推广，例如学术出版物、学术会议、网站、媒体报道等等。
欧盟 FP7 机器人法律项目在比萨圣安娜高等大学、柏林洪堡大学、慕尼黑大学、英国雷丁大学、荷兰蒂尔堡大学等五所欧洲高校之外，另还设置了“外部支持网络（Supporting External Network）”与外部咨委会“（External Advisory Board）”等附属组织。外部支持网络由欧洲企业以及海外法律机构所组成，成员提供项目（1）比较法视角分析与（2）企业视角分析两方面的支持。目前海外法律机构成员主要来自“斯坦福大学法学院（美国）”,“北京大学法学院（中国）”以及“大阪律师协会（日本）”（图 17）。截至本论文提交定稿前，欧盟 FP7 机器人法律项目仍在进行之中并且已进入（欧洲）“机器人科技监管准则”发布前的最后准备工作，虽然作者身为该项目外部支持网络成员有幸参与“准则”的校对工作，但基于学术伦理考量，实不便在此介绍“准则”的大致情形。

3.3.1 日本 METI 机器人产业与安全监管政策

日本经济产业省在 2004 年 4 月发布“机器人政策报告书（第一版）”（全名—“下一代机器人展望恳谈会”报告书）研究对于“下一代机器人（Next-Generation Robots）”的产业战略布局，内容包含服务机器人市场预测、关键技术分析与安全监管问题（图 18）。

该报告书引用日本机器人工业会之调查结果，指出 2025 年服务机器人市场规模估计可达到 7.2 兆日圆，其中 4.8 兆日圆产值为“机器人制造贩卖产业”，包括家事机器人、护理机器人、警备机器人、娱乐机器人、救灾机器人等服务机器人技术应用；另外的 2.4 兆日圆产值则是“机器人利用支援产业”，包含应用软件开发、教育事业、保险业以及二手机器人的贩卖事业。

为了实践“2025 年：人类-机器人共存社会”愿景，该报告书明确指出对于发展机器人相关“技术开发”和“社会制度”的若干建议，以社会制度为例，分为“安全性确保的制度整备”以及“机器人的普及和推广方案”。而其安全监管政策——“安全性确保的制度整备”，尚且分为“对人接触安全”、“信息安全”和“事后法律责任”等三部分，如下：

403 Unsigned Editorial (2004) 2025年の人間とロボットが共存する社会に向けて「次世代ロボットビジョン懇談会」報告書、平成16年4月、経済産業省次世代ロボットビジョン懇談会
“对人接触安全”：该政策报告书依“接触度”将服务机器人区分为小-中-大三类。首先“接触度”的定义是由机器人与人接触的物理距离和可能互动的人类数量来决定。接触度（小）的服务机器人只与特定人互动，
并且不对人进行物理性的作业，例如家庭用会话交谈机器人 NEC PaPeRo404、扫除机器人 i-Robot ROOMBA405 等。该报告书并建议接触度（小）服务机器人的安全监管措施可参考家电用品或玩具的 ST 安全认证制度。

接触度（中）的服务机器人是对特定人进行物理性作业的机器人，具体例子如将老年人从病床上抱起移往他处的护理机器人（理化学研究所 RIBA406），但其安全隐患在于万一产品有缺陷或者使用方式不当，将导致人员的死伤结果。前者家庭用会话交谈机器人的安全确保制度尚不足以解决接触度（中）服务机器人的安全隐患，虽然该委员会曾经考察工业机器人安全监管制度，但问题在于工业机器人的安全性确保是建立在与人隔离的前提下，因此亦不具参考性。经讨论后委员会将解决方案定调在关注护理机器人的动作出力限制、危险回避功能、使用条件限制，和使用者的强制性安全讲习制度等措施。

接触度（大）的服务机器人指在公共场合对不特定人提供服务并且在执行任务同时进行安全性确保的机器人，例子为汎用人型机器人 ASIMO407。报告书指出其安全监管除了包含前两者的管制措施之外，另需参考汽车监管制度，例如担保汎用人型机器人的自主机能表现适当动作的登记制度、定期检修制度、使用者考照制度、损害保险制度等。

（2）“信息安全确保”：对于可联网的机器人必须确保其信息安全以防止第三者透过远端连线不法入侵干扰服务机器人、窃取数据库重要信息或利用机器人侵犯他人隐私。报告书建议可参考现行计算机安全、网络安全等监管制度，另外必须考虑建立使用者认证制度以有效防止他人不法入侵机器人内部。

（3）“事后法律责任”：无论自主决策或远端连线控制的服务机器人，皆可

\begin{footnotesize}
\end{footnotesize}
能在执行任务过程中误伤第三者。究竟要由使用者、制造商承担侵权责任仍然是个问题。至于外部不法入侵而导致的误伤事件，加害者的特定更是困难，该报告书建议应该考虑建立一种可以记录机器人活动的制度。

“机器人政策报告书（第一版）”推出后不久日本经济产业省在 2006 年再度发布“机器人政策报告书（第二版）”（全名—“机器人政策研究会”报告书），内容分为市场产业面向的“市场环境整备”，安全监管面向的“安全性确保”以及技术发展面向的“任务导向型机器人技术开发”。408

就安全性确保部分，有鉴于当时全世界尚不存在服务机器人安全标准，因此体制整备的第一步在于对现状的认识，于是产生出“安全性评价”的监管政策。日本政府藉 2005 年举办爱知世博会之时机，一方面向世人展示日本高新服务机器人科技409，另一方面则在会场进行“爱知机器人安全性评价实证实验”。该实证实验对象为扫除清洁机器人、警备机器人、儿童护理机器人、访客接待会话机器人、智能轮椅等 5 年内较具市场潜力的服务机器人，并且由日本机器人工业会组织成立“爱知世博机器人安全性准则调查委员会”对于通过安全认证的机器人厂商核发世博会场之展示许可证。410 经过为期半年实验发现若干问题：服务机器人的使用者不是特定的专家，因此产生了“个人使用（Personal Use）”与传统工业机器人“专家使用（Professional Use）”的区别；作业环境是与人类隔离或与人类共存？假使为共存的场合，设计上必须考虑机器人是否经常与人接触。对此，该报告书建议解决的措施如：（1）对于服务机器人安全性评价不全的关系人（如制造者、使用者、保险业者）其责任分摊应明确化；（2）养成与培训专责机器人安全性评价的人才；（3）收集事故案例以及与机器人安全性有关的实证数据。

安全认证关注的是制造商的事前责任，也就是尽力达成“固有安全”最低化

408 Unsigned Editorial (2006) 「ロボット政策研究会報告書 〜ＲＴ革命が日本を飛躍させる〜」、２００６年5月、経済産業省ロボット政策研究会
410 杉本のぼる（2006）愛・地球博で求めたロボットの“State of the Art”、日本ロボット学会誌, vol. 24, no. 2, pp. 167-168
机械风险，例如进行风险评估、固有安全设计、安全防护、使用信息等措施；至于无可避免的剩余风险则透过“事后责任”如法律责任与保险来解决。报告书指出服务机器人对日本制造物责任法的影响在于：（1）服务机器人自主移动的特性；（2）尚未确认对服务机器人的标准操作规范；（3）“机器人”一词定义及分类不明确的问题。

“爱知机器人安全性评价实证实验”对于“机器人政策报告书（第二版）”的影响为使其在机器人安全监管框架的确立上开始正式区分为“事前责任”和“事后责任”两块。换言之，先尽力在事前阶段使机器人的风险降至最低或至少为可接受的程度，至于剩余风险则透过法律责任和保险制度来吸收。这也是服务机器人和传统工业机器人在安全监管上的最大区别所在。

另外值得注意的是“机器人政策报告书（第二版）”的结论有两点重要决议和后续发展机器人安全监管事前责任有关：

（1）组成专家并着手制定“下一代机器人安全性确保准则”或称为“机器人政策报告书（第三版）”。该“准则”包含安全性确保对策事例集、机器人典型事故汇整、保险适用和法律解释等，除了作为事前责任与事后责任对接的桥梁之外，“准则”亦可作为缺乏服务机器人安全标准之空窗期的安全性确保方针。

（2）建立安全性确保的推进“据点”收集·分析安全信息、人员教育训练、与ISO国际标准化组织合作的平台。但据点的实践却迟至2010年由日本新能源与工业技术发展组织（NEDO）出资分5年在筑波市成立一座机器人安全认证与测试中心。该中心目标为（1）“寻找生活支援服务机器人的风险评估机制”以及（2）“发展生活支持服务机器人的功能安全措施”。随后在2011年该“据点”成为筑波市机器人特区（つくばモビリティロボット実験特区）的一部分。411 412

412 Unsigned Editorial (2011) Pamphlet of the Project for Practical Applications of Service
2007年7月经济产业省完成“机器人政策报告书（第三版）”（全名“下一代机器人安全性确保准则”）的制定。其特色在于作为缺乏服务机器人安全标准之空窗期的安全性确保方针，不但适用于所有下一代服务机器人，同时透过设计、制造、进口、装置、管理、维修、贩卖一条龙的方式确保机器人安全性。

“机器人政策报告书（第三版）”是专门针对安全监管问题的政策性文件，服务机器人适用范围和种类首次纳入规范。服务机器人的适用范围笼统地定义为“人类通常的活动空间”，而适用种类则有十分详细的区别，包含：清扫机器人、搬运机器人、接待・引导机器人、保安机器人、个人护理机器人、施工机器人、维修机器人、农业支援机器人、渔业支援机器人、娱乐机器人、教育机器人、溶接机器人、电子零件组装机器人、涂装机器人、组装机器人、检查机器人、研磨机器人、清洗机器人、会活机器人、宠物机器人、玩具机器人。但不包含：宇宙・空中、海底、人体内部为作业环境的机器人，以及用于战场上的军事机器人、医疗手术用机器人。

该报告书的另一个特色在于微电机时代以制造者为主体的“风险评估-安全性确保三步骤模式”被重新修改为制造者、管理者、贩卖者、使用者共同参与的安全性确保机制，其要求如下所示：

（1）制造者：
必须实施风险评估与固有安全设计、安全防护、使用上信息提供的三步骤防护，但安全防护、使用上信息提供的重要性增加，例如：安全防护多了追加保护方策，使用上信息提供则对象变多。

（2）管理者：
让使用者使用机器人前务必确认来自制造者方面信息。
必要情况要实施保护方策：进行管理事项应当参酌制造者方的信息使用信息提供：
（1）提供使用者安全使用的必要信息。
（2）对于使用者，在必要情况下，管理者应办理讲习会。
施加保护方策过程中若发现新危险源必须加以留意。

Unsigned Editorial (2007) 「次世代ロボット安全性確保ガイドライン」、平成19年7月、経済産業省
机器人导致的负伤事故或重大安全故障，应该联系制造商。

（3）贩卖者：

让使用者购买机器人前务必确认来自制造者方面的信息。

使用信息提供：
（1）提供使用者安全使用的必要信息。
（2）对于使用者，在必要情况下，管理者应办理讲习会。

机器人导致的负伤事故或重大安全故障，应该联系制造商。

（4）使用者：

应确认制造者，管理者，贩卖者的使用信息。
在使用信息的基础上使用服务机器人。

因应日本服务机器人产业之战略需求，经济产业省在2009年3月再度推出“机器人政策报告书（第四版）”（全名-“机器人产业政策研究会”报告书）414，第四版报告书为硬件产业部署和安全监管于是制定一种新的分类方式来对服务机器人加以定性，评估基准有三，分别为（1）与人接触度；（2）自律性/自主能力；（3）与作业对象的不特定度。此分类将服务机器人分为六类，如下：

第一型：“沟通会话机器人”
【接触度（小）；自律性（中）；不特定度（小）】

第二型：“移动作业机器人（以操控为主）”
【接触度（小）；自律性（小）；不特定度（小）】

第三型：“移动作业机器人（以自动为主）”
【接触度（中）；自律性（大）；不特定度（中）】

第四型：“身体辅助机器人”
【接触度（大）；自律性（小）；不特定度（小）】

第五型：“载人机器人”
【接触度（大）；自律性（小）；不特定度（大）】

第六型：“汎用人型机器人”
【接触度（中）；自律性（大）；不特定度（大）】

第四版报告书指出服务机器人和产业机器人那种以“隔离”为前提的安全监管不同，它们必须靠近人类执行任务，因此其“对人安全性”必须经过严格的检

414 Unsigned Editorial (2009)「ロボット産業政策研究会 報告書～少子高齢化時代を見据え、ロボットと共存する安全・安心な社会システムの構築に向けて～」、2009年3月25日、経済産業省ロボット政策研究会

122
查认证，但是服务机器人所面对的是无机械专业知识的一般人，并且以不特定多数的方式散布在机器人作业环境中，所以安全技术未能确保的剩余风险发生情况较多。对于剩余风险问题，该报告书认为社会制度的管制之外，在事前机械安全性确保上可结合固有安全设计与利用“传感器信息”控制的“功能安全”手段确保服务机器人的安全性。最后该报告书指明服务机器人安全监管在技术面与制度面的两个挑战：

技术面的挑战（功能安全）
(1) 对人接触安全技术：判断人类的身体动作、可变换出力限制之控制、机器人小型化・轻量化等。
(2) 自动移动技术：安全停止・开始移动、对运动中的人物回避、自主认识位置和环境等。
(3) 移动作业安全技术：操作支援、自主认识周边环境与人物、噪音下的对话・通讯。

制度面的挑战
(1) 策划机器人具体种类与使用情景的安全基准
(2) 建构关系者网络以明确化相关的法律规范
(3) 对于医疗照护用机器人必须协助导入市场和扩大保险给付
(4) 确保网络通讯的稳定性以维护机器人执行任务的安全性。
(5) 考虑发展个人数据保护和防止不法入侵之法律制度。

3.3.2 国际标准化组织 ISO 13482 个人护理机器人安全标准

2014年2月1日，ISO国际化标准组织正式面向全球发布新ISO 13482个人护理机器人安全标准。有别于现存工业机器人之安全标准ISO 10218，ISO 13482是全世界第一个用来确保人类与机器人能够碰触彼此、共享空间以容许机器人向人类提供服务的下一代机器人安全标准。新ISO 13482包含（1）“移动仆从机器人”，（2）“身体辅助机器人”，（3）“载人机器人”等三种基本安全要求（图19-20-21），这种“人类・机器人共存的安全性”在未来将给服务机器人法制之下的机械安全认证、产品责任、伦理与保险等制度带来变革性的重大影响，假使缺乏ISO 13482不仅制造商在生产服务机器人过程中将承受产品责任的高诉讼风险，同时中小型
制造商的技术创新也将面临阻碍，进而导致服务机器人商业化的迟滞。

图 19. 移动仆从机器人（图片来自 ISO/FDIS 13482）

图 20. 身体辅助机器人（图片来自 ISO/FDIS 13482）

图 21. 载人机器人（图片来自 ISO/FDIS 13482）

注: ISO 13482:2014 Robots and Robotic Devices – Safety Requirements for Personal Care Robots

ISO 13482 个人护理机器人安全标准的采用方式可能依照各国家区域的情况而呈现差异，例如在欧洲 ISO 13482 将被视作等同机械指令 2006/42/EC 的安全
要求而间接地具有强制力。" 在中国 ISO 13482 虽然将被国家标准所引用，但在初期阶段是以推荐性国家标准 (GB/T) 的方式制定所以不具备强制性。接下来作者将以即将发行的 “中华人民共和国国家标准 机器人与机器装备 - 个人护理机器人的安全要求（草案）” 为主简要介绍 ISO 13482 的部分内容。

本标准的范围乃特别针对三种护理机器人：“移动仆从机器人（Mobile Servant Robot）”、“身体辅助机器人（Physical Assistant Robot）”、“载人机器人（Person Carrier Robot）”（图 19-20-21），包含每一类机器人的重大危险类型和危险处理方式。但是本标准不适用于：

行走速度大于 20 千米/小时的个人护理机器人、机器人玩具、水下和飞行机器人、工业机器人、医疗装置机器人、军事或公力用途机器人。

图 23. 个人护理机器人的空间和区域

418 起草人：杨书评、王海丹、王思斯 (2014) 中华人民共和国国家标准 机器人与机器装备 - 个人护理机器人的安全要求（草案）。起草单位：北京机械工业自动化研究所
服务机器人的特色就是“非隔离、与人共存”，ISO 13482 标准也分别对于三种机器人制定符合安全考量的活动空间与区域。参考上图23之范例，机器人活动的“最大空间”由房间的墙壁所决定，机器人具有一定体积和机械手臂（通常），可伸展移动的机械手臂不应碰触到墙壁，这决定了“限定空间”。

以载人机器人为例，机器人只允许在房间中央区域和房门处活动。当机器人进行自主移动时，通过机器人上的传感器对四周环境进行观测，并定义动态“监控空间”。监控空间范围内包含“安全保障空间”与“保护性停止空间”，一旦安全相关对象进入安全保障空间，机器人将根据自身与对方的移动速度，调整并减低自身的移动速度；如果安全相关对象进入保护性停止空间，那么机器人将停止运动以策安全。

ISO 13482 服务机器人安全标准和微电机一样采用 ISO 12100 风险评估为基础的安全性确保框架，标准要求个人护理机器人的“剩余风险”必须评估并证明下降到可接受水平。但问题在于风险评估前的“危险识别”，基于非结构环境的不确定性，此标准只能列出典型危险，为了防止产品责任赔偿之争议，制造商设计制造机器人时必须在合理的可预见范围内，并对于下列具体情况加以考虑：

（1）机器人自主决定的不确定性或错误决定的可能危险
（2）用户和其他在场人员的不同知识水平、经历和身体状况
（3）个人护理机器人正常但预料外的运动
（4）人、家养动物和其他安全相关对象的预料外的运动
（5）个人护理机器人的非预设运动
（6）移动机器人的预料外的行走面和环境状况
（7）移动仆从机器人搬运的安全相关对象不确定性
（8）身体辅助机器人和载人机器人与人体骨骼的一致性和差异性

ISO 13482 服务机器人安全标准所明列的服务机器人典型危险源如下：“电池充电危险”、“能量储存和供给的危险”、“机器人启动造成的危险”、“机器人外形造成的危险”、“噪声造成的危险”、“认知缺乏造成的危险”、“危险的振动”、“
“危险物质和液体”、“危险环境状况”、“极端温度”、“危险非电离辐射”、“危险电离辐射”、“电磁干扰/电磁兼容性危险”、“压力、姿势和使用危险”、“机器人运动造成的危险”、“与安全相关障碍的碰撞”、“人-机器人交互时的危险身体接触”、“耐用性不足”、“危险的自主行为”、“与运动部件的危险接触”、“定位和导航错误造成的危险”、“其他危险项”。

就服务机器人“危险的自主行为”之安全要求，见“草案”5.12节419，其安全要求的目标为机器人的设计必须保证机器人自主决策和行动不会导致不可接受的风险，具体方向则有：（1）增加机器人决策的可靠度；（2）限制错误风险的影响。该标准给定一个例子来区分不可接受的风险，例如移动仆从机器人拿错饮料的情况，如果取错饮料种类属于可接受的风险，但如果取破损杯具装水则是不可接受的风险。

“固有安全设计（5.12.2）”：限制操作情景以减少危害风险；使用独有识别码。

“安全保障和补充保护措施（5.12.3）”：增加传感器性能和算法；识别算法的设计必须确保某种决策的正确可能性得到监控；可能导致危险的决策必须进行有效性检查；决策必须通过多种传感原理认证。

“使用信息（5.12.3）”：考虑可预见的误用，使用限制必须排除决策会导致不可接受的危险行为情况；使用信息必须告知机器人的传感和决策能力，以及预防错误行为与危害的指示。

从预防的面向来看，和传统工业机器人监管不同的是服务机器人可以结合“功能安全”与“限制机器人活动空间”两者来确保对其“危险的自主行为”之安全性。例如下图24的载人机器人在博物馆内自主移动，当相关人员接近时，它会根据人员所处的位置属于“保护性停止空间”或“安全保障空间”来决定即刻停止或绕过该人员，而这正是“功能安全”与“限制机器人活动空间”两者结合的例子。除了载人机器人，该安全确保模式对于身体辅助机器人和移动仆从机器人同样适用（见图25-26）。

419起草人：杨书评、王海丹、王思斯（2014）中华人民共和国国家标准 机器人与机器装备-个人护理机器人的安全要求（草案），起草单位：北京机械工业自动化研究所，pp.39
420同上，pp.22
图 24. 自主载人机器人的空间和区域

图 25. 身体辅助机器人的空间和区域
3.3.3 综合讨论：“第三的存在”服务机器人的风险监管框架（初期）

日本经济产业省“机器人政策报告书（第四版）”指出服务机器人和传统工业机器人那种以“隔离”为前提的安全监管不同，它们必须靠近人类执行任务，因此其“对人安全性”必须经过严格的检查认证，但服务机器人所面对的是无机械专业知识的一般人，并且以不特定多数的方式散布在机器人作业环境中，所以安全技术未能确保的剩余风险发生情况较以往更频繁。对于剩余风险问题，该报告书认为社会制度的管制之外，在事前机械安全性确保上可结合固有安全设计与利用传感器信息控制的“功能安全”手段确保服务机器人的安全性。\(^{421}\)

421 『ロボット産業政策研究会 報告書～少子高齢化時代を見据え、ロボットと共存する安全・安心な社会システムの構築に向けて～』、2009年3月25日、経済産業省ロボット政策研究会
目前正准备发行的“中华人民共和国国家标准 机器人与机器装备—个人护理机器人的安全要求（草案）”亦指出依照 GB/T 15706 的危险识别原则（符合 ISO Guide 51 机械安全确保原则）固有安全设计仍是服务机器人的首要考虑，因为机器人的“固有特征”最可能保持有效；值得注意的是“增加安全保障”作为降低风险的第二步，其重要性大幅提高，因为“非隔离”的服务机器人将面临许多安全障碍或人机交互的风险，而功能性的“增加安全保障”可能大幅减少某特定风险，其中包含通过使用安全相关控制功能实现的“功能安全”（条款 6），以及对于在手册上注明剩余风险的信息（使用信息）。

Missala 强调功能安全对服务机器人或（人机共工）工业机器人之所以重要的原因在于机器人再也无法以栅栏隔离作为安全确保的手段，他并建议“家庭用移动仆从机器人（Home Servant Robots）”至少应该具备下列功能安全之机能：

1. “Use fixed/movable guards to prevent inserting a body part”.
2. ”Monitor the torque inside the arm drives”.
3. ”Monitor and restrict velocity of the arm”.
4. ”Detect human body parts in the workspace”.
5. ”Monitor force and way during grasping and check for plausibility”.
6. ”Monitor and restrict loads that may be lifted”.
7. ”Restrict dynamic forces when the arm is moved”.
8. ”Move the mobile base to stabilize the robot after dynamic forces occurred”.
9. ”Using robust algorithms and plausibility checks to ensure that the right object is grasped”.
10. ”Monitor grasping force to ensure correct clamping force”.
11. ”Use grasp planning to clamp only at solid surfaces”.

然而部分功能安全涉及自主决策机能亦有衍生开放组织风险的可能性。藤田指出对于非结构化环境的“模型失真（Modeling Error）”也可能造成开放组织风险。这种情况和传统技术风险在硬件的“随机失误（Random Failure）”以及软件的“系统失误（System Failure）”并不相同。作者认为非结构化环境的

422 起草人：杨书评、王海丹、王思斯 (2014) 中华人民共和国国家标准 机器人与机器装备—个人护理机器人的安全要求（草案），起草单位：北京机械工业自动化研究所
424 藤田嘉美、藤川博己 (2009) 自动车与机能安全, 相模原: TriFoglio 出版社

131
复杂性和模型失真成某程度的正比关系，而这无疑对于服务机器人功能安全的推广和应用来说是一大挑战。虽然追求“固有安全机器人”（如 Baxter 机器人）可以解决此问题，但完全符合固有安全设计的机器人可能因为出力过低、动作过慢而不符使用者对于服务机器人的期待，所以作者认为功能安全的衍生风险仍是人类享受智能机器人提供各式服务的一种“必要之恶”。

ISO 13482 个人护理机器人安全标准对于确保机器人自主决策和行动不会导致不可接受的风险之安全要求具体建议为（1）增加机器人决策的可靠度与（2）限制错误风险的影响。作者认为在自律型服务机器人“决策可靠度”尚未发展成熟的初期投入阶段或可多加考虑“限制错误风险”的面向以强化对机器人的安全监管，例如 ISO 13482 对机器人活动空间的使用限制（图 24-25-26）或使用情景的限制。在活动空间或使用情景的限制下服务机器人衍生的相关法律问题如：自主错误的责任、使用者的注意义务、制造商的产品责任和保险费率计算等棘手问题都能获得较有效的解决。

![图 27. “第三的存在”服务机器人的风险监管框架（初期）](图)

服务机器人进入开放式人类居住环境不但造成较多的剩余风险，其中尚包含

机器人自主行为伴随的“开放组织风险”，这也是图27为“第三的存在”服务机器人的风险监管框架（初期）所欲分析的问题。此框架所探讨的对象为具备自主能力并在人类日常生活环境提供服务、与人共存的“自律型服务机器人”或称为“第三的存在”服务机器人。而分析问题的切入点以思考“法律在机器人安全监管框架中处理‘开放组织风险’所扮演的角色和作用”为核心。

机械安全监管体系下法律只是一种工具，不同国家基于政策性考量可能在“预防的面向”以及“事后的面向”两者之间做出不等比例的权衡，因此在预防面上上也有不完全采用强制性安全标准/技术法规的可能性，例如Missala指出在欧洲，服务机器人的出厂和销售必须通过机械指令427、LVD低电压指令428与EMC

426 Xiulia Lin, Baozha Chen, Yinglib Bai, Baohong Zhu (2012) Study on effect of product liability to inherent safety, Procedia Engineering 45, pp. 271 – 275
电磁兼容指令429 等强制技术法规430，但是美国则可能采取事前不进行预防性监管但在事发后在产品责任上以惩罚性赔偿的立法政策。因此本节对法律在机器人安全监管上的分析将先略过对“预防的面向”的讨论，而以“事后的面向”为主（图 28）。

和微电机之风险监管模式相比，自律型服务机器人进入市场初期的“风险监督”监管模式不同之处在于预防的面向上采用“加强功能安全”以及“限制机器人活动空间”，并且在事后的面向上透过产品责任、一般侵权责任和保险机制来吸收“新·剩余风险”。作者观察到剩余风险中的“开放组织风险”不仅对产品责任造成影响，同时也将导致服务机器人事后面向监管必须考虑加入一般侵权责任作为吸收风险的手段之一。

图 28. 服务机器人安全监管：风险监督模式

就“开放组织风险”对产品责任所造成的影响，欧洲大学研究院法律系 Giovanni Sartor 和 Giuseppe Contissa 教授指出当自动化更进一步地导入复杂系统时（例如交通运输系统），首先发生的就是对于损害或伤害归责将从人类操作者

designed for use within certain voltage limits (codified version), OJ of EU L 374/10 from 27.12.2006.
转移到利用自动化科技替代人类的企业或者自动化科技的制造者，因此可以预见一个“由个人责任移转到更一般的企业责任与产品责任”趋势。431

侵权责任法第41条规定：“因产品存在缺陷造成他人损害的，生产者应当承担侵权责任”。432 根据本条规定，构成产品责任所须具备三个要件分别为：“产品具有缺陷”；“须有缺陷产品造成受害人损害的事实”；“缺陷产品与损害事实之间存在因果关系”。虽然侵权责任法并未对缺陷做出定义性的规定，但一般认为当产品存在“不合理的危险”情形即构成产品缺陷。433 日本制造物责任法对于产品缺陷的定义为“欠缺通常应有之安全性”。434

欧盟FP7机器人法律项目法律顾问、日本大阪律师协会资深律师小林正启（Masahiro Kobayashi）指出一种构成产品设计缺陷的情况是当自主移动服务机器人由于传感器受尘埃影响导致其靠近屋内火源时距离判断错误并因此引发火灾，厂商在设计机器人时对这些情况的考量应属合理可预见的范围之内。435

工业机器人作业的环境、任务单纯所以一般对于工业机器人的设计缺陷判断并无太大争议，但防止服务机器人设计缺陷的关键挑战在于其“开放组织风险”。服务机器人所处的环境可能是公共场所、单元楼、独栋别墅，而其互动对象则可能有老年人、一般成人、小孩、宠物等，在如此广大的范围内势必导致部分机器人自主行为难以预见。作者认为服务机器人设计缺陷“不合理的危险”之判断势必难以直接援引传统工业机器人之判断标准，而在服务机器人进入市场初期或可考虑建立数据库收集实证事例以协助未来判断标准的建立。

虽然人类是地球上少数懂得运用工具的生物之一436，但是随着科技发展日新

注：请参阅本文附录 7.4欧洲大学研究院法律系 Giovanni Sartor 与 Giuseppe Contissa 教授专访
432《中华人民共和国侵权责任法（2010）》
436Unsigned Editorial (2014) 谁说只有人才会使用工具, 网易, Available via
月异，当代工具的复杂性已使得许多人无法直接上手操作，从产品责任角度来看
制造商透过提供使用说明和指示等方式减低风险的重要性亦逐渐提高。

今日全球汽车的操作方式已达成统一，不外乎透过方向盘、油门、制动、排
挡系统等部件来操控汽车的行进，但是机器人的操作方式却是非常分歧的，它包
含脑机接口、自然语言接口、操纵杆、鼠标键盘等各种可能性。NEC家用服务机
器人PaPeRo437 设计师西泽俊広（Toshihiro Nishizawa）指出由于服务机器人接口
和操作方式的复杂性，使用者因为对使用说明认识不周全而导致为数不少的产品
事故。438 对于此问题，小林正启认为未来服务机器人制造商对于机器操作接口
不完备之处，即便事先已在使用说明书上注明亦不能免除指示缺陷的产品责任。
他主张的理由是随着机器人智能的提升，人类和机器人的互动方式只会越来越暧
昧、复杂，而要求使用者在事前记下这一连串繁复的操作过程未免太过不切实际，
所以即便使用说明书上注明禁止事项仍不能免除指示缺陷责任。他并建议有三种
方式可以解决指示缺陷产品责任的争议，分别是：（1）统一机器人的操作方法、
（2）采用超越种族、语言、文化，可凭直觉操作的“通用设计（Universal Design）”、
（3）机器人自身可以拒绝执行错误操作方式的功能。439

上述产品责任中设计和指示缺陷等问题皆或多或少与开放组织的不可预见
性有关。欧洲大学研究院法律系 Giovanni Sartor 和 Giuseppe Contissa 教授建议必
须考虑提供企业一种“科技发展水平抗辩（State of the Art Defense）”的可能性。
如此一来，当自动化技术依照现行工业标准制造同时在目前科技知识水平无法预
见产品缺陷的情况下制造商将可免责。440

1981 年日本川崎重工（Kawasaki Heavy Industries, Ltd）厂房内，一名 37 岁
的工程师浦田健司（Kenji Urada）走入安全限制区域试图去对一部工业机器人进

438西沢俊広（2012）家庭用ロボットの事故発生リスク低減のための音声対話に基づ
く取扱方法確認システムの研究 ～人と機械の新しい関係性の提案～，筑波大学
大学院システム情報工学研究科博士学位論文
させる～」，2006年5月，経済産業省ロボット政策研究会、pp. 66
440注：请参阅本文附录 7.4 欧洲大学研究院法律系 Giovanni Sartor 与 Giuseppe Contissa
教授专访
行维修，然而在慌乱之中他一时忘了关掉机器人的电源，于是在工业机器人液压机械臂的强大出力之下这名日本工程师被推挤到一旁的机械设备上并且不幸地成为历史上第一位死于机器人之手的人类。传统工业机器人时代所涉及的事后责任通常以产品责任为主，一般侵权责任不易构成的理由在于工业机器人是以“隔离”为基础的，而进入隔离区域的人员本来就必须负有较高的注意义务，但服务机器人是以“与人共存”为前提，同时自主行为使机器人活动范围增大，在人类注意义务回归一般、机器人与人接触频度增加、机器人活动范围增加的情况下，作者认为对于服务机器人安全监管事后面向的一个发展趋势是，未来必须在无过错产品责任的基础上另外思考一般侵权责任的问题。关于此部分在第四章个案研究（一）：智能汽车、自动驾驶汽车安全监管研究将有进一步的探讨。

一个与开放组织风险紧密相关的新问题在于机器人“判断错误”的自主行为侵害他人人身、财产安全的侵权责任。虽然产品内部缺陷也可能导致机器人在执行任务时做出错误的判断，但这里所强调的是“开放组织风险”所引发的判断错误。考虑到盲人对环境的感知能力有限，可能给导盲犬下不适当指令（例如在前方闪红灯且车辆川流不息的状态下命令导盲犬带他过马路），因此训练师在培育导盲犬时会教导其“智能不服从（Intelligent Disobedience）”的能力，使导盲犬不仅仅是顺着盲人的意志行事的“拐杖”，其本身保留若干程度的自主判断余地。这种判断余地有如双面刃，虽然在第一时间可以快速做出反应处置，但其争议性在于有些从人类的价值观看起来是错误的决定，在当事者本身却认为是合理的判断，而这也是人类享受智能机器人提供各式服务的一种“必要之恶”。现阶段开放组织风险属于剩余风险的一部分，而剩余风险是指经过安全监管预防面向之风险评估等安全性确保程序下所遗留的“可容忍风险”，除非服务机器人判断错误之自主行为造成重大的人身、财产损害，否则将十分难以“不合理的危险”或“欠缺通常应有之安全性”为理由主张构成产品责任。

此外，另一种与开放组织风险间接有关的是“开放式机器人（Open Robotics）”的归责问题。欧盟 FP7 机器人法律项目法律顾问、美国华盛顿大学法学院助理

教授 Ryan Calo 所关注的“开放式机器人”是在近未来进入人类家庭之中，提供劳动服务的个人机器人（Personal Robots）。Calo 指出个人机器人在商业市场将面临封闭式与开放式两种选项，封闭式机器人（Closed Robotics）由机器人制造商单方主导研发进度与功能设置，在设计之初就只能执行固定的功能，其软件也无法事后加以修改扩充，相较之下开放式机器人（Open Robotics）的科技研发较大程度地取决于第三方软件、组件、配件商的市场动向，因此在创新幅度以及速率皆优于封闭式机器人。Calo 对于开放式机器人的定义有三，分别是：

（1）多功能（Multifunctional）：机器人本身没有预设的特定功能，可以配合使用者的需要加入其它功能。在多功能的情境中，机器人科技的应用范围将由制造商、消费者与第三方软件组件商共同决定。

（2）兼容性（Nondiscriminatory）：多功能的平台不一定是兼容的，一种可能性是制造商限定多功能平台只能与自家软件相容，其缺点是消费者只能被动地依赖制造商提供新的功能应用。另一种可能性则是采用 iPhone App Store 的方案，由平台拥有者选择认可的软件，但是风险在于平台的选择有可能是没效率或不公平的，例如他们可能阻挡和他们自家软件功能相仿的第三方软件。

美国硅谷机器人制造商 Willow Garage 的 PR2（Personal Robot Platform）所采用的 ROS（Robot Operating System）操作系统为开放原始码架构（Open Source）具有一种兼容性，很容易就可以修改增补其功能；反观 SONY 的 AIBO 机器狗便是一种封闭系统的代表，AIBO 初期只能使用单一预设软件 AIBOware 操作，后期 SONY 才释出非商业使用的源代码 R-CODE。Calo 指出机器人操作系统采开源软件有许多好处，一是易改进，任何人都可以散布与改写，机器人平台上的流通性有助于全球性机器人软件产业的形成，同时软件也将使消费者更容易进行使用上的创新，例如增加机器人新的功能应用；二是更安全，开源机器人软件可以更早进入市场，并且随着时间不断地被修改完善化，基于对机器人安全的防护，我们能使用到更安全的软件，同时对于大众一向担心的机器人安全，开源软件将可以更好的审查隐患。

模组化（Modular）：开放式机器人平台在设计与使用都是模组化的，模组化机器人的优点在于可以减低总体开发的成本而增加创新的速率。除此之外，模组化增加应用的广度，以硬件的变化性搭配对应软件，以提供多种多样的任务执行。

虽然开放性有助于创新与应用，但是有两点因素将可能不利于个人机器人产业采取开放模式。第一是网络现存的问题，如平台的封锁与各公司之间多样性的区隔，也会发生在开放式机器人上面；第二则是归责问题，基于多种多样的应用可能性，发生意外的机率也相应增加，因此开放式机器人的制造商、经销商等将面临更沉重的法律归责。

封闭式机器人造成物理性破坏或伤害的法律归责相对开放式机器人来说是直接简单许多的，由于封闭式系统只执行特定的功能，具有可预见性，所以当一个封闭式机器人系统在正常使用下执行任务时发生失误或不安全的动作，通常是制造商承担责任。为了降低责任的风险，制造商可以事前就产品的可预期危害加上警告标语。此外，封闭式机器人并不倾向消费者自行修改扩充系统的机能，对于因此造成的损害，制造商可提出产品不正当使用抗辩（Product Misuse Defense），由消费者本身承担责任。

对于开放式平台，机器人造成损害的法律归责将更为复杂。相对于封闭系统的可预见性，制造商无法预测机器人的潜在损害，因为消费者可能对开放式机器人做出各式各样的应用，同时制造商也无法主张产品不正当使用抗辩（Product Misuse Defense），基于开放式个人机器人衍生的“开放组织风险”它的功能应用范围是无限的，但另一方面它本质上支持机能上的扩充与修改。Calo 指出还有一个问题是近似的因果关系（Proximate Cause）将导致责任分配产生困难。假如因程序导致意外的发生，如何分辨危险源来自于制造商的操作系统或第三方的应用软件并不容易，此外对于开源软件，没有任何一位作者是单独负责的。

虽然个人计算机也有预见性、近似的因果关系、产品不当使用抗辩等开放性

445 翁岳暄（2011）人机共存社会隐含的开放组织风险-评《开放式机器人》，网络法律评论第 13 卷，北京大学出版社
衍生的法律归责问题，若采取严格的归责标准将对于计算机与软件制造商不利，但由于个人计算机的功能限制（Limitation）是明显的，其产生的伤害也非实体的，所以法院采用权宜的措施将软件定义成一种服务，并且以经济损失归责原则（Economy Loss Doctrine）覆盖一定程度的损害。Calo 认为这种权宜性的做法只能适用于计算机与软件，因为计算机与软件不会产生物理性的伤害，而经济损失规则的适用只能限于非物理性的伤害（Corporeal Injury）。有一点必须补充的是，计算机与软件有时会因为小故障而产生物理性伤害的结果，例如电子制动系统，此时软件制造商与设计者将可能例外地被提起诉讼并承担责任。但是这种情形与开放式机器人不同之处在于它只是封闭式系统。

开放式个人机器人将会是结合开放性特质与产生物理性伤害之首例，目前就究竟法律要如何规制开放式机器人造成损害的责任配分仍然不明确。就上面的分析，开放式机器人可能必须承担较重的责任，而且能主张的抗辩也少得多。Calo 认为当事故发生后一味地追究制造商的责任本身就是不负责任的做法，同时也可能最终导致厂商减少对机器人产业的投入。

Calo 认为提供一套使开放式机器人得以充分发展的制度，将是促进机器人创新与普及的最佳方式。法律在开放式机器人平台中所扮演的角色，将是不断地寻求调整技术创新与安全归责之间的平衡点。

有鉴于针对智能机器人的安全标准与安全工学还在发展之中，在目前还没有更好的解决方案之前，Calo 提出了阶段性的过渡措施来处理机器人安全与归责问题，他的方案包含两部分，首先是关于开放式机器人平台制造商的选择性免责，就使用者对开放式机器人的使用，制造商应该免除诉讼上的责任追究；另外，机器人的拥有者可以利用保险来分散意外的风险。美国政府对于机器人制造商在战场以及工厂之应用领域皆采取免责方式，军方的签约商完全免除对于军用机器人的使用以及故障的责任；至于工业制造应用，虽然制造商并未完全免除直接责任，但是对于强制工伤补偿制度（Mandated Workers Compensation）将有效地限制工人起诉制造商的可能性，Calo 认为开放式机器人也应该思考类似的免责框架。

对于开放式机器人的免责有两种方案，一种是完全免责（Blanket Immunity），
如同美国当年为了保护航空工业而对小型民航机设下的 GARA 条款，由于完全缺乏对厂商的制约，最终导致厂商较不注意安全问题，赔上了安全性；第二种方案则是比照枪支管制免责的 (PLCAA) 和通讯内容端正法 (Communication Decency Act) Section 230 对于网络 ISP 的免责。Calo 所建议的选择性免责（Selective Immunity）只适用于在第三方软件、消费者的控制之下，或经过使用者的修改补充其功能，在这些情况下，立法者应该考虑让制造商免除因第三方使用衍生损害的诉讼责任追究。例如，该应用是基于消费者的决定而增添上去的，不论其危险性如何，只要是消费者事后加装的第三方非预设软件或者增添、去除原本的硬件设备，则制造商无需对于因此而产生的损害负责。这种主张的根据基于修改方法有一定的风险存在，所以机器人被不安全的修改不可作为一项抗辩诉求。至于第三方机器人软件的问题，虽然有意见表示也应该考虑让第三方软件商同样享有选择性免责。然而，Calo 认为开放式平台与软件之间存在本质上的不同，软件通常被用于特定用途，软件开发商能够预见其产品的功用，所以要求第三方软件商对于事故负责仍是合理的要求。

对于制造商的免责，事故的责任分配最终将归责于使用者，但是使用者可能不会有足够的经济资源对受害者提供赔偿，所以 Calo 另外提出了搭配保险制度来填补损害。在制造商、软件商皆免责时，保险是使用者惟一能保护自己权益的作法，但首先要区分清楚机器人性能、用途与种类，随着使用者对机器人用途的不同要求，保费也将有所不同。除了机器人本体的因素，消费者对于机器人使用的态度也应被纳入考虑，如果机器人涉及到从事高危险性的任务，则保险的标准也必须相对提高。但是保险制度实践的最大问题还是在于开放式机器人经常改变、增补功能，如此将导致保险费率计算的复杂化。

现阶段寻求调整技术创新与安全归责之间的平衡点的重要性在于：第一，如果归责性是充满不确定的，那么将会使厂商退缩，生产的机器人性能将受到限制，进而影响创新性，而且厂商在开放式机器人的前提将不能主张对“使用者不适当地使用机械”与“使用者调整过机械”衍生的意外之抗辩。第二，个人机器人产业初期使用者会以残障与老人等弱势族群为主，在归责不明与弱势原告双重因素下可能影响导致厂商减少投资，造成机器人市场萎缩、企业陆续退出市场。
日本经济产业省“机器人政策报告书（第二版）”指出服务机器人保险的问题在于“损失发生的确率”和“损失被害程度”皆难以确定。报告书建议或可先回归到事前责任—“尽力降低剩余风险”，如果未来市场出现风险系数较大的服务机器人而且制造者尽一切努力亦无法再降低风险的场合，到时可能必须考虑推动“强制机器人保险制度”。

机器人保险专家上田佑介表示新兴机器人保险业务的承保人主要区分为（1）制造者·贩卖者：机器人的制造和贩卖者；（2）业务使用者：利用机器人从事特定业务的人员；（3）一般使用者：日常生活中使用机器人的人员。至于损害的种类则有（1）物损：偶然事故导致机器人的损坏；（2）利益·费用损害：因机器人导致偶然事故所造成的额外费用支出与停业损失；（3）身体伤害：因机器人导致偶然事故所造成身体伤害和医疗费用支出；（4）赔偿责任损害：机器人在制造·贩卖·运行中因为造成他人生命身体之伤害、他人财物损害所涉及的法律损害责任赔偿责任。三种承保人对于这四种损害各有不同的需求，例如制造者·贩卖者在物损上必须考虑动产综合保险、商品附带动产综合保险与机械保险，但一般使用者通常只需考虑动产综合保险。

机器人保险在“风险监督”监管框架上的角色应该是作为一种辅助事后民事法律责任分配的机制，对于此点，上田佑介亦整理出常见服务机器人涉及的法律责任赔偿责任，或称“责任保险”。他认为当服务机器人进入市场初期所涉及的责任保险有（1）产品责任保险；（2）机械保证保险；（3）设备赔偿责任保险；（4）针对信息科技业者的保险；（5）个人信息泄露保险；（6）个人赔偿责任保险。

作者认为在机器人产业发展初期，保险机制将可协助机器人制造商顺利克服前述“判断错误”的自主行为侵害他人人身、财产安全的侵权争议。欧洲大学研究院法律系Giovanni Sartor和Giuseppe Contissa教授指出就严格责任而言，我们必须考虑到不论赔偿责任限额（Liability Cap）必须被修改或者应该透过配套措施来确保损害赔偿额度不会造成企业的过重负担，例如：对于牵涉到自动化科技的

447 上田佑介（2007）「ロボット保険」の現状と今後の展望、日本ロボット学会誌25巻8号, pp. 1185〜1187
设计/开发/使用者采取强制保险，以及推广赔偿基金（Compensation Fund）等。^{488}

但是作者认为保险的一个难题在于缺乏机器人与人类互动情形的实证基础，因此许多机器人在非结构化环境中如何与人互动的风险不易预见，最后导致商业保险公司对于机器人行为不可预见性难以计算出一个合理费率。

参考第五章个案研究（二）：“Tokku”机器人特区与科技立法研究，2007年早稻田大学人型机器人研究所高西淳夫研究室在福冈 TNC 电视大楼地面周边（〒814-0001 福冈市早良区百里滨 2-3-2）进行一个着地姿势修正算法适应真实环境的不平坦地形实验，并以 WABIAN-2R 搭载的预测姿势补正控制与非线性补偿控制。场所实验目的在验证 WABIAN-2R 在诸如人行道与瓷砖地面等现实环境中的适应性。

图43. WABIAN-2R walked on the bumpy surface with tiles angled 2 to 5 degrees (forward-axis) down (Experimental Site No. 7)

就开放组织风险的观点，自律型机器人产生的物理性破坏/伤害，是其与非线性决策机制与非结构化环境中的人、事、物中互动产生的结果，对于法律责任

^{488}注：请参阅本文附录 7.4 欧洲大学研究院法律系 Giovanni Sartor 与 Giuseppe Contissa 教授专访

143
的因果关系厘清有相当难度。例如图 43 为 WABIAN-2R 在福冈电视塔前不平坦地面 2 至 5 度左右的瓷砖地面往下（前后纵向）掉落的例子。WABIAN-2R 的“步行稳定控制器”（Walking Stability Controller）以内建的离线行走模式以及传感器来自外在环境的数据为基础负责动态地调节，在这个例子中究竟机器的自主行为可以被视作一种“产品附随的功能”？或者“机器人超出程序设计师/制造者预期所做出的决策”？尽管这两种看法在工程师眼中皆言之成理，但是转换为法律的角度来看其结果却是不尽相同。

从作为一种产品附随功能的角度来看，所必须适用的法律应该是侵权责任法的“产品责任”。449 传统机器的风险在制造与设计过程中已经能够有效地被减低，至于剩余风险再透过提供说明与警示标语的方式来处理。自律型服务机器人的开放组织风险对于产品缺陷认定的困难在于智能机器人“行为的风险”不容易在制造与设计的过程中被减低，而机器人在非结构化环境中的自律行为可预见性低，对于难以预见的行为风险是否构成指示的产品缺陷还有很大的争议性。450

如果将它视为一种自主决策那么究竟谁要来承担这个决策的错误责任？仅具有自律式智能却缺乏自我意识的“第三的存在”机器人本身不具备承担责任的主体性，那么是否可以将机器人视为一种动物451 准用饲养动物损害责任的规制并交由其主人负责？虽然已经有学者如此主张，但是作者认为现阶段智能机器人的“第三的存在”特性仍未十分明显，法院将其以一般“微电机”视之的可能性较大，因此准用饲养动物损害责任的方案在短期内将难以实现。

作者认为或许在直接使用现行法律中“机器人视为一种产品”与“机器人视为一种动物”中两难的情况下考虑采取“第三条道路”即依照过错比例分配责任并结合保险作为辅助。这个方案是建立在机器人安全性获得确保（例如：ISO 标

准）且环境适应范围、门槛条件明确（例如日本法律452 对于无障碍设施的统一要求）的前提下以“黑匣子”来记录机器人任务执行中间事件的因果关系作为责任分配的依据。WL-16 RII 载人型双足步行机器人（如图 44）可能因为人为的不当使用导致平衡功能被破坏而摔落地面受伤，但是究竟是因为机器产品缺陷、机器与非结构化环境互动的突现行为，或者人为误失事件等因果关系的厘清可能需要统一的“黑匣子（Black Box）事故记录器”作为辅助判断责任分配的工具。在确定责任牵连主体之后便可利用记录器的实证数据分析对象在事件中的预见可能性与回避义务来判断是否有过错而成立侵权责任，同时分析结果亦可用于商业保险对于机器人行为不可预见性的合理费率计算之用。

图44. WL-16RII carried a person to climb steps in Hakata Riverain shopping mall

452 「高齢者、障害者等の移動等の円滑化の促進に関する法律」（バリアフリー新法）
附带一提，以自己外观为基础打造了一部外貌与其极为相似之仿人机器人 Geminoid HI-4453 的日本机器人学家石黑浩（Hiroshi Ishiguro）认为随着服务机器人智能不断提升，接下来势必面临是否给与机器人权利的争议。石黑浩指出当仿人机器人成为社会的一部分，“人类日常生活中不可或缺的个体”时，人类应该赋予机器人权利，他并强调与智能/仿人机器人技术同步发展的“人机合体/赛博格（Cyborg）”趋势将造成以肉身来定义权利主体的属性模糊化，于是最后人类和机器人之间的界限也就变得暧昧不明。454

作者认为“第三的存在”服务机器人还是有给与其权利的可能性，但理由并不完全在于机器人本身的维权而主要是为了防止人类的劣根性暴露。欧盟 FP7 机器人法律项目研究主管 Pericle Salvini 博士曾经组织研究团队在韩国进行服务机器人与人互动的实证实验，他们将服务机器人放置于广场上并且躲在角落暗中观察人类如何与机器人互动。令研究人员惊讶的是在四下无人之情况下，几位小孩以一种带有侵略性，或者称之为“欺凌”的方式来和服务机器人互动。455

目前世界法律体系依国家差异而对于动物分别给与从“超越物的特殊地位”到仅保护“频临绝种动物”轻重不等的法律保障456，对于“非生命的物体”则主要有刑法的破坏公物罪或民事侵权责任等规范可以喝止对“他人”的财产进行破坏或侵害之行为，但在于对“自己”所有的“非生命的物体”进行破坏、侵害等行为并无法律可加以约束。数年前台北一名博士生将自己收养的多只幼猫以剥去毛皮尾巴等凌虐方式杀害弃尸，后来因为违反动物保护相关规定而遭法院重判 1 年半刑期457，如果将情景稍作改变把幼猫替换为“第三的存在仿人机器人”的话，无论该生以何种令人不快的方式将机器人凌迟、大卸八块，都只是在合法

454 注: 石黒浩 (2012) 人とアンドロイド: 私はなぜロボットを作るのか、東京: 日本評論社, pp. 50-51

的情况下对自己的财产进行调整动作，而这也是未来服务机器人进入人类生活空间、与人共存时即将面临的一个立法缺口。

法律学者王毓正指出目前无论动物权利或动物福利主张者皆以对具有感知能力的生物给予特别保护为共识。**458** 虽然服务机器人不符合上述定义但是考虑其“第三的存在”特性以及未来融入社会各角落的普遍性，作者认为在机器人时代，特别是一个即将形成的“人类-机器人共存社会”中透过法律来保护不当对物迁怒或其他恶意行为仍有其必要性。换句话说，“第三的存在”服务机器人应该获得相应的特殊法律地位，将其视为一种单纯的财产显然是不足够的。

3.4 风险控制：由功能安全到“安全智能”

非结构化环境本质上的复杂性使得仅依赖固有安全设计难以有效确保自律型服务机器人的安全性，因此在安全保障和补充保护措施上必须加强使用“功能安全”来有效确保机器人自主决策和行动不会导致不可接受的风险之结果发生。如前所提及，ISO 13482 个人护理机器人安全标准对于确保机器人自主决策和行动不会导致不可接受的风险之安全要求具体建议为（1）增加机器人决策的可靠度，与（2）限制错误风险的影响。和微电机之风险监管模式相比，自律型服务机器人进入市场初期的“风险监督”监管模式不同之处在于预防的面向上采用“加强功能安全”以及“限制机器人活动空间”，并且在事后的面向上透过产品责任、一般侵权责任和保险机制来吸收剩余风险。

图 29. 开放组织风险之增生

如 3.2 节“开放组织风险”与风险增生提到的，开放组织风险—“尽管对于危险源有个大概的认知，但是其范围难以清晰地加以定义”— 有个可预见的中核和不可预见的外延，随着未来“机器人运动（Robot Motion）”、“机器人感知（Robot Perception）”、“机器人操作与抓取（Robot Manipulation and Grasping）”、“人类-
机器人互动技术 (Human-Robot Interaction)” 等涉及自主决策功能之技术应用范围扩大，将不可避免地造成开放组织风险的 “风险增生”，特别是在服务机器人进入市场的中期以后机器人自主决策能力将大幅提升，同时也将更深一层地融入人类社会各个角落来执行任务，这也是开放组织风险对服务机器人“风险监督”模式所造成的一个重大隐患。

参考图 30，面对伴随机器人智能提升而大幅增长的开放组织风险，“风险监督”模式中预防面向的 “限制机器人活动空间” 安全性确保手段将不再有效，除非机器人制造商愿意为了安全而承诺放弃对高智能机器人全面投入商业应用的期待。此外，自律型服务机器人的功能安全主要是机械式，或运用传感信息进行控制的安全性确保手段，而开放组织风险却是来自机器人与非结构化环境中互动产生的决策行为，因此功能安全也将难以应付伴随机器人智能提升而大幅增长的开放组织风险。

图 30. 风险监督的有限性

460 「ロボット産業政策研究会 報告書～少子高齢化時代を見据え、ロボットと共存する安全・安心な社会システムの構築に向けて～」、2009年3月25日、経済産業省ロボット政策研究会, pp. 18
另一种策略则是回到事后的面向（图30）透过产品责任、一般侵权责任与
保险来吸收开放组织风险所造成的过多剩余风险。欧洲大学研究院法律系教授
乔凡尼·萨尔托尔（Giovanni Sartor）指出软件智能主体（Software Agent - SA）
可进行认知性的任务所以能被归类为具有意向状态。作者认为即便自律型服务机
器人有意向状态不代表其本身应该承担风险，因为它只是在“第三的存在”特性
之前提下扮演一种代理人类意志决定的角色。除此之外“赔偿义务”也是另一
种判断软件智能主体是否应当承担责任的根据，是故只有人类本身应当承担责任。
但在机器人智能大幅增加、相关角色人员（制造商、管理者、贩卖者、使用
者）不断的情况下，如果预防面向无法有效地将开放组织风险降低至合理
可接受范围内的话，那么为了吸收这部分的风险，势必立法政策上会加以调整
并且加重相关角色人员所需承担的责任，进而引发责任分配是否公平之疑虑或者
众人对于服务机器人使用却步不前的寒蝉效应。保险通常作为一种辅以民事责
任的补充机制，如果在事后的面向单纯采用保险机制的话，那么保险所牵涉的故
赔偿金额将非常可观，同时中小型保险公司可能无法提供机器人保险服务，最
后形成由少数几家大型保险公司寡头垄断的局面。上述情况皆对于服务机器人产
业的长期发展造成不利的影响。

一种替代方案则是考虑将风险监督模式—“被动地处理开放组织风险问
题”改为主动、积极地介入开放组织风险的危险源之“风险控制”监管模式。作
者认为在“栅栏隔绝”、“活动空间限制”依次失灵的情况下，对自主型机器人之
安全监管最终还是要面对由“透过空间环境间接限制其行为”转为“直接对机器
人决策的限制”，或称为“安全智能（Safety Intelligence）”463，一种系统化风险
控制手段用来限制机械的自主决策能力。参考表1，传统“功能安全”关注来自
于机械的（技术）风险，它藉由对外部机械规格的限制（例如设置机械式，或运
用传感信息进行控制的安全性确保手段）来达到减低机械的风险的效用。然而作
者提出的“安全智能”和功能安全略有区别，安全智能关注的是机器人自律行为

Intentionality of Software Agents. *Artificial Intelligence and Law* 17(4), 253–290
462 「次世代ロボット安全性確保ガイドライン」、平成19年7月、経済産業省
463 Yueh-Hsuan Weng, Chien-Hsun Chen and Chuen-Tsai Sun (2007) The Legal Crisis of
Next Generation Robots: On Safety Intelligence, *International Conference on Artificial
Intelligence and Law (ICAIL)*, at Stanford Law School, Palo Alto, USA
的风险，藉由对机器人智能架构的限制达到“动态地防止部分危险行为”的效用。
另外，功能安全是预防面向中“安全保护与补充防护措施”的一个环节，它的属性单纯就是一种技术性（监管）措施，但安全智能却是跨越“安全保护与补充防护措施”与“产品责任和一般侵权责任”之间（图 31），而参杂技术和法律的双重属性。

<table>
<thead>
<tr>
<th></th>
<th>功能安全</th>
<th>安全智能</th>
</tr>
</thead>
<tbody>
<tr>
<td>风 险</td>
<td>机械的风险</td>
<td>自律行为的风险</td>
</tr>
<tr>
<td>限 制</td>
<td>机械之规格</td>
<td>机器人智能架构</td>
</tr>
<tr>
<td>效 用</td>
<td>减低机械的风险</td>
<td>避免部分危险行为</td>
</tr>
</tbody>
</table>

表 1. 功能安全 vs. 安全智能

图 31. 以安全智能作为监管手段的风险控制模式

Patrick Lin 也指出在（1）机械自律性日益增加、（2）环境的复杂性与非预
期的使用，（3）设计人员无法预期机械的表现等原因下，对于自律型杀害机器人
的道德必须超脱出现有的“操作性道德（Operational Morality）”并进入“功能性
道德（Functional Morality）”，而实践功能性道德的方式是建立一种机制使机器人
能够在第一时间对于牵涉道德的行动自行做出决策。和军用机器人必须遵守国际人道法规范的功能性道德相比，自律型服务机器人人的功能性道德实践可能
更偏向对于典型民事侵权行为的认知和避祸，并且在此基础上有效地在第一时间
动态地避免开放组织风险，这是透过反射式智能来确保非认知性、物理性接触安
全的“功能安全”所无法比拟的。

人类与自律型服务机器人之间的接触互动将会是未来安全监管的一个热点，
而其中一个核心问题在于如何在限制机器人自主决策与执行任务所需的自律性
中间达成平衡？如 EURON Robot Ethics Roadmap 白皮书作者 Gianmarco
Veruggio 等人指出：

"Operators should be able to limit robot autonomy when the correct robot
behavior is not guaranteed”。

3.4.1 风险控制与阿西莫夫的机器人三原则

到目前为止学术界对于“安全智能”尚未建立起一种共识，而唯一可以作为参考
的例子是科幻小说家艾萨克・阿西莫夫所创造的“机器人三原则”：

（1）“机器人不得伤害人类，或在不作为的情况下使人类受到伤害”。

First Law: “A robot may not injure a human being or, through inaction,
allow a human to come to harm”。

（2）“除非与第一原则发生冲突，机器人必须服从人类的命令”。

Second Law: “A robot must obey orders given it by human beings,
except when such orders conflict with the First Law”。

（3）“在不违背第一及第二原则下，机器人必须保护自己”。

Department of Navy, Office of Naval Research
Third Law: “A robot must protect it own existence as long as such protection does not conflict with the First or Second Law”.

1942年艾萨克·阿西莫夫(Isaac Asimov)在其小说“转圈圈(Runaround)”中正式提到了著名的“机器人三原则(The Three Laws of Robotics)”465，三原则在阿西莫夫的小说中作为一种约束机器人在人类社会中的根本道德规范，在三原则的约束下机器人不仅不能伤害人类还必须在执行人类命令与保护自身安全的潜在逻辑冲突下自行做出合乎人类道德的判断。三原则中的前两条体现了以人类价值为中心的方式来实践“安全智能”，但是当服务型机器人从人类手中取代越来越多的劳力密集性、反复性工作之后，一种透过立法来支持“安全智能”作为“维持人类优位之机制”466的重要性将逐渐增加。

机器人三原则第三条的问题在于它跨越了以“人类价值为中心”和“机器人价值为中心”的界线。如果追求机器人功能性之目的只是为了满足人类的需求，那么它们在设计过程中应该遵循一种机制使其在以替人类确保财产的动机下保护自身安全，而不是像一般生物在保护自己的动机下维护自身安全，如一位美国专栏作家所建议的：“A Robot will Guard its own Existence,, because a Robot is Bloody Expensive”。467

阿西莫夫在其另一部作品The Rest of the Robots，他曾写下：“There was just enough ambiguity in the Three Laws to provide the conflicts and the uncertainties required for new stories, and, to my great relief, it seemed always to be possible to think up a new angle out of the 61 words of the Three Laws”。468

正当这种暧昧性提供源源不绝的文学创作灵感的同时，它却也成了实践自律型服务机器人安全智能机制的主要障碍之一。EURON Robot Ethics Roadmap白

468 Isaac Asimov (1964) The Rest of the Robots, New York: Collins
皮书的作者指出机器人三原则概念若以编程手段导入下一代智能机器人，将出现下列潜在问题：

- Which Kinds of Ethics are Correct and Who Decides?
- Will Roboethics Really Represent the Characteristics of Robots or the Values of Robot Scientists?
- How Far Can and Should We Go When We Program Ethics into a Robot?

虽然阿西莫夫机器人三原则兼具道德伦理和安全监管双重意义，但有不少机器人学者认为应该将道德层面的机器人三原则与韩国政府的“机器人伦理宪章”归入科幻小说的范畴，因为它们没有办法解决社会中的现实问题。大阪大学机器人学教授石黑浩（Hiroshi Ishiguro）认为以阿西莫夫机器人三原则作为建立机器人伦理的首要准则将会是个错误，他强调：“If we have a more intelligent vehicle [e.g., automobile], who takes responsibility when it has an accident? We can ask the same question of a robot. Robots do not have human-level intelligence.”

畅销玩具机器人RoboSapien的设计师Mark Tilden认为给与机器人道德就好比教导蚂蚁唱歌，而且根据阿西莫夫小说中的描述，这些难题最后的结果往往是弊多于利。渥太华大学法学教授Ian Kerr则赞同一种给予机器人道德伦理准则的观点是不必要的，他指出：“Leaving aside the thorny philosophical question of whether an AI could ever become a moral agent, it should be relatively obvious from their articulation that Asimov’s laws are not ethical or legal guidelines for robots but rather about them. The laws are meant to constrain the people who build robots of exponentially increasing intelligence so that the machines remain destined to lives of friendly

servitude. The pecking order is clear: robots serve people” 。

关于结合人工智能与安全工学有两种主流观点，一种是创造出具备安全导向推论能力的智能主体（Intelligent Agent）；另一种观点则是替机器人编写入为数众多的规则藉以确保最高层次的安全行为。至于未来两者谁能胜出仍有待立法者、设计者、制造商等人如何回应作者所提出之“机器人三原则的三大问题”以及众人最终所建立之社会共识来决定，“三大问题”分别为：

（1）机械元伦理学的问题（Question of Machine Meta-ethics）：

Susan Leigh Anderson认为无论机器人处于何种地位，三原则都不能满足机械元伦理学的要求。她将机器人区分为有/无道德地位（Moral Standing）两种情形，她指出如果机器人有道德地位那么赋予机器人伦理准则是必须的。她接着介绍Warren定义人格的6种特征，分别是Sentience、Emotionality、Reason、The Capacity to Communicate、Self-Awareness、Moral Agency。在Warren定义下，一个具有类人智能的HBI机器人可被视为具有道德地位，于是乎让机器人去服膺机器人三原则是一件不道德的事，因为它的本质是一种让机器人去服侍人类的教条。

对于没有道德地位的“第三的存在”机器人，Anderson引用康德的观点“Humans should not mistreat the entity in question, even through it lacked rights itself” 。康德批评即便动物缺乏道德地位只能作为服侍人类的工具，人类依然不能虐待牠们，因为“He who is cruel to animals becomes hard also in his dealings with men”。如果“第三的存在”机器人服从机器人三原则的话，它将间接导致人类欺凌、虐待机器人的情事发生。无论机器人是否拥有道德地位，机器人三原则皆与

机械元伦理学产生冲突。

（2）形式的问题（Question of Formality）：

“抽象地思考”是人类独有的能力，目前并没有一种手段能绝对地确保机器人将如何理解与反应人类日常沟通中常出现的抽象意义和模糊词语。例如人类知道如何区分出外科手术和斗殴事件中流出的鲜血，而做出这种判断将需要对话交谈的能力、对抽象表达的理解（如隐喻）、使用领域知识正确地诠释字句中的真义。这里有几个具体实例说明它的困难性，包含语言学家诺姆・乔姆斯基提出的“Colorless Green Ideas Sleep Furiously”与Groucho Marx的“Time Flies Like An Arrow, Fruits Flies Like A Banana”。事实上，合乎文法逻辑的语句可能充满不合理性，而这正好呼应了阿西莫夫对于机器人所做出的注解“Logical, but not reasonable”。从这个角度切入，机器人三原则将面临形式性的挑战，或者如何正确地理解、执行人类所订立的法律、道德规范?

对人类而言“自然语言”（包含中文、英语、日语、希伯来语等）是创设、理解、执行法律规范所不可或缺的媒介，然而除非是具备类人智能的HBI机器人，“第三的存在”机器人仍缺乏像人类在日常生活中使用自然语言的抽象能力。

（3）管制的问题（Question of Regulation）：

在管制方面的争议则为要否让机器人具备教条推理的权限？我们究竟要如何确定机器人在执行三原则时完全地遵循人类所设下的规范？

假使我们允许机器人透过自身的认知来定义“安全”，这意味着给予它们权限决定“如何”与“何时”反应由外部接收的刺激。在某

474 Noam Chomsky (1957) Syntactic Structures, New York: Walter de Gruyter
475 注：Time flies like an arrow. Fruit flies like a banana. By Groucho Marx
 US comedian with Marx Brothers (1890 - 1977)
476 Isaac Asimov (1957) The Naked Sun, New York: Doubleday
些情况下这些决策将需要人工智能的道德伦理推论，至少为判断对错的能力。而从“道德工学（Morality Eningeering）”角度思考，广濑茂男指出当遭遇规则推论和道德之间的冲突时，机器人三原则可能变成充满矛盾或将符合人类利益的要求置之一旁的情形。一个最极端的例子是机器人在一种符合大众期望的特殊情况下被植入道德程序要求去杀一个坏人，而这个例子碰触到了人类对机器人两种根深蒂固的恐惧，人们一方面困扰于让机器人遵守规范会否无法体现人类立法主体性；另一方面则担忧是否将发生让机器人来捍卫某些有心人所订立之“恶法”的情况。

类人智能HBI机器人在理解三原则的过程中无可避免地会加入自我的价值观，因而造成一种暧昧性：究竟应该遵守人类法律或自己的机器人法律？

综上所述，作者认为机器人三原则将难以用作真实世界的安全智能风险控制机制，而对于“类人智能HBI机器人”与“第三的存在机器人”皆不适用阿西莫夫机器人三原则的主张有三（表2）：

（1）机械元伦理学关注道德实体，因此让“类人智能HBI机器人”去服从机器人三原则是不道德的；在康德的主张下即使非道德实体如“第三的存在机器人”也不适合使用机器人三原则。

（2）在形式方面，机器人三原则无法被应用在缺乏抽象思考或完全地使用人类法律语言能力的实体上。

（3）在管制方面，机器人三原则显然不适合“类人智能HBI机器人”，因为其自身的价值体系无法保证100%在人类的法律规范体系下运作。

477 広瀬茂男（1989）ロボットについての対話、日本ロボット学会誌7巻4号、pp. 121-126
<table>
<thead>
<tr>
<th>“类人智能”机器人</th>
<th>元伦理学</th>
<th>形式</th>
<th>管制</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>O</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>“第三的存在”机器人</th>
<th>元伦理学</th>
<th>形式</th>
<th>管制</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>X</td>
<td>O</td>
<td></td>
</tr>
</tbody>
</table>

表 2. 阿西莫夫机器人三原则的三大问题

阿西莫夫机器人三原则作为一种在早期让机器人学家、社会学家、立法者预想未来“人类-机器人共存社会”各种情况的角色是有用的，但它在现实机器人的设计阶段却无法满足任何与安全智能有关的风险控制机制，因此机器人学家和立法者必须另外思考新的路径解决这个交叉学科之复杂议题。

3.4.2 风险控制与“法定机械语言”

在阿西莫夫机器人三原则不可行的情况下作者尝试提出一种替代性的风险控制机制—“法定机械语言（Legal Machine Language）”，此框架包含两个子原则："代码即法律（Code is Law）"以及"嵌入式伦理（Embedded Ethics）"。

劳伦斯·莱西格在 1998 年提出著名的“代码即法律（Code is Law）”概念，他指出在网络空间的行为受到四种力量制约，分别是“法律”、“社会规范”、“市场”与“自然” — 或者他称之为“架构（Architecture）”的要素。由于网络空间的架构完全透过代码来建立，因此代码本身可以成为一种有效的约束力量对用户行为或若干涉及核心价值，如网络言论自由、隐私等事项进行监管。这也使得以代码作为一种网络空间的管制工具成为可能。按照此理，未来对于机器人的安全

监管若有提升至风险控制的必要性，那么风险监督下的“狗法（Dog Law）模式”
如同动物保护法，由人类制定法律，法律规范由人类直接来遵守，机器人间接“被遵守”-- 势必将难以有效应付节节升高的开放组织风险。服务型自律机器人如一种在实世界活动的智能主体，而这种智能主体便是由代码所组成的，如果可以在不需道德推论的前提下思考如何将代码加以定义、正规化、安全动作的实施等，那么“代码”将会是一种拘束机器人自主性的有效安全监管工具。

从自然界里我们可以发现许多动物彼此间安全地互动却又不涉及复杂道德推论的实例[479]，例如“群聚（Flocking）”[480]为鸟类或鱼类等群居物种共同展现的突现行为，可以被视为自然界的交通法则。当同一物种鸟类进行季节迁徙时，其享有的共通基因背景容许牠们以十分接近或 V 字形的方式飞行而不碰撞到彼此，这种安全互动对物种存活和延续而言无疑是个重要的特点。然而安全互动的实践必须建立在由族群中所有成员共享的一组非言语（Non-Verbal）简单安全规则的前提下：“躲避从旁挤过来的邻鸟”、“跟随相同方向飞行”等等。关于群聚这种动物学概念的实用性在控制无人机[481]、其他机械[482]、包含智能机器人[483][484][485][486]等高新科技应用上获得验证。作者曾经提到结合反射式智能与自律式智能已足够让机器人在不需道德推论、不需做出“对/错”判断的前提下自主执行情况认识、避开误判、防止意外等功能。因此机器人仅仅需要执行并确保（物理性）安全互

动以及单纯地套用人类订立的道德箴言。佐治亚理工学院机器人教授 Ron C. Arkin 指出：

“We do not want the agent to be able to derive its own beliefs regarding the moral implications... but rather to be able to apply those that have been previously derived by humanity.”

Ron C. Arkin 提供一个称为“嵌入式伦理 (Embedded Ethics)”且避开阿西莫夫机器人三原则困境的方案。在 Arkin 的框架下，嵌入式伦理由三个部分组成，分别是（1）道德调节器 (Ethical Governor)，（2）人机接口 (Human-Robot Interface)，（3）责任监督者 (Responsibility Advisor)。道德调节器如同人类或动物体内的反射神经机制，负责过滤掉潜在不道德的行为；人机接口的功用在于避免机械误解人类的行为，在支持肢体语言、手势、简单的指令、脸部表情与构造化语言“Loglan”之下，机械可以进一步了解外在环境的现况，并且协助其做出预测性的行为判断基础；责任监督者的功用在界定责任的最后归属，特别是人类操控者的过度操控或机器人本身的自动行为所造成的不当后果，以上三者的集合构成了行为合乎伦理的智能主体系统（Ethical Autonomous Agent）。

由于承接美国军方课题资助，Arkin 的嵌入式伦理必须符合军方需求并且应用于如何确保“致命性军用自律机器人 (Lethal Autonomous Robots)”或称“杀手机器人”在战场上能够遵行日内瓦公约(jus in bello)第一条所规范的“在战场上不得误伤平民”，这与自律型服务机器人对于安全监管、确保物理性互动安全的目标可能有所出入。因此以 Arkin 的框架为基础，作者尝试提出对于建构自律型服务机器人嵌入式伦理所需的三项要求，分别是：（1）适应变动环境以及正确地回应外在复杂环境的持续能力；（2）类似人类反射动作机制的立即性保护反应措

489 Shuzhi Sam Ge, Y. Yang, Tong Heng Lee (2008) Hand Gesture Recognition and Tracking Based on Distributed Locally Linear Embedding, Image Vis Comput 26:1607–1620
施，这使得移转“以言语为基础的误解”或“不稳定自律行为”等风险成为可能；
（3）一组明确的安全规则集，能够适用于所有型号的服务型机器人并且支持保
险费率计算和事后责任分配。和阿西莫夫机器人三原则相比，嵌入式伦理的三项
安全要求皆可以透过编程的方式实践并嵌入服务型自律机器人体内，但必须注意
的是嵌入式伦理本质上是一种技术概念，对于发展机器人的安全智能风险控制机
制还必须增加一种具有法律效力的中介，即“代码即法律（Code is Law）”的概念，并且整合两者形成“法定机械语言（Legal Machine Language）”。

Yueh-Hsuan Weng, Chien-Hsun Chen and Cheun-Tsai Sun (2008) Safety Intelligence and
Legal Machine Language-Do we need the Three Laws of Robotics?, Y. Takahashi (Ed.),
978-953-7619-00-8.

肆. 个案研究（一）：智能汽车、自动驾驶汽车安全监管研究

4.1 汽车的智能化

随着时间的推移计算机逐渐从独立单机转换为便于携带的智能手机、平板电脑与其它嵌入式系统，而现代生活周遭许多机械物件早已由这些系统负责操控。以汽车为例，每一部汽车约有介于 50 至 100 个嵌入式控制单元（ECU），这些车用电子控制单元不仅负责控制车窗升降的电动马达，也控制启用安全气囊以及车辆稳定的电子安全系统。近年来我们正目睹当代 “功能汽车（Feature Car）” 逐渐进化为 “智能汽车（Smart Car）” 的潮流，而这股革命性趋势的原因就在于智能汽车对非结构化环境的高适应性。

从安全监管的角度来看，功能汽车的车用电子控制系统具高度可预见性，例如部分电子稳定控制系统在相关物理模型被充分理解同时装配精确传感器读数之前提交其安全性容易被验证，因此功能汽车之 ECU 嵌入式控制单元对于环境的理解程度十分接近地面实况（Ground Truth）。然而，德国 TÜV 安全认证机构的研究报告指出这一切将可能不再适用在智能汽车上面，特别是在当驾驶辅助系统（Driver Assistance Systems）开始展现一些（半）自动行为以后。494

今日的驾驶辅助系统的性能表现已经达到相当高水平，例如日产汽车的智能防撞机能 495 与奔驰汽车的自动刹车系统 496 497，后者甚至已能随时付诸于生产线

进入市场。而为了能够实现这些（半）自动行为，必须要使 ECU 嵌入式控制单元理解自由流动的交通的动态，而对比目前汽车使用的传感器包含摄像镜头、雷达、激光雷达（LIDAR）、超声波，以及上述传感器的组合来采样周遭环境的数据。

和功能汽车搭配的电子稳定控制系统所需数据 - “转向角度”与 “车轮转动速度” 相比，智能汽车所使用的数据还需另外经过一道高阶诠释判断的程序，而且对数据的诠释是交由软件来处理的 498, 在数据诠释的基础上软件从而进一步做出对不久将来的预测以及规划相应的行动。499 这些变量是多种多样的，其中也包含了理解驾驶的意图和对其它驾驶的行为的预期。以智能防撞机能为例，特别是在高速运行情况下很明显地规划的错误或对传感器读数错误的诠释解读将为交通驾驶与乘客招来致命的结果，最糟的情况甚至驾驶辅助系统可能促使或直接导致交通意外事故。

这些情景也衍生出许多新问题，例如“是否可能判断车辆在事故中所占有的失误比重?”、“谁应当承担责任?”。除了这几个问题之外，半自动系统也伴随着一些道德伦理的问题。在 2013 年 11 月马自达的 CX-5 SUV 在一场户外自动防撞安全系统测试的过程中出现失误，导致撞上一旁护栏，造成车上 2 人受伤送医。500 501 和马自达的 “第二类错误（False-Negative）” 事件相比，丰田在 2012 年则出现过另一起关于自动制动系统“急刹车”的 “第一类错误（False-Positive）”。

当系统侦测来自旁边车道车辆车体反射的散射波时可能错误地判断前方有障碍物，而自动地启动制动功能。\footnote{502}

除了半自动式主动安全系统——“智能汽车（Smart Car）”之外，无人介入全自动的“自动驾驶汽车（Robo-Car）”也将引发更多关于安全监管和道德伦理等问题。谷歌在 2010 年宣布他们的自动驾驶汽车项目，他们相信开发无人驾驶车将会是一种有效提升行车安全与效能的解决方案，例如自动驾驶汽车的投入应用有减低交通事故的死亡率的潜在可能性。\footnote{503} 直到 2012 年 8 月，谷歌的自动驾驶汽车已达成 30 万英哩零事故的纪录。\footnote{504}

在欧洲，2010 年意大利帕尔玛大学（University of Parma）VisLab 实验室发起了“VIAC（The VisLab International Autonomous Challenge）”自动驾驶汽车挑战。他们组织一列车队在 2010 年 7 月 20 日由帕尔玛出发，其中 4 辆车搭载 GPS 与 GOLD 障碍物与车道侦测系统以支持在公共道路的自动驾驶，经过 1 万 3000 公里的漫长路程车队在 2010 年 10 月 28 日成功抵达上海世博会欧洲馆区。\footnote{505} 电气电子工程师协会（IEEE）预测在 2040 年全世界将有 75%的车辆采取自动驾驶的运行模式 \footnote{506}，因此作者认为智能汽车是这股科技变革的起点，而自动驾驶汽车则是变革的终点。自动驾驶汽车拥有复杂的传感及决策能力，它们不仅能达到智能汽车的感知程度，并且还能展现更高程度的自律性在非结构化环境中进行规划。

\footnote{505} Jason Barlow (2010) From Italy to China on autopilot, WIRED, Available via http://www.wired.co.uk/magazine/archive/2010/12/start/from-italy-to-china-on-autopilot (Accessed at March 10, 2014)

目前有许多国家正尝试推动自动驾驶汽车作为竞争型产业, 例如日本首相曾经宣示要将高新自动驾驶技术作为其经济政策的一部分, 包含许多措施来鼓励日本汽车产业的发展此技术。美国国家公路交通安全管理局（NHTSA）也发动针对未来10年自动驾驶汽车进行早期部署与立法的大型计划。对于发展国内自动驾驶汽车产业，安全管控和法律议题,特别是智能汽车与自动驾驶汽车的相关民事责任将逐渐显露其重要性。

4.2 政策视角下对智能汽车、自动驾驶汽车的安全监管分类

从汽车电子控制系统发展进程（图32）我们可以观察出一种汽车自动化层次不断地在提升之中的趋势。虽然在19世纪“机械汽车（Mechanic Car）”之自动化应用仅仅限于利用简单的蒸汽阀机构来提升发动机的运转效能，但是计算

近年来科技的突破性发展使得功能汽车的“反射式智能（Action Intelligence）”进一步跃升为“自律式智能（Autonomous Intelligence）” 516，并且促使功能汽车逐渐进化成为新一代的“智能汽车（Smart Car）”，其中两个显著的例子是 2003 年的“ABA 主动制动辅助系统（Active Brake Assist）” 517 与 2010 年的“LCS 车道变换辅助系统（Lane Change Support）” 518，和功能汽车不同之处在于它们表现出非结构化环境（Unstructured Environments）的高适应性。顺着这股发展潮流我们可以预见的是近期内运用先进驾驶辅助系统道路安全的“智能汽车（Smart

Car）”将逐渐普及，而汽车智能科技最后的终点则是跳脱出电脑对驾驶员的辅助，进入完全自动化无人驾驶的“自动驾驶汽车（Robo-Car）”。

为了避免技术上的混淆而造成政策制定上不必要的困扰，美国国家公路交通安全管理局（NHTSA）利用五个不同的自动化级别来区分自动驾驶技术519:

（1）0 级，代表没有任何自动化技术。

（2）1 级，“特殊功能自动化”：汽车需搭载至少一项基础安全装置，比如电子稳定控制系统。

（3）2 级，“组合功能自动化”：汽车至少要集成 2 项高级控制功能，比如奔驰的带转向辅助功能的增强版限距控制系统。

（4）3 级，“有限的自动驾驶”：例如谷歌无人自动驾驶车，在特定道路上可以自动驾驶但偶尔需要驾驶介入。

（5）4 级，“完全的自动驾驶”：驾驶者在任何时间都不需对汽车进行控制，例如美剧“霹雳游侠（Knight Rider）”中的 KITT 汽车。520

相较于美国 NHTSA 国家公路交通安全管理局的 5 级分类，日本筑波大学机械安全学者稻垣敏之（Toshiyuki Inaba）主张人类处理信息的过程可以分为 4 个主要阶段，分别是521:

（1）“知觉（Sentience）”：人类对外在真实环境的感知以及传送感知信息到脑部的过程。

（2）“状况认识（Situation Understanding）”：指大脑进一步处理与判读获取的信息。

（3）“行为选择（Behavior Selecting）”：依个人情况在所处环境中做出决定。

（4）“行为执行（Behavior Execution）”：完成决策后的执行阶段。

519 Adam Fisher (2013) Inside Google's Quest To Popularize Self-Driving Cars, 科技新时代 Popular Science, 总 256 期, pp. 68
521 稻垣敏之（2012）人と機械の共生のデザイン—「人間中心の自動化」を探る、東京：森北出版社
美国 NHTSA 分类第 2 级的“组合功能自动化”可用于支持人类信息处理的“状况认识”并且在某些场合下辅助“行为选择”，而第 3 级、第 4 级的“有限的自动驾驶”和“完全的自动驾驶”则以辅助人类的“行为选择”和“行为执行”为主，这在安全监管上的意义为前者属于一种人类与机器的“共同控制（Shared Control）”状态，但后者则是人类将若干权限授予机器自主执行行为的“授权控制（Authorized Control）”。

首先，自动驾驶汽车属于“授权控制（Authorized Control）”模式，授权控制指人类驾驶移转控制权限给机器并且交由机器依照自身的决策判断来执行任务。例如机器车搭配自动驾驶系统可以自动运行抵达目的地，全程不需要人类的介入。参考图 32 自动驾驶汽车依照授权程度的不同，可区分为“暂时自动驾驶系统（Temporary Autopilot）”、“半自动驾驶系统（Semi Autopilot）”与“全自动驾驶系统（Full Autopilot）”。“暂时自动驾驶系统”，顾名思义，指系统仅在短时间内接收驾驶的控制权限，驾驶仍然控制着方向盘、踏板、仪表板的指示信号等。“半自动驾驶系统”，有别于前者，提供驾驶有限的控制，例如刹车踏板。“全自动驾驶系统”则负责所有的驾驶决策判断，在通常情况下传统人类驾驶角色在机器运行过程中无任何置喙余地。我们必须注意的是授权控制模式的自动驾驶系统已经达到稻垣人类信息处理指标的“行为选择”，预测接收数据的基础上机器能自行进行决策，产生自主行为。在此情况下，机器与人的关系已经不是单纯的电脑辅助人类驾驶而已。

自动驾驶汽车科技非常适合用于运送目前在社会上因为身体特殊状况而不适合开车的民众，例如因为严重的视力问题或其他身体缺陷导致无法正常驾驶车辆上路的人。Volvo 已经决定投入自动驾驶汽车科技的研发生产，并且预定于 2017 年在瑞典哥特堡（Gothenburg）市内及周边进行自动驾驶汽车的户外公共道路环境实证测试。522 无独有偶，日产也有发展自动驾驶汽车产业的打算523，但是

除了目前“维也纳道路交通公约（Vienna Convention on Road Traffic）”第8条明确禁止无人驾驶车上路之外，不明确的交通责任与产品责任皆为阻碍自动驾驶车进入市场的制度性屏障。

智能汽车搭载半自动先进驾驶辅助系统，它属于“共同控制（Shared Control）”的人类-机械合作模式。共同控制指人类和机械同时共享驾驶控制权限，例如某些搭载主动式制动系统的智能车可以在无人为干涉的情况下基于自身判断下达启动制动的指令。功能汽车仅达到稻垣人类信息处理过程指标的“知觉”，而智能汽车则达到“状况认识”和“行为选择”，例如主动式制动系统的运作必须机器理解外在环境状况后再做出预测，以协助人类的驾驶行为。然而，在“共同控制”中机器的自动决策行为是否优先于人类的驾驶行为？或者它们仅被允许用来“辅助”人类驾驶行为？这也是人类-机械合作模式所伴随的一个争议性问题。

4.3 开放组织风险产生的汽车安全监管隐患

根据调查，Smiley和Brookhuis发现高达90%的车祸发生起因与人为疏失有关，例如疲劳、注意力不集中、出现睡意等，汽车智能化的动机除了提升驾驶效能以达到节能减碳目的外，最主要的目标就是藉由安全性之提升来降低车祸事故发生频率。自动驾驶汽车的争议在于交通事故侵权责任风险的承担从驾驶者被转移至制造商身上。此外，如果汽车制造商不能证明智能汽车和自动驾驶机器车无“不合理的危险”并且善尽一切注意义务的话，制造商甚至可能还必须负担产品责任。

然而上述制度性障碍只是问题表层，作者认为智能汽车安全监管最根本的问题还是在于我们对于这种高新科技的技术风险一无所知。MIT教授Nancy G. Leveson指出“先进驾驶辅助系统（ADAS）”的安全性问题不在个体程序部件，而是在系统的整合上，德国TÜV安全认证机构的一份研究报告则指出当“驾驶

526 Nancy G. Leveson (2000) System Safety in Computer-Controlled Automotive Systems,
辅助系统（Driver Assistance Systems）”开始展现一些（半）自动行为以后有时
会伴随若干不稳定的“非必要系统行为（Unwanted System Behaviors）”，在严
重的情况下将出现威胁到人身安全的后果。527

究竟系统安全性和个体安全性有何不同？非必要系统行为与“开放组织风险”有何关系？这些技术风险问题如何影响到未来汽车交通侵权责任、保险和产品责
任的发展？本节尝试分别从（1）“授权控制”—自动驾驶机器车、（2）“共同控
制”—先进驾驶辅助系统等角度切入，分析汽车智能化所伴随的若干安全监管隐
患。

4.3.1“授权控制”—自动驾驶汽车

Google 安全项目主管 Ron Medford 指出谷歌在自动驾驶技术业务的主要目标和
dev
发方向是研发 NHTSA 分类的第四级“完全的”无人自动驾驶汽车 528，然而在
缺失对汽车制造商提供选择性免责的情况下，自动驾驶汽车制造商将面临过重的
法律责任承担。

Kalra 以美国侵权法（Tort Law）为例，当自动驾驶汽车（第三级）发生车
祸时相关事故受害者可能对车辆所有人或驾驶者主张之侵权责任一共有“疏忽
（Traditional Negligence）、无过失责任（No-Fault Liability）”和“严格责任（Strict
Liability）”等三种。由于自动驾驶汽车以授权控制方式运行，车内驾驶者能做的事
g
事情其实相当有限，同时自动驾驶汽车可望大幅降低小规模的车祸事故（这在今
dep
日车祸总数中占大多数），因此违反“合理的注意义务（Reasonable Care）”而构
成疏忽过失责任的机率并不大。其次，目前美国有 12 州在车祸诉讼和保险理赔
上采用无过错责任，根据这些州的立法规定除非伤害达到一定程度的门槛，车祸
事故受害者也无法透过侵权法体系提出诉讼。最后，万一自动驾驶汽车的运行构

527 Bernd Spanfelner, Detlev Richter, Susanne Ebel, Ulf Wilhelm, Wolfgang Branz, Carsten
at March 10, 2014)
528 Adam Fisher (2013) Inside Google’s Quest To Popularize Self-Driving Cars, 科技新
时代 Popular Science，总 256 期，pp. 69
成了极端危险（Ultrahazardous）的活动，则受害者可对车辆所有人、驾驶者或制造商主张严格责任。Kalra 认为严格责任使用于自动驾驶机器车的机会不大，因为现在只是技术发展阶段，待未来正式上市前汽车制造商必然会投入许多时间提升安全性，使其不至于发生重大危害。\(^529\)

在疏忽责任来源大幅减少，重大极端危险的严格责任不太可能发生的情况下，似乎无过错责任（No-Fault Liability）对于自动驾驶汽车的事故处理而言是个较理想的选项。采用无过错责任，保险公司的功能将更为显著，这种处理模式不但可减轻自动驾驶汽车的驾驶者所面临的责任风险，同时在车祸事件发生率大幅降低的前提下无过错责任保险的成本也将下降，保险公司亦从中受惠。但是问题在于汽车制造商的责任似乎加重了，授权控制的自动驾驶汽车将导致汽车制造商同时面临交通事故责任以及产品责任的双重压力。

4.3.2 “共同控制” — 先进驾驶辅助系统

Riches 指出先进驾驶辅助系统（ADAS）和 HEV/EV 是近年来汽车电子市场中发展最快速的热门技术领域，仅在 2012 年上半年度就达到 20%以上的成长率。\(^530\) 理论上 ADAS 先进驾驶辅助系统的普及对于驾驶安全和稳定性应当有许多好处，例如人类的驾驶行为在很大程度上必须仰赖视觉，而因视线上一时不注意所导致的车祸事故也十分常见。\(^531\) Shinar 指出一般车祸事故可以区分为三类起因：
（1）驾驶员（包含失误与身体缺陷）、（2）环境、（3）汽车产品缺陷等因素，而透过ADAS先进驾驶辅助系统与人类之间的共同控制可望能有效地减低来自驾驶者的车祸风险。 J.C.F. de Winter 认为和传统人类手动驾驶相比，ADAS 共

\(^{530}\) Ian Riches (2013) Automotive Advanced Driver Assistance Systems: Challenges & Opportunities, Business Presentation, STRATEGY-ANALYTICS

\(^{531}\) M. Sivak (1996) The information that drivers use: is it indeed 90% visual?, Perception, vol. 25, no. 9, pp. 1081–1089

同控制驾驶活动的优势体现在“更精确的路径追踪”、“减少跟车过程中的距离变异”、“减少控制活动”、“减少工作量、反应时间变快、以及更好的次级任务表现”等方面。539

但J.C.F. de Winter也提到共同控制模式的缺点，如果系统对驾驶察觉的风险以一种不准确的方式表现，那将减少人类乘车的舒适感。540 Brookhuis则指出，当系统自动化程度越高，人类操作者可能反而扮演更加重要的角色。541 Brookhuis引用Bainbridge的观点，他给定的前提是“通常的操作以自动方式执行，异常的情况出现时则必须藉由人力来解决”。但由于自动化过于普及，使得操作经验受到局限，当人类面临异常情况时将需要一些特殊的行动方案，同时在时间的压力下也将使得人类无法以最佳的途径来解决问题。监督自动化系统运作过程必须仰赖先前的人类操作者所具备的经验和技能，然而我们难以预期下一代的操作者/或驾驶能够拥有这些技能。542一个具体事例是根据飞行员的陈述，他们认为虽然自动化减少了他们的工作负担，但却对他们的飞行职业技能产生负面影响。543

相对于自动驾驶汽车-“授权控制”的交通事故责任出现一种由驾驶者转向汽

车制造商的趋势，作者认为先进驾驶辅助系统 - “共同控制” 模式下驾驶者不仅要掌握道路周围环境的实时状况，同时还要留意车体本身是否有异常情形，最终将呈现驾驶者在交通事故责任注意义务的加重结果。

另一方面，先进驾驶辅助系统的技术风险也是安全监管必须加以考虑的问题。Schwarz 指出“ABS防抱死制动系统（Anti-lock Braking System）”与“ESC电子稳定程序（Electronic Stability Control）”的安全性在今日的汽车消费市场已经广泛地获得确认，但“先进驾驶系统（ADAS）”仍存在许多问题，例如：它们具备合理可预见的安全性吗？如何判断制造商已经善尽注意义务？是否有公认的系统验证方式？Schwarz并指出对于智能汽车之安全性确保，除了考虑到汽车产品通常运行时的安全性之外，另外还必须注意到产品“犯错”的可能性。544

546 藤田嘉美、藤川博己（2009）自动车与机能安全，相模原：TriFoglio 出版社
高适应性以后，功能安全对于维持人类-机器共存的必要性。

MIT 教授 Nancy G. Leveson 指出先进驾驶辅助系统的安全性问题不在个体程序部件，而是在系统的整合上548。德国 TÜV 安全认证机构的一份研究报告则指出当驾驶辅助系统开始展现一些（半）自动行为以后有时会伴随若干不稳定的“非必要系统行为 (Unwanted System Behaviors)”，在严重的情况下将出现威胁到人身安全的后果。德国 TÜV 专家组提到现在的 ISO 26262 与 IEC 61508 标准其实并未完整地考虑先进驾驶辅助系统的功能安全，ABS 防抱死制动系统与 ESC 电子稳定程序是在充分了解环境物理模型的基础上运作的，但是新一代先进驾驶辅助系统必须藉由雷达、图像、超声波等传感器和外在复杂环境互动。智能汽车为了在行驶过程中辅助人类，必须不断地让系统自行诠释从外界接收的传感器数据，这并非仅仅单纯地处理数据变数导入复杂模型。藉由基础诠释，智能汽车将能够预测驾驶与交通环境中其它对象的行为，尽管不见得是正确的，但对于先进驾驶辅助系统的实时自主行为却是不可或缺的，然而在一些极端情况下错误的假设却可能导致威胁人身安全的“非必要系统行为”之安全隐患。549

就安全性确保方面，传统工业机器人和自律型服务机器人在风险产生之间的最大区别是前者与安全规格（宽松）有关，而后者则结合了开放组织风险与安全规格。“开放组织风险 (Open-Texture Risk)” - 以语言为例，自然语言中的任何字词都有其核心意义，但语言开放组织的特质却使其诠释伴随着特定知识领域、不同观点、时期而呈现出若干差异性，这种特质也时常造成法律语言诠释上的模糊性以及不确定性。对服务机器人之自律行为的风险评估 (Risk Assessment) 势必也将面临类似的困境，即“尽管对于危险源有个大概的认知，但是其范围难以清晰地加以定义”，而产生的潜在性额外风险就是所谓的“开放组织风险”。550

这种新形态的“开放组织风险”来自于智能机械与非结构化环境中的互动，以智能汽车为例，主动式制动系统以内部逻辑芯片组与汽车摄像镜头采集的实时图像数据为基础做出自主决策判断，但基于非结构化环境的复杂性，图像数据以多样化和不可预测的形式呈现，同时预先确保每一种状态都包含在系统内部也是不可能的。不可避免地，智能汽车的主动式制动功能时常超出工程师预期。

除了智能汽车的“共同控制”之外，自动驾驶汽车的“授权控制”一样包含开放组织风险之安全隐患。Vasic与Billard提到自动驾驶汽车运行环境是高度动态的，许多物体信息并不存在汽车内部地图之中，同时也无法预先建模，这导致它们的存在充满相当不确定性。551当自动驾驶汽车系统启动后，原则上人类并不参与驾驶过程，自动驾驶汽车以区域实时GPS数据以及透过机械感知采集到的环境信息为基础进行独立决策判断，因此其开放组织风险高度集中于稻垣分类的“行为选择”阶段，例如为了能够顺利地到达目的地，谷歌无人驾驶车必须具备一定程度的机器学习机制来确保汽车可以动态地独立做出如右转、左转、加速、紧急停车等决策判断，但这种独立判断出现重大错误将可能对车内外人员造成严重物理伤害。

然而，智能汽车的一个重大安全隐患在于现行风险评估机制对于危险源界定有其限度，非结构化环境的“模型失真（Modeling Error）”也可能造成开放组织风险。这种情况和传统技术风险在硬件的“随机失误（Random Failure）”以及软件的“系统失误（System Failure）”有所区别。552, 5532012年Subaru斯巴鲁汽车推出一款搭配主动式制动以及车道偏离警示等功能的先进驾驶辅助系统“Eyesight”，该系统透过安装在挡风玻璃后方的两个立体摄像镜头采集图像数据，并且配合图像处理软件分析采集的数据以实现多样性的功能，例如ACC自适应巡航控制（Adaptive Cruise Control）、制动辅助与车道偏离警示。在时速30千米/小时上限范围内如果驾驶未回应系统警告的话，主动式制动功能将可自动地
552藤田嘉美、藤川博己（2009）汽车与机能安全，相模原: TriFoglio 出版社
停止车辆的行进。同时在改变车道却未闪转向灯或者车辆在道路标志间摇摆的情况下系统将给与驾驶车道偏离警示，后者状况通常与驾驶充满唾意有关。

斯巴鲁在操作手册中载明“EyeSight”先进驾驶辅助系统的若干操作限制。首先，由于系统以一对立体摄像镜头作为主要传感器，因此系统必须仰赖适当亮度照明与通畅视野，例如在光度过强/过低的环境下可能导致“EyeSight”系统无法正常运作。“EyeSight”操作手册中提到如果周遭只有单一颜色或者通过旗帜、某种植被、陡坡时系统亦可能无法正常运作。作者猜测“EyeSight”系统的限制是因为图像处理算法事先对于立体摄像镜头的图像数据进行预处理的结果。如果周遭环境颜色一致（如雪景）或者更一般地，如果图像传感器具低对比，那么“边缘检测算法（Edge Detection Algorithms）”将可能产生不当割裂车道、行人、车辆轮廓，导致该“轮廓”进一步地被其它算法处理以及分类的错误。

斯巴鲁表示陡坡对于其“EyeSight”系统将是一大挑战，因为系统内部的其它高阶算法可能错误地理解这种“非正常”的状态，尽管预处理过的影像数据可能无瑕疵。虽然更高级的先进驾驶辅助系统还可结合其他多种传感器，例如摄像机与雷达，并且透过较佳品质的数据提升算法对图像的“理解”，但目前技术水平要求算法正确地“分类”与“理解”所有可能的驾驶情况仍然是十分困难的。这可能导致“第二类错误（False-Negative）”的发生，例如路上行人无法被先进驾驶系统辨认出来以致制动系统未能及时启动，以及较少被公开提及的“第一类错误（False-Positive）”，例如主动式制动系统无缘由地突然启动等安全隐患。

全世界第一部由 ISO 组织制定用来确保人类与机器人能够碰触彼此、共享空间的“ISO 13482”服务机器人安全标准之召集人 Gurvinder Virk 教授表示虽然近年来已出现一种“人机共工”的工业机器人合作式系统，但是实际投入与人类合作生产的应用范围却非常地小，主要原因在于安全隐患背后的庞大法律责任。同理，智能汽车制造商亦可能因为安全隐患而考虑限制汽车能力，最后导致高新科技无法充分地投入社会中。

在“共同控制”中人类-机械合作模式所伴随的主要争议性问题在于“机器的自动决策行为是否优先于人类的驾驶行为?” 或者 “它们仅被允许用来辅助人类驾驶行为?”。这也是目前法律责任判断界限不明情况下，相关制造商在生产智能汽车时倾向限制汽车的自主行为以避免出现相关法律责任的争议。

以奔驰推出的 PRE-SAFE®主动式制动安全系统为例，PRE-SAFE®系统必须随车启动并且在时速 30 千米/小时公里以上的条件下提供防护功能，但无法依驾驶的喜好选择关闭。PRE-SAFE®系统是一种自动紧急制动系统，它使用雷达协助辨识重要情况。在时速介于 30 公里至 200 公里之间，汽车前方 200 米的范围皆被雷达扫描确认是否有障碍物存在。在撞击的 2.5 秒前驾驶会收到警告讯号，如果在这个阶段驾驶踩了制动踏板，不论驾驶踩踏的力道多少汽车将自动地传送所需的足够制动力道以维持安全的停止（如果物理条件允许）。但假如紧急情况持续发生且驾驶并未及时做出任何反应，那么在撞击发生前 1.5 秒汽车自行启动部分制动并且收紧安全带以准备承受冲撞。如果 PRE-SAFE®系统判定冲撞是无可避免的，车辆将采用最大的制动力道来尽可能减低速度所造成的冲击。这个例子也恰巧反映了“共同控制” 的设计思维仍停留在驾驶者必须负担主要法律责任，如果缺乏进一步对于法律责任的问题梳理以及考虑提供制造者适当的免责条件，那么人类-机器人的共同将合作模式将不会出现有更有效的利用。

4.4 综合讨论：“黑匣子”事故记录器与汽车安全监管

翁岳暄, Gurvinder Virk, 杨书评 (2014) 人类-机器人共存的安全性: 新ISO 13482服务型机器人安全标准，网络法律评论第17卷，北京大学出版社 [In Press]
2007 年 Jean Bookout 在奥克拉荷马州驾驶一部丰田 Camry 轿车，汽车却突然加速冲撞到路边堤防，造成 82 岁驾驶 Jean Bookout 受伤同车 70 岁乘客 Barbara Schwarz 死亡之结果。该事件随即进入司法诉讼并且在 2013 年 10 月 24 日由美国奥克拉荷马法院陪审团判定丰田汽车败诉并且要求丰田汽车必须给予两位受害者各 150 万美元赔偿。559 560

该案件值得注意之处在于这是美国第一起汽车制造商因为电子控制系统设计缺陷被判败诉的案件。561 NHTSA 专家组认为丰田案的起因可能和电子节气门控制系统失灵有关，换句话说，“Gas-by-Wire” 的功能汽车有时因为软件错误而导致安全事故的发生。虽然丰田案件只是一起功能汽车的事故，但是当我们将其套用在智能汽车或自动驾驶汽车上时将导致更严重的法律责任问题出现，因为自动驾驶汽车需要比“Gas-by-Wire” 更高阶的“Drive-by-Wire”，其范围包含制动、油门加速、方向盘操控等等。

对于智能汽车、自动驾驶汽车的安全隐患，虽然有不少人认为在产业发展初期可以采用召回制度，一面将智能汽车技术准入市场，一面将有安全隐患的车辆召回以提升汽车安全性。但作者认为召回制度或许存在道德缺口，例如在丰田奥克拉荷马案件中的汽车制动曾经无预警地启动，但是并未被该公司召回。理论上汽车制造商可以发起自愿性的召回声明给其顾客来说服政府。当公开召回（Public Recall）启动时表示政府认为这是一个严重问题，法官很可能将公开召回视为一种已证明的产品缺陷。召回原本是立意良善的一种制度，但是当自动化风险偏向制造商之后，他们将可能因为成本效益分析以及和竞争对手抢占初期“蓝海市场”...

的情况下而不愿意轻易承认错误。

在智能汽车、自动驾驶汽车仍充满安全隐患的产业初期，作者认为除了召回制度以外，“黑匣子（Black Box）”事故记录器对于智能汽车安全监管将能发挥相当之功用。一般人对于黑匣子的刻板印象总是投射在民航机用的事故记录器，Correia 指出世界第一个民航机用事故记录器（Flight Data Recorder）是在 1953 年推出的，但世界最早的事故记录器却是 1921 年推出、用于重型卡车的“行车记录仪（Tachograph）”。564 以和福特、通用等大型汽车公司保持密切合作的车用事故记录器制造商 Vetronix 公司产品为例，其“黑匣子”事故记录器运作模式分为两部分：（1）当事故发生，由位于汽车安全气囊的模组记录撞击实证数据；（2）利用 CDR 系统（Crash Data Retrieval）采集模组内贮存的数据并进行分析。565 IRF 国际道路联盟（International Road Federation）则说明车用黑匣子的应用价值包含：（1）提供警方需要的车祸数据；（2）提供交通监管单位事故起因的相关信息；（3）提供保险公司费率方案调整与改进的基础；（4）提供医疗保健监管单位伤害情况回报以及态样的识别。566

欧盟大型道路安全计划“Project VERONICA”567 所建议的车用黑匣子规格则是以传感器数据存储在缓冲器的模式为基础（Sensor Data Buffer），这表示旧数据将被新数据永久地覆盖。但是当符合特定条件，例如事件的严重程度达到某种门槛，黑匣子将马上“冻结”缓冲器内的数据，如此被保存的数据将可提供作为事故调查或研究分析之用，被黑匣子保存的范围包含事故发生前约 30 秒以及事故发生后约 15 秒传感器所汇入的所有数据。至于数据的种类则包含：

566 Unsigned Editorial (2010) Road Accident Data Recorder, Booklet issued by IRF - International Road Federation
Collision Speed, Initial Speed, Speed Profile, Change in velocity due to a collision, Longitudinal acceleration (IP), Transverse acceleration (IP), Longitudinal acceleration, Transverse acceleration, Yawing, Tracking, Position, Status Signals, Trigger Date and Time, User Action, Monitoring Restraint Systems, Monitoring Active Safety Devices’ actions, Monitoring displayed Active Safety Devices’ error messages, VIN/VRD, Driver-ID, Monitoring Driver.

2013年11月一部搭配主动式智能制动系统的马自达CX-5 SUV休旅车在日本埼玉县一个测试场地发生爆冲事故导致车内驾驶与乘客受到重伤，有媒体私下宣称或许事故起因是由于驾驶速度过快而导致主动式智能制动系统异常，换句话说，这起事故可能是由于人为失误的原因所引起。然而在采用黑匣子作为一种事故佐证的前提下或许这些多余的猜测都是不需要的。作者从马自达操作手册里发现CX-5在设计上提供黑匣子事故记录器，用于记录驾驶与车辆运作的所有情况，记录器所记载的数据对于未来判断事故的因果关系以及确认相关人等的责任承担比例亦显得重要。马自达CX-5操作手册摘要如下:

本车辆搭载一个事故记录器（EDR）。事故记录器的主要目的是记录一些撞击，或者类似撞击的情况，例如安全气囊展开、碰撞到路面上的障碍，该数据将可协助了解车辆的系统是如何运行的。事故记录器是设计来记录短时间内与车辆动态和安全系统有关的数据，通常记录时间长度为30秒或更少。本车辆的事故记录器是设计为记录以下数据:

* 在阁下车辆内部的多种系统是如何运作的;
* 在行驶过程中驾驶与乘客的安全带有没有扣上/系紧;
* 究竟驾驶踩下油门和/或制动的时间多久;
* 当时车辆行驶速度有多快。

黑匣子事故记录器将可以有效地协助判断究竟交通事故的发生起因是由于人为过失、机械的错误或者两者皆有，而且这些数据的提供也将使法院得以进一步还原事发当时情况。作者认为黑匣子在智能汽车安全监管上不仅只协助厘清交通事故侵权责任，更重要的作用是透过上述丰富多样的实证数据来源协助监管单位和汽车制造商评估产品的安全性，进一步解决悬宕已久的安全隐患问题并且建立对于智能汽车产品责任的判断标准。

到目前为止，我们假设智能汽车与自动驾驶汽车可能因开放组织风险造成系统对环境状况理解的不完整，最后导致安全事故。除此之外，当自动驾驶汽车在遭受黑客入侵内部系统网络或不当干扰车辆传感器等情况一样会致事故的发生。特别是在汽车制造商计划大幅减少车用电脑的数量，由现行的 100 个左右到未来的 10 个，这种集多重功能集于一身的整合当然会伴随安全性确保的风险。所以作者认为到时候独立式的黑匣子事故记录器很可能是还原事件起因的唯一手段。

此外，黑匣子也有助于判断智能汽车与自动驾驶汽车第一类错误共同过失（Contributory Negligence）“判断难”的问题。共同过失的判断对于交通事故处理是很重要的，特别是在事故双方同时与有过失的情况下。但是在产业初期户外公共道路上可能同时呈现“功能汽车”、“智能汽车”、“自动驾驶汽车”并行的情况，在远方引发的车祸撞击事故中，甚至可能是“自动驾驶汽车 vs. 自动驾驶汽车”、“自动驾驶汽车 vs. 智能汽车”、“智能汽车 vs. 功能汽车”等混乱情形，缺乏黑匣子事故记录器将难以判断究竟当时机器的决策行为为何？事故记录器除了有助于厘清车辆内部人员与机器之间的责任分配之外，对车辆外部的其它车辆驾驶、第三者（行人）在车祸事件中所涉及的过错程度判断也有所帮助。

根据一份欧洲发布关于自动紧急制动系统的研究报告指出，企业已经意识到第一类错误的存在对推广智能车用系统是一个严峻的挑战，在实践更高阶的智能行为之前必须优先解决这个问题。而有趣的是斯巴鲁 “Eyesight”系统也搭载了黑

匣子事故记录器，当防撞制动系统启动时下列所有数据将会被自动地记录起来：摄像机影像、行车路程、车辆速度、方向盘角度、油门与制动状态、离合器位置、以及行车电子稳定系统等数据。

斯巴鲁本身对于这些数据的发展与研究保有使用的权限，但在法院命令的要求下可以提供作为参考之用。未来在涉及第一类错误引发的交通事故上，智能车的汽车制造商很可能必须面临产品责任以外的其它侵权责任承担之封信，而这些真实世界的行车实证数据可以用了解稀少的第一类错误事故成因，协助制造商排除不确定的制度性障碍。

理论上自动驾驶汽车制造商只有在自家产品出现缺陷，且该缺陷造成人身或财产损害并与该损害存在因果关系的情况下承担产品责任。然而，在下列情况汽车制造商是否也应当负责？如果无涉产品缺陷，但是机器的自我学习机制在日复一日与外在环境互动下最后其行为已经远远超脱了制造商的预期，那么制造商必须完全对此承担责任吗？如果制造商不必负全部责任的话，那么责任分配机制应该如何建构？这种法律风险特别容易出现在自动驾驶汽车上面，自动驾驶汽车出现“非必要系统行为”的潜在因素要远高于智能汽车，它的自主能力表现不仅限于诠释传感数据辅助人类的驾驶行为。自动驾驶汽车还可以更进一步做出高阶路线规划与导航。虽然开放组织风险可能导致某种程度的决策失误，但这也是人类享受自动化科技伴随的必要之恶。

归根究底，无人自动驾驶汽车最后能够顺利进入社会与否并非取决于技术成熟度，而是同时社会里由下而上的社会接受度与由上而下的政策、立法管制考虑。诚如谷歌自动驾驶汽车项目安全主管 Medford 博士所说的“即使最好的汽车安全科技也不能确保挽救每一条性命。对于安全科技效用的限制在于人们使用它（或者不使用它）的方式”。

伍．个案研究（二）：“Tokku” 机器人特区与科技立法研究

5.1 什么是机器人开发与实证测试特区？

作为“机器人王国”的日本在机器人科技的开发处于相对领先的地位，但是却不时发生先进机器人科技与现行法律产生冲突情形，例如交通法规限制是下一代机器人进入户外环境的主要屏障之一，而其原因是基于机械安全与法律责任的不明确。然而下一代服务机器人在执行任务的场所并非像工厂一样的封闭结构化环境，而是人类所处的开放环境。要求开放环境机器人制造商只能在封闭环境内研发生产机器人显然并不合理。这样的困境也恰好反映了社会—科技系统中技术物与社会物之间产生的矛盾。于是一种折衷的做法便是从开放环境中分离出一块“机器人开发与实证测试之特区（Tokku-Special Zone for Robotics Developing and Empirical Testing）”。

“机器人特区（Tokku）”这种独特想法源自于日本，2003年世界上第一个机器人开发与测试特区正式成立于福冈县，福冈市与北九州市，简称为“福冈机器人特区”。2004年至2007年期间早稻田大学人型机器人研究所高西淳夫研究室曾在福冈机器人特区中许多不同地点分别进行过二足步行人型机器人稳定性及路面适应性的实证研究测试。这同时也是目前文献记载中全世界第一起双足步行人型机器人的户外公共道路之实证测试。574 虽然机器人特区仅有短短十年的历史，迄今在日本本土已建立数个机器人特区，分布于福冈，大阪，岐阜，神奈川与筑波等行政区域。随着下一代机器人技术的发展与融入社会的范围逐渐扩大，机器人特区作为机器人与社会的中介之重要性将更为显着。本研究结构安排如下，首先在第二节先介绍机器人开发与实证测试特区的历史；第三节探究机器人特区作为与机器人科技与法律之中介的重要性；第四节个案研究关注人型机器人所衍生的法律议题，研究材料来自于早稻田大学人型机器人研究所高西淳夫研究室所

提供的 WL-16RRI 与 WABIAN-2R 两部机器人于 2004 年至 2007 年间在福冈机器人特区进行的户外公共道路测试。

5.2 “Tokku” 机器人开发与实证测试特区之历史

2002 年日本政府通过“构造改革特别区域法”，该法规目标在促进社会-经济的体制性改革以及透过建立特区振兴地方经济，此外在促进地方经济发展的前提下特区内部的特殊法律规制将被政府所允许。575 576 例如为了克服道路交通法对科研单位将其机器人置于实验室之外公共道路周边的限制，对于机器人科研机构与公司等对象特区允许优惠性管制措施使他们得以将其开发阶段中的机器人带出实验室并且于公共道路及其周边环境进行实证测试。

紧接着全世界第一个“机器人开发与实证测试特区（ロボット開発・実証実験特区）”在 2003 年 11 月 28 日通过日本政府内阁府（Cabinet Office of Japan）的认证而成立。该机器人特区范围涵盖福冈县、福冈市与北九州市，同时三个地方自治体也联合成立了 RIDC 机器人产业发展组织（Robotic Industry Development Organization）来负责福冈机器人特区的营运及管理。在工业用机器人基础之上，医疗用、社会照护用、保全以及救灾机器人等领域全部包含在内。577 此外，福冈机器人特区有五个发展目标，分别是（1）建立机器人创业机构的锚点、（2）建立关于机器人研究与发展实证测试制度、（3）作为一个跨行政的分支以支持产官学的合作、（4）聚集机器人研究者、（5）发展针对青少年的机器人科学教育。

577 藤元正二（2004）ロボット特区等ロボット開発の支援施策、日本ロボット学会誌 22巻7号、pp. 816～817
但机器人开发与实证测试特区只是法律意义上的概念性区域，就如同行政区
域的划分一般，在特区所策划的机器人实验性制度一旦被评估为成功的，日后将
can be further promoted into formal administrative regulations or laws.

依照构造改革特别区域法第3条第3项规定，针对机器人开发与实证测试特区设置一个特别规制措施称为“机
器人公共道路圆滑化事业(ロボット公道実験円滑化事業)”。其主要内容在明确
规范机器人在户外公共道路上的道路使用许可条件，并且同时策定申请机器人在
户外公共道路上进行实验所需的行政手续。透过权宜的管制措施机器人在户外公
共道路上进行实验终于得以落实。机器人公共道路圆滑化事业的内容如下：

1. 都道府县公安委员会的规则修改：
 根据道路交通法第77条第1项第4号规定修改都道府县公安委员会（行政）
 规则。同项并且指出关于在公共道路上伴随机器人的步行以及移动的实证实
 验等需要警察署长许可之行为。

2. 道路使用的许可：
 （1）被认定的构造改革特别区域计划参与的实证实验相关的道路使用许可之
 申请当下必须综合考量实证实验的态样以及公益性、机器人的运动性能、
 周边道路的交通状况等因素。必要时在判定为合适的过程中可以根据附
 上适当许可条件来做出决定。

 （2）对于已获得许可在道路上步行与移动的机器人，为了防止与其它车辆或
 行人发生冲撞的可能性，该实证实验必须尽可能对于不相关的一般车辆
 或行人进行通行管制，在这个前提上此实证实验方可圆滑地实施。特别
 是对于没有区分人行道与车道的道路以及在车道上行进、横越等认可事
 项，绝对必须遵守一般汽车的通行规制。

 （3）对于不进行交通规制的机器人在一般人行道、脚踏车专用道上混合通行
 的许可之申请，该许可之审批必须参照“冲撞事故发生的可能性”、“机
 器人大小重量速度等条件对于人身危害的担忧”、“申请人的事故预防
 对策”等因素慎重地进行评估。

578 「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第6
3号（平成15年8月28日）
Background

Many great biped robots have been developed, but there are NO biped robots put to practical use...

Reasons:
- Profitability
- Safety
- Real Walking Performance in the realistic environment

But...

There are no experimental studies on the problems of operation in the realistic environment.

Reasons:
- Problems in Road Traffic Law and Vehicles Law - Is the biped robot a vehicle or a personal vehicle?
- Experiments in the real street is difficult for researchers alone - How do researchers have understanding and cooperation of citizen?

Fukuoka Special Zones for Robot Development and Test

Outline

Applicant: Fukuoka Pref., Fukuoka City, Kitakyushu City

Authorize day: November 28, 2003

Purpose: Acceleration of robotic research and development and creation of robotics industries, by facilitation of experiments in the human-like environment necessary to develop human-like robots, such as the walking experiments at the sidewalk

Public Road Robotics experiment Facilitation Program - Procedures about Road Traffic Law is facilitated through certification of the robots. However, bracing or locomotion experiments of the robots conducted at the public road is not possible. Inside the area are candidates for Road Use Licensing.

Area: Fukuoka City and Kitakyushu City

Significance on Biped Robot Research

Walking experiments of robots conducted at the public road inside the Special Zones are candidates for Road Use Licensing, therefore walking experiments at the public road is enabled.

From a standpoint of bracing for local citizens, arrangement of power supply maintenance space and Road Use Licensing, experiments are supported by city employees.

Experimental studies on the problems of operation in the realistic environment:
- Bracing of biped robot in the building, outdoor and indoor.
- Collection of data
- Throwing out problems

Fukuoka Special Zones for Robot Development and Test (1)
34. Fukuoka Special Zones for Robot Development and Test (2)
“机器人公共道路圆滑化事业”乃是实现人类-机器人共存之第一步，这些道路交通法的权宜管制措施大大地减少了来自机构和制度上的阻碍，并且允许机器人在凹凸不平或者遍布行人与阶梯的路面等“复杂、不可预测”的户外环境下活动。这对于机器人制造商和研究者而言是十分重要的，因为他们已能够合法在户外对软件硬件进行实际测试来确保机器人的安全设计。福冈县、市及北九州市在2004年2月发起机器人公共道路圆滑化事业，2004年至2007年，早稻田大学人型机器人研究所高西淳夫研究室分别投入WL-16RII与WABIAN-2R两部机器人在福冈机器人特区进行户外公共道路测试。早稻田团队的人型机器人在长达3年的数次实验中分别在福冈市内7个以上处所进行户外环境测试。第一期实验乃自2004年7月7日开始，并于同年12月21日结束，这也是文献记载的全世界第一起关于二足步行人型机器人的户外公共道路测试。

机器人公共道路圆滑化事业在2004年至2006年的初始阶段仅仅适用于日本国内几个少数机器人特区，然而透过大量的机器人户外实证测试日本政府体认到其必要性，所以在2006年1月以后机器人公共道路圆滑化事业正式适用于日本全国境内而不限于特区内。根据日本警察厅交通局在2006年1月23日发布的一份文件，原先作为特殊权宜性的规制措施—“机器人公共道路圆滑化事业”正式被废止，取而代之的是新修改的交通法规，内容如下：

1. 明确化道路使用许可对象的措施：
 为了明确化机器人作为道路使用许可的对象，以道路交通法第77条第1项第4号的规定为基础对于都道府县公安委员会的（行政）规则进行修改。

2. 对于与机器人公共道路实验有关的道路使用许可之基本思考方式：
 必须综合考虑实证实验的态样以及公益性、机器人的运动性能、周边道路交通的状况等因素。就同条第2项各号在的申请相关行为，必要时在判断的过程中可以根据附上适当许可条件来做出决定。

3. 与机器人公共道路实验有关的道路使用许可处理上的留意事项：

[579]高西淳夫，菅原雄介，砂塚裕之，川瀬正幹，橋本健二，太田章博，田中智明（2005）「ロボット開発・実証実験等に関する福岡市のポテンシャルと課題等の調査研究」報告書（平成17年），早稲田大学理工学部高西淳夫研究室

[580]「「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第3号（平成18年1月23日）
对运动性能尚未获得验证之机器人于道路使用的考虑，以及对其它车辆、行人冲撞事故防止必要性的情况下必须考虑是否施行通行规制。

位于日本地理中心位置，岐阜县有发展自身机器人产业的企图心。2004年5月机器人公共道路圆滑化事业正式施行于岐阜机器人特区（スイートバレー・情場形成特区）。随后特区内首次机器人户外实验测试始于2005年4月，在岐阜科技广场（Techno Plaza）进行（岐阜县各务原市）。岐阜机器人特区并与早稻田大学合作成立Wabot-House研究所，该研究机构着眼于“人机共生学”与“产官学结合”的发展。Wabot-House研究所包含三种建物，第一种是供一般人居住的房子，第二种是专属机器人作业的房子，最后一种则是在设计上讲求人类与机器人共存的房子，Wabot-House研究员相信透过反复观察房子内部人类与机器人的紧密互动，将可能发展出新的社会制度以及技术设计上的原则。

自2002年起大阪府开始关注服务机器人产业发展并且在同年成立了“（大阪）机器人产业推进组织（Robotic Industry Promotion Organization）”，后来更名为“下一代机器人产业创造与研究组织（Next Generation RT Industry Creation & Research Organization）”。次年，该组织发布了区域性政策白皮书并将大阪机器人产业发展分为二个阶段。第一阶段目标在于引进人才和将大阪打造成为机器人科技研发中心；第二阶段目标在于结合地域资源以利发展机器人创业活动。该政策白皮书核心概念为“场的创造（Field Creation）”，一共有两层含义，一方面特区是提供研究者交换想法的场所，另一方面它也是支持人类与机器人互动测试的场所。关西地区第一个机器人特区（けいはんな学研都市知的特区）成立于2003年，位于大阪府、京都府与奈良县交界处的“关西学研都市（Kansai Science

581 稲葉昭夫, 千原健司 (2004) ギフ・ロボット・プロジェクト21、日本ロボット学会誌22巻7号、pp. 818～821
584 平成15年度WABOT-HOUSE 研究成果報告書（平成16年3月）早稲田大学 WABOT-HOUSE研究所
585 美濃地研一 (2004) RT（ロボットテクノロジー）産業クラスター形成を目指す大阪市、日本ロボット学会誌22巻7号、pp. 822-826
City）”内^{586}，但特区的机器人公共道路圆滑化事业却迟至 2005 年才将大阪府纳入其中。同年 11 月由奈良先端科学技术大学院大学（NAIST）在特区开始了电子个人行动支持装置塞格威（Segway）以及远程操控电子轮椅在户外公共道路的测试，在实验过程中研究人员发现电波收发器可能因为建筑屏障而受到阻挡。^{587} 另外在 JR 大阪站北侧的 “知识都心（Knowledge Capital）”^{588} 区域有个 “RoboCity CoRE（Center of RT Experiments）” 项目^{589}，该项目着眼于发展一个大型 “机器人城市” 来支持较大尺度的人类-机器人共存实验证验。^{590}

筑波市则在 2011 年 3 月正式设置机器人特区（つくばモビリティロボット実験特区）^{591}，它的目标包含研究（1）在现实社会中载人/个人行动机器人的社会效用、对行人的亲密性、对乘客的安全性以及（2）研究机器人之潜在服务商业模式。然而在筑波机器人特区正式成立前，筑波市内已经进行过两个人机共存相关的重要项目，分别是 “实世界机器人挑战（Real World Robot Challenge）” 与 “NEDO 机器人安全认证与测试中心（NEDO Life Supporting RT Safety Certification Center）”。日本地方及警察机构对机器人于公共道路实证测试之事前审批的全国性推广始于 2006 年 1 月，在此基础上 2007 年筑波大学机器人学教授油田信一（Shinich Yuta）创立了 “实世界机器人挑战” （亦称为 “筑波机器人挑战”），该挑战之目标在于提升自律型行动机器人在真实世界中执行任务的能力。根据统计 2007 年至 2011 年间共有 280 个团队在筑波市参与该挑战。^{592}

^{586} 梶 善登：関西圏におけるロボット産業の動向—大阪市および関西学術文化研究都市での取り組み—レファレンス 平成 19 年 6 月号
^{588} 浅田稔（2005）共創知能から共創都市へ、日本ロボット学会誌 23巻8号、pp. 942-945
^{589} 浅田稔、石黒周 (2004) ロボット・サイエンス＆テクノロジーを核とする国際公開共同実験都市構想『RoboCity CoRE』、日本ロボット学会誌 22巻7号、pp. 833-838
^{590} 浅田稔（2010）ロボットと未来社会、第 28 回日本ロボット学会学術講演会
另一方面，2010年日本新能源与工业技术发展组织（NEDO）出资分5年在筑波市成立一座机器人安全认证与测试中心。该中心目标为（1）“寻找个人护理服务机器人的风险评估机制”以及（2）“发展个人护理服务机器人所需的功能安全措施”。

在日本政府“新成长战略”下筑波的“总和机器人特区（Comprehensive Special Zone）”正式成立于2011年6月，相应的总和特别区域法（Comprehensive Special Zone Act）则在两个月之后开始执行。原先依照“构造改革特别法”成立的机器人特区与后来筑波市依照“总和特别区域法”成立机器人特区相比，两者主要区别为前者关注有助于社会经济振兴的实验管制，而后者不限于特殊管制措施亦同时思考利用如降低税率与财政支持等优惠措施来达到振兴发展地方区域之目的，即提供地域战略性项目总和性的支持。

2011年筑波市被日本政府正式指定为“国际竞争性发展总和特区（Comprehensive Special Zone for International Competitiveness Development）”，其目标包含“癌症治疗”、“个人照护服务机器人”、“藻类生物质能源”与“纳米科技”四大领域。相较其他先前成立的机器人特区，筑波机器人特区之规划与发展是较全面且成熟的，它被政府认定为总和特别区域并且获得导入“搭乘型移动支援机器人的公共道路实证实验事业（搭乗型移動支援ロボットの公道実証実験事業）”，该事业与先前的机器人公共道路圆滑化事业相比除了道路使用许可的相关特别措施之外还增加了许多与道路交通有关的管制措施如下：

1. 道路交通法（Road Traffic Act）：
 （1）内阁总理大臣指定追加特殊构造的汽车
 （2）附带发动机的脚踏车标志在后标示义务之相关措施
 （3）道路使用许可的相关措施

596 「搭乗型移動支援ロボットの公道実証実験事業」に係る特例措置について、警察庁丁交企発第177号、丁規発第92号、平成24年12月27日
2. 道路运送车辆法（Road Transport Vehicle Act）：

（1）国土交通大臣指定追加特殊构造的汽车
（2）道路运送车辆的保安基准
（3）接受道路运送车辆保安基准的缓和认定标示义务之相关特例措施
（4）基准缓和汽车的认定要领

日本警察厅另外在 2012 年 12 月 27 日针对“搭乘型移动支持机器人”制定了一些新的交通管制措施，例如就机器人在户外公共道路上进行的实验，如果载人搭乘型移动支持机器人最高速低于 10 公里/时的话将可以免除架设边界标语之义务。

过去 10 年间日本投入大量资源支持机器人在户外的实证测试，并且获得了很丰硕的成果。机器人开发与实证测试特区是一个象征机器人科技与社会系统融合的里程碑。除了日本这种在现实世界里实践机器人科技与社会制度整合的案例并不多见，唯一例外是欧盟 FP6 DustBot 项目附属的实证实验。实验期间为 2010 年 6 月 15 日至 8 月 7 日，由比萨圣安娜高等大学团队将自律型移动机器人 DustCart 投入意大利中古世纪遗留城镇—“佩乔里（Peccioli）”并进行户外收集垃圾之测试。然而被认定为自律车辆（Autonomous Vehicle）的 DustCart 却与维也纳道路公约和意大利公路法等规范产生冲突，最后在当地警方协助下此实验得以顺利完成。附带一提，该机器人实证实验伴随着一些特殊权宜措施可供立法者做为参考之用，例如“设计特殊的道路标志”，“设置机器人专用通道”、“协商针对机器人专属的保险方案”。

597 「「搭乗型移動支援ロボットの公道実証実験」に係る特例措置について」警察庁丁交企発第 114 号、丁規発第 62 号（平成 23 年 3 月 29 日）
5.3 “Tokku” 机器人特区作为机器人与社会的中介

根据日本经济产业省的预测，人类-机器人共存社会大约形成于2020至2030年之间。目前约略为人类与机器人共存的萌芽期，在未来几年内将有越来越多的机器人进入人类居住区域，而机器人科技与现存法律、社会规范的冲突也会逐渐浮现。机器人特区在人机共存初期的重要性是作为一种机器人与社会之间的中介或者称为“避震缓冲”。其主要功能如下:

（1）安全性确保:

ISO 12100 机械安全性确保三部曲（3 Steps Method）分别是“固有安全设计”、“安全保障和补充保护措施”、“使用信息之提供”。服务机器人在安全性确保上由于非结构化环境的“开放组织风险”导致固有安全设计效用降低，而安全保障和补充保护措施和使用信息之提供的重要性则相对提高。然而服务机器人安全保障（特别是功能安全）与使用信息提供必须以非结构化环境-人类日常生活区域作为设计基础，因此机器人特区正好可以提供尚未确保安全性的机器人测试及发展的机会。在非结构化环境中模拟（Simulation）产生建模误差（Modeling Error）的机率也将增加，而机器人特区将人类日常生活区域划入并且提供实证测试之功能正好可以减低建模误差对安全性确保产生的不利影响。最后一点，机器人特区还有一层意义是作为“机器人纽伯格林赛道（Robotics Nürburgring）”。

德国纽伯格林赛道修筑于1920年代，是世界上最严苛的赛道之一也是许多汽车制造商在量产车上市前测试车辆耐久性与安全性的场地，因此未来服务机器人在准备上市前或可选择在机器人特区进行实证测试以确保耐久性与安全性的“最后一哩（Last Mile）”无虞。

（2）防止诉讼风险：

特区另一个优点在于可以作为机器人公司在开发服务机器人过程中的保护伞。虽然没有100%安全的机械能被制造出来并销售到市场之中，但是法律通常要求制造商至少必须通过国际公认安全标准，即确保一定程度的安全性。例如ISO与IEC的安全性认证。如果制造商能够证明其产品是安全且无缺陷的，那么他们就能够免除产品责任。然而人类-机器人共存的新安全性与传统的工业机器人安全性不同，非结构化环境的因素必须被加以考虑，特别是里面的人、物、建筑等因素，因此机器人特区作为开发服务机器人的一种环节将可以避免厂商承担产品责任诉讼的高风险。

（3）和缓重大伦理争议：

我们采用人型机器人的理由很简单，它的身形适合人类的居住空间，同时人类也自然而然地知道如何与这种机器人互动。然而人型机器人可能产生的伦理风险也是未来人类-机器人共存社会所不可忽视的问题。佐治亚理工学院Christensen教授预测“如何与这些仿人机器人互动将会形成一个议题，你是否可以对一个人好但却对一个基于他的形貌仿制而成的机器人异常地恶劣？”，或者“你是否可以一脚踢开一只机器狗然后教导你的小孩不可以这样对待一般的狗？你要如何告诉他两者之间的区别？”。

虽然未来可能出现所谓的“仿人机器人道德法（Humanoid Morality Act）”以法律强制力来约束依某人的相似度所创造的机器人之不道德应用以及人类和人型机器人互动的基本规范，但在目前情况下讨论立法层次的问题尚言之过早。现阶段问题在于机器人不涉及到法律的违反，但在社会里却产生重大的道德伦理争议，例如David Levy宣称他相信机器人

将会是人类忠实的性伴侣，机器人性爱是未来的大趋势。604 在日本有许多情趣用品业者正在关注这股商机，并陆续开发出皮肤触感及拟真度极高的仿人情趣玩偶，预计在未来 10 年内下一波具备人工智能并且能与人类高度互动的人型情趣玩偶将流入市面。

尽管目前并没有法律禁止机器人科技投入性产业服务应用，但在无管 制情况下容许放任这种商业应用将充满道德风险，因为我们不能确认它可能给社会带来何种负面冲击。机器人特区可以形成一种隔离区域并提供立 法者实证政策评估依据，这将会是和缓重大伦理争议的可行方案

5.4 个案研究：人型机器人伴随的法律问题

2013 年 12 月美国国防部高级研究计划局（DARPA）在佛罗里达举办 DRC-DARPA Robotic Challenge，该竞赛要求参赛机器人必须完成驾驶汽车、徒步穿越废墟、移动障碍物、打开大门、自行爬上梯子、利用工具破坏混凝土墙、关闭阀门、连接消防栓等任务。605 最后是由日本队伍之人型机器人 SCHAFT606 顺利克服所有挑战以第一高分拔得头筹，人型机器人对于人类环境的高适应性和双 足步行机制的技术成熟度也在此赛事中获得了进一步的验证。自 1973 年世界第一 部人型机器人 WABOT-1 被推出以来，双足步行机器人的研究已长达 40 年的历史，人型机器人与人类共存的可能性也逐渐受到重视，本个案研究以福冈机器 人实证实验之经验为基础，分析人型机器人进入社会可能遇到的若干法律议题。

5.4.1 人型机器人与人类共存是否可能？

According to the Next Generation Robot Policy Report released by the Ministry of Economy, Trade and Industry (METI) in 2009, there will be six types of service robots commercialized in the next ten years, namely "Communication Type" (Communication Type), "Tele-Operated Mobile Manipulation Type" (Tele-Operated Mobile Manipulation Type), "Autonomous Mobile Manipulation Type" (Autonomous Mobile Manipulation Type), "Human Attached Type" (Human Attached Type), "Vehicle Type" (Vehicle Type), and "Humanoid Type" (Humanoid Type). These next generation service robots have several characteristics, such as "coexistence with humans" and "stable adaptation to unstructured environments," therefore potential service areas include public roads, railway stations, hospitals, urban commercial centers, and private residential areas.

Humanoid robots are easier to integrate into human living areas and can offer various services to the public. The government planned to commercialize six main types of service robots in the next ten years, which were also the latest and last to enter the market. The author conducted a patent search through the Japan Patent Office IPDL online database and selected three technology tags: LW11 (artificial intelligence), MS27 (human safety) and WA13 (biped) and conducted a search. The author found that there were 135 patents in the period 1985-1990, 157 patents in the period 1991-1995, 144 patents in the period 1996-2000, 689 patents in the period 2001-2005, 683 patents in the period 2006-2013. These results reflect the trend of humanoids entering society. However, beyond the technical considerations of performance and stability, legal, ethical, and policy-related social considerations are also important factors.

5.4.2 About Fukuoka District Demonstration Experiment

Waseda University Humanoid Robotics Institute Kiyonori Kuga Research Laboratory投入 WL-16RII 与 WABIAN-2R two robots into Fukuoka District Robot Park for outdoor public road testing. In 2004
至2007年3年间的数次实验中早稻田团队的人型机器人分别在福冈市内7个以上处所进行户外环境测试，其中一个地点在福冈博多运河城购物中心入口阶梯（福冈市博多区下川端），其它地点分别为川端商店街的走道与斑马线（福冈市博多区上川端）、镜天满宫的阶梯（福冈市博多区下川端）、博多寿桥口（福冈市博多区下川端）、福冈塔与TNC电视大楼门口周边（福冈市早良区百里滨）、福冈城遗址（福冈市中央区城之内）。第一期实验乃自2004年7月7日开始并于同年12月21日结束，这也是文献可考的全世界第一起双足步行机器人在户外环境及公共道路的实证测试（图35）。

图35. ロボット開発・実証実験等に関する福岡市のポテンシャルと課題等の調査研究に関する報告（早稲田大学 福岡机器人特区研究报告书）
5.4.3 早稻田大学高西研究室 人型机器人：WABIAN-2R

WABIAN-2R（WAseDA BiPedal humANoid）目标是探讨仿人动态步行机制和与人类共同作业的服务应用。它是一部高度1500[mm]，重量60[kg]的人型机器人。为了能模仿人类活动，机器人本体具备41个自由度（DOFs），同时WABIAN-2R的移动范围和关节均仿照人类的身体打造而成。附在背部的计算机负责控制WABIAN-2R的动，它由一个PCI CPU主机板与数个PCI I/O板组成。

图36. 早稻田大学高西研究室 人型机器人：WABIAN-2R
表 3. 早稻田大学高西研究室 人型机器人：WABIAN-2R 规格表

<table>
<thead>
<tr>
<th>特性</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height [mm]</td>
<td>1500</td>
</tr>
<tr>
<td>Weight [kg]</td>
<td>64 (with batteries)</td>
</tr>
<tr>
<td>Leg</td>
<td>6 x 2</td>
</tr>
<tr>
<td>Foot</td>
<td>1 x 2 (passive)</td>
</tr>
<tr>
<td>Waist</td>
<td>2</td>
</tr>
<tr>
<td>Trunk</td>
<td>2</td>
</tr>
<tr>
<td>Arm</td>
<td>7 x 2</td>
</tr>
<tr>
<td>Hand</td>
<td>3 x 2</td>
</tr>
<tr>
<td>Neck</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>41</td>
</tr>
<tr>
<td>Sensors</td>
<td>6 Axis Force / Torque Sensor</td>
</tr>
<tr>
<td></td>
<td>Photo Sensor</td>
</tr>
<tr>
<td></td>
<td>Magnetic Encoder</td>
</tr>
<tr>
<td></td>
<td>Gyro Sensor</td>
</tr>
<tr>
<td>Actuators</td>
<td>DC Servo Motor</td>
</tr>
<tr>
<td>Reduction Mechanism</td>
<td>Harmonic Drive Gear</td>
</tr>
<tr>
<td></td>
<td>Timing-belt/pulley</td>
</tr>
<tr>
<td>Batteries</td>
<td>Li-ion Battery</td>
</tr>
</tbody>
</table>

操作系统是 QNX Neutrino ver. 6.3.版本。驱动系统由 DC 电动机和附在电机轴的增量式编码器组成，另有一个光电传感器用来侦测机器人立足角度。同时每个脚踝均包含一个 6 轴力矩传感器用来测量床反力（Ground Reaction Force）与零矩点（Zero Moment Point）。

5.4.4 关于 WABIAN-2R 在福冈电视塔的实证测试：

2007 年早稻田大学高西研究室在福冈 TNC 电视大楼地面周边（〒814-0001 福冈市早良区百里滨 2-3-2）进行一个着地姿势修正算法适应真实环境的不平坦地形
实验，并以 WABIAN-2R 搭载的预测姿势补正控制与非线性补偿控制。场所实验目的在验证 WABIAN-2R 在诸如人行道与瓷砖地面等现实环境中的适应性。

图 37. 实验场地：福冈塔与 TNC 电视大楼

实验依照下列方式进行：

(1) 在布满不均匀瓷砖倾斜度 2 度左右的地面(左右横向)。
(2) 在平坦倾斜度 3 度左右的瓷砖地面(左右横向)。
(3) 在平坦倾斜度 3 度左右的瓷砖地面往下(前后纵向)。
(4) 在平坦倾斜度 5 度左右的瓷砖地面往下(前后纵向)。
(5) 在平坦倾斜度 5 度左右的瓷砖地面往上(前后纵向)。
(6) 在不平坦的地面。

(7) 在不平坦的地面 2 至 5 度左右的瓷砖地面往下(前后纵向)。

(8) 在均匀平坦的瓷砖地面。

(9) 同 (8)。

5.4.5 早稻田大学高西研究室汎用双足步行机械：WL-16RII

WL-16RII（Waseda Leg No.16 Refined II）是一具只有下半身的多功能双足步行机器人并附有腰关节使它能够自由地行动。它的上半身可依照使用者定制化需求而做出许多变化。这部双足移动机（Biped Locomotor）可以投入社会照护领域，例如“可行走的轮椅”协助或搭载人类上下楼梯。此外，为了能完全独立适应户外环境，WL-16RII 以电池作为动力来源，伴随 6 自由度的平行功能。WL-16RII 总重量为 52 千克，包含 7 千克的电池。它的总高度约为 1.2 米。

图 38. 早稻田大学高西研究室汎用双足步行机械：WL-16RII (1)

图 39. 早稻田大学高西研究室 運用双足歩行機械: WL-16RII (2)

<table>
<thead>
<tr>
<th>Height [mm]</th>
<th>1160-1500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weight [kg]</td>
<td>62 (with batteries)</td>
</tr>
<tr>
<td>Degrees Of Freedom (DOF)</td>
<td>6 DOF x 2 = 12</td>
</tr>
<tr>
<td>Link Mechanism</td>
<td>Stewart Platform</td>
</tr>
<tr>
<td>Sensors</td>
<td>Force / Torque Sensor x 2</td>
</tr>
<tr>
<td></td>
<td>3 Axis Angle Detector x 1</td>
</tr>
<tr>
<td></td>
<td>Rotary Encoders x 12</td>
</tr>
<tr>
<td></td>
<td>Photomicrosensor x 12</td>
</tr>
<tr>
<td>Actuators</td>
<td>DC Servo Motor x 12</td>
</tr>
<tr>
<td>Batteries</td>
<td>Nickel Metal Hydride Battery</td>
</tr>
<tr>
<td>Others</td>
<td>Electromagnetic Brake x 12</td>
</tr>
<tr>
<td></td>
<td>Wireless LAN Module</td>
</tr>
<tr>
<td>Loading Capacity [kg]</td>
<td>Normal: 0-60</td>
</tr>
<tr>
<td></td>
<td>Using STRM: 0-94</td>
</tr>
</tbody>
</table>

表 4. 早稻田大学高西研究室 運用双足歩行機械: WL-16RII 规格表

5.4.6 关于 WL-16RII 在博多运河城的实证测试:

实验场所分布于福冈市的各个区域（图 42），包含博多运河城商场入口的阶梯（A 与 B 地点, 3-1, Shimokawabata, Hakata-ku, Fukuoka city, Fukuoka, Japan, 〒
川端商店街的步道与斑马线 (C 与 D 地点, 6-135, Kamikawabata, Hakata-ku, Fukuoka city, Fukuoka, Japan, 〒812-0027)，镜天满宫的阶梯 (E 地点, 3-1, Shimokawabata, Hakata-ku, Fukuoka city, Fukuoka, Japan, 〒812-0027)，博多寿桥的桥口 (F 地点, 33-1, Shimokawabata, Hakata-ku, Fukuoka city, Fukuoka, Japan, 〒812-0027)。第一期实验期间为 2004 年 7 月 7 日至 2004 年 12 月 21 日，它同时也是目前文献记载所知世界第一起双足步行机器人在户外环境与公共道路进行实证行走实验的例子。

图 40. WL-16RII 的实证测试地点分布图：福冈市区

5.4.7 综合讨论：

从福冈机器人特区实证实验中作者发现了若干与发展机器人法制有关的问题：

（1）机器人与道路交通法规：
和欧洲相比日本机器人在公共道路上之使用与测试已经有了明确的程序规范。例如“机器人公共道路圆滑化事业”与“搭乘型移动支持机器人的公共道路实验实验事业”。

虽然以日本道路交通法第77条第1段为依据的“机器人公共道路实验圆滑化事业之相关特别措施”提供机器人被正式确保为道路使用许可主体的机会，但前提是必须符合77条第2段的条件要求并要当地警察署同意之后才能在公共道路上使用。简而言之，道路交通法对于机器人道路使用规制和一般汽车道路使用规制不同，属于权宜措施而非常态性规范。

另一方面，到2012年为止美国已经有内华达、佛罗里达、加利福尼亚三州允许谷歌无人驾驶车上路，但美国对无人驾驶车的道路交通管制特别措施并不等同于日本机器人特区。就范围而言日本机器人特区管制的机器人种类不仅限于轮型驱动、双足步行，同时管制的环境也不限于平面道路，还包括商场、饭店、神社、电视台等。换句话说，日本机器人特区更贴近人类日常生活区域，在管制上思考的维度也比单纯的道路交通管制来得复杂。

(2) 机器人安全与产品责任:

如果制造商能够证明其产品是安全且无缺陷的，那么他们就能够免除与产品责任的承担，其中关键点在于他们是否可以按照ISO/IEC等具有公信力的国际安全标准制造机器人。有别于现存工业机器人安全标准，新ISO 13482个人护理机器人安全标准将是全世界第一个由ISO国际标准化组织所制定发行用来确保人类与机器人能够碰触彼此、共享空间以容许机器人向人类提供服务的下一代机器人安全标准。新ISO 13482安全标准包含(1)移动仆从机器人、(2)载人机器人与(3)身体辅助机器人等三类机器人安全要求以确保“人类-机器人共存的安全性”得以被实现。然而，新ISO 13482安全标准并未包含特别针对双足步行机器人的安全要求，而发展防止双足步行机器人在行进中跌倒的“安全对策”可能是未来发展

翁岳暄, Gurvinder Virk, 杨书评 (2014) 人类-机器人共存的安全性：新ISO 13482服务型机器人安全标准, 网络法律评论第17卷，北京大学出版社 [In Press]

204
服务机器人安全标准的选项之一，目前早稻田大学与 AIST 皆有关于双足步行机器人之“功能安全”研究成果。

（3）双足机器人的技术风险：

就如前面所提到，欧洲 DustBot 项目的附属实验在 2010 年 6 月 15 日至 8 月 7 日期间内将自律型行动机器人 DustCart 置于一个中古世纪遗留城镇“佩乔里（Peccioli）”用于在户外收集垃圾之测试。然后在实验过程中他们遭遇了若干法律面的阻碍，例如维也纳道路公约要求“所有在公路上的移动车辆与动物都必须伴随（人类）驾驶”。另外，他们用道路交通法中“车辆”、“行人”、“动物”、“非常态”等四个词语比对，判断 DustBot 与 DustCart 机器人在道路法规上应当属于”新型无法分类移动物体（New Unclassifiable Moving Objects）。总结佩乔里实证实验分析的法律议题分别为行政法交通规制、民法侵权责任、隐私保护和刑法交通事故责任。然而与车轮驱动机器人 DustCart 相比，双足步行机器人的动态稳定性更加充满挑战，特别是它所衍生的技术风险。对于人型机器人来说，目前如全自动驾驶、规划路线、推理等高阶的自律行为应用仍然非常受到技术水平与硬件维持费用的限制，但是低阶的自律行为如维持机器人双足动态平衡步行则是必须的，除了实际上技术可实践之外它也是未来延伸至高阶自律行为相关应用的必要条件，然而在人类历史上双足步行机械的交通方式从未在任何城市公共空间内实际投入应用过。直到 19 世纪马车

205
仍然是城市内部中重要的交通工具，马的 4 足配上 2 个或 4 个车轮的车厢得以稳定地在路面上行进，之后的蒸汽车、柴油动力车、汽油动力车乃至于电动车都是以 3 至 4 个车轮的方式在地做功移动，因此人型机器人双足步行机制的稳定性势必给今后的道路交通法和机器人安全监管带来全新的挑战。

首先简单介绍关于人型机器人双足步行控制方法，投入福冈机器人特区实证实验的两部机器人WABIAN-2R和WL-16RII皆采用零矩点的建模行走控制方法，该方法分为两个主要部分：

(a) 行走模式生成（Walking Pattern Generation）作为双足步行系统的前馈控制，包含“将机器人建模”、“推导零矩点（ZMP）方程式”、“计算（人型机器人）腰部的大概动作”、“透过将前者的反复计算求出（人型机器人）腰部的精确动作”。

(b) 实时稳定控制（Real-Time Stabilization Control）在步行中提供实时反馈控制。由于行走模式生成的前馈控制只能够在事前产出离线的稳定行走模式，机器人可能因为结构偏差的“建模误差（Modeling Error）”导致着陆时的不稳定。当机器人过重负载或搭载人员时也可能产生大量结构偏差以及马达容易反应失误的情形，最后使得机器人发生着陆失败结果。因此必须加上实时的虚拟柔顺控制（Virtual Compliance Control）机制。

以福冈实证实验为例，人型机器人双足步行稳定性一个主要问题来自于机器人行走模式是预先以离线方式被建成的，而其对于真实环境的公共道路空间之适应性将面临“未知地形（Unknown Surfaces）”与/或“人为失误（Human Error）”和稳定性控制系统之间交互所形成的开放组织风险。前者包含不平坦的地形如凹凸地面与严重倾斜表面；后者指涉在户外环境中面对人为的力量推挤，机器人的平衡受到影响时应该如何处理的问

题。从开放组织风险的观点来看，自律型机器人产生的物理性破坏/伤害，是其与非线性决策机制与非结构化环境中的人、事、物中互动产生的结果，对于法律责任的因果关系厘清有相当难度。例如图 41-图 43 为 WABIAN-2R 在福冈电视塔前不平坦地面 2 至 5 度左右的瓷砖地面往下（前后纵向）掉落的例子。
WABIAN-2R walked on the bumpy surface with tiles angled 2 to 5 degrees (forward-axis) down (Experimental Site No. 7) (3)

图 43–图 45 WABIAN-2R 的“步行稳定控制器”（Walking Stability Controller）以内建的离线行走模式以及传感器来自外在环境的数据为基础负责动态地调节，在这个例子里究竟机器的自主行为可以被视为一种“产品附随的功能”？或者“机器人超出程序设计师/制造者预期所做出的决策”？尽管这两种看法在工程师眼中皆言之成理，但是转换为法律的角度来看其结果却是不尽相同。

从作为一种产品附随功能的角度来看，所必须适用的法律应该是侵权责任法的“产品责任”。“传统机器的风险在制造与设计过程中已经能够有效地被减低，至于剩余风险再透过提供说明与警示标语的方式来处理。自律型服务机器人的开放组织风险对于产品缺陷认定的困难在于智能机器人“行为的风险”不容易在制造与设计的过程中被减低，而机器人在非

结构化环境中的自主行为可预见性低，对于难以预见的行为风险是否构成设计或指示的产品缺陷还有很大的争议性。

如果将它视为一种自主决策那么究竟谁要来承担这个决策的错误责任？仅具有自律式智能却缺乏自我意识的“第三的存在”机器人本身不具备承担责任的主体性，那么是否可以将机器人视为一种动物618 准用饲养动物损害责任的规制并交由其主人负责？虽然已经有学者如此主张，但是作者认为现阶段智能机器人的“第三的存在”特性仍未十分明显，法院将其以一般“微电机”视之的可能性较大，因此准用饲养动物损害责任的方案在短期内将难以实现。

作者认为或许在直接使用现行法律中“机器人视为一种产品”与“机器人视为一种动物”中两难的情况下考虑采取“第三条道路”即依照过错比例分配责任并结合保险作为辅助。这个方案是建立在机器人安全性获得确保（例如：ISO 标准）且环境适应范围、门槛条件明确（例如日本法律
对于无障碍设施的统一要求）的前提下以“黑匣子”来纪录机器人任务执行中事件的因果关系并作为责任分配的依据。WL-16 RII 载人型双足步行机器人（如下方图 46）可能因为人为的不当使用导致平衡功能被破坏而摔落地面受伤，但是究竟是因为机器产品缺陷、机器与非结构化环境互动的突现行为，或者人为误失事件等因果关系的厘清可能需要统一的“黑匣子（Black Box）事故记录器”作为辅助判断责任分配的工具，在确定责任牵连主体之后便可利用记录器的实证数据分析对象在事件中的预见可能性与回避义务来判断是否有过错而成立侵权责任，同时分析结果亦可用于商业保险对于机器人行为不可预见性的合理费率计算之用。

机器人特区作为机器人科技与社会的中介，它的重要性在于（1）安全性确保

「高齢者、障害者等の移動等の円滑化の促進に関する法律」(バリアフリー新法) 209
保、（2）防止诉讼风险以及（3）和缓重大伦理争议三方面。经由观察作者发现未来人类-机器人共存社会下的“机器人法律”可以分为底层 - 确保安全性的“机器人安全监管法”，中间 - 许多现存法律与机器人科技冲突后修正的法律，上层 - 规范人类与人型机器人互动的“仿人机器人道德法”，而机器人特区恰好可以作为一个半开放的实验室供立法者在较低风险的前提下维护和调整机器人法律的普遍性与特殊性。此外，在个案研究中我们必须关注到机器人的开放组织风险对于责任分配所造成的影响，“机器人作为一种产品”与“机器人作为一种动物”的困境中作者还提出了第三种方案-透过黑匣子事故记录器依因果关系比例轻重来分配责任，虽然现在步行稳定控制器的开放组织风险并不明显，但随着下一代机器人的逐渐普及，开放组织风险引发的责任分配问题将会成为机器人法律研究的一个热点。

图44. WL-16RII carried a person to climb steps in Hakata Riverain shopping mall

陆．结论

“行く川のながれは絶えずして、しかも、本の水にあらず。”621 13 世纪日本文学家鸭长明（Kamo no Chomei）一生中遭逢安原大火、承治风灾、养和饥馑、元历地震等数起天灾人祸，深感人世无常于是隐居京都日野山潜心撰写“方丈记”一书，而本研究主要所探讨的“开放组织风险”不仅未曾出现过于800年前京都中世，其“第三的存在”特性也似乎游移在天灾与人祸之间，因此增进对此一新形态风险的了解将成为21世纪机械安全监管之新挑战。

“服务机器人安全监管”是一个以风险控管为核心交叉于机械安全、法学与保险等领域的复合型问题，这也是本研究选择以具备自主决策能力之服务机器人特有的“开放组织风险”为切入点之动机所在。希望透过对于“开放组织风险”的观察来进一步考察此风险在安全监管方面对于“事前的机械安全确保”以及“事后的法律责任分配”所造成的影响。

在本研究中作者透过对蒸汽机时代以及微电机时代的人类-机械共存情形，考察过去的“心理安全”和现代“物理安全”两种监管思维，之后再结合当代机械安全法律规制推导出“微电机的风险监管框架”，并透过文献资料之收集整理和个案研究观察，思考自律型服务机器人的“开放组织风险”，同时在两者基础上进一步分析出“第三的存在—服务机器人的风险监管框架”，包含短期面向的“风险监督”以及长期面向的“风险控制”等监管层次。

首先就“风险监督”而言，作者分析日本经济产业省过去10年间陆续发布的“METI 机器人政策报告书”系列，以及今年2月份国际标准化组织新发布的全球第一部服务机器人安全标准－ISO 13482，并且对服务机器人安全监管之预防面向（机械安全）进行系统性检视。过程中作者发现由于非结构化环境的“复杂性、不确定性”使得预防式安全监管的效用打了不少折扣，例如在非结构化环境中的“电池充电危险”、“能量储存和供给的危险”、“机器人启动造成的危险”、“机器人外形造成的危险”、“噪声造成的危险”、“认知缺乏造成的危险”、“危险的振动”、“危险物质和液体”、“危险环境状况”、“极端温度”、“危险非电离辐射”、“

“危险电离辐射”、“电磁干扰/电磁兼容性危险”、“压力、姿势和使用危险”、“机器人运动造成的危险”、“与安全相关障碍的碰撞”、“人-机器人交互时的危险身体接触”、“耐用性不足”、“与运动部件的危险接触”、“定位和导航错误造成的危险”、“其他危险项”等危险源之确认皆比结构化环境难上许多，即便机器人安全专家努力地分析可能的潜在危险源，到时仍不免会出现预想外的危险情况。上述危险源“判断难”对风险评估的挑战仅止于来自“开放环境的不确定性”，然而自律型服务机器人安全监管真正的挑战在于“危险的自主行为”之风险评估，因为它同时包含“开放环境的不确定性”以及机器人自主决策的不确定性，即“开放组织风险”。

工业机器人的设计与制造过程皆依据明确特定的标准，这也导致它们执行任务范围受到限制，通常是单一的、反复的工作态样。换句话说，它们无法透过自主决策或功能调整来适应不断变动的外在环境。相较于工业机器人的安全在很大程度上是透过“预防的面向”在机械生产制造的过程中将风险抑制至可容忍的范围内，自律型服务机器人本身的动作复杂性、与多重人物之间的互动、回应外在环境的变动性等因素导致与人类之间的复杂互动无法被抽象化为简单的参数作为危险源识别的依据。虽然ISO 13482机械安全框架以“强化功能安全”和“限制机器人活动空间”等手段试图降低服务机器人的使用风险，但无可避免地，开放组织风险的存在导致安全监管事后面向（法律、保险）之重要性大幅提升。

在“风险监督”的监管框架下，作者试图探讨法律和保险机制在事后面向上能够如何协助自律型服务机器人的安全监管。自动化技术的导入使得法律责任呈现一种由个人责任移转到更一般的企业责任与产品责任的趋势。作者发现如果不妥善解决开放组织风险所存在的隐患，那么责任障碍将造成服务机器人产业发展的停滞不前。开放组织风险造成的主要争议包含“产品责任设计和指示缺陷判定的问题”、“机械安全监管上考虑一般侵权责任的重要性”、“机器人判断错误的自主行为侵害他人人身、财产安全的侵权责任争议”、“开放式机器人的归责问题”等等。

上述自律型服务机器人在产业初期所引发的民事责任分配问题，将随着机器人的智能提升以及使用普及而变得更加棘手，因此作者对于未来服务机器人产业
中长期发展的一个立法建议是，或可考虑给予自律型服务机器人一种特殊法律地位以简化责任分配。有鉴于自律型服务机器人“第三的存在”特性以及未来融入社会各角落“与人共存”的普遍性，透过法律来保护不当对机器人迁怒或其他恶意破坏攻击行为也有其必要性。换句话说，从道德伦理角度切入，“第三的存在”服务机器人亦应获得相应的特殊法律地位，将其视为一种单纯的财产显然是不足够的。从安全监管的角度来看，考虑给予“第三的存在”自律型服务机器人特殊法律地位不但有利于责任分配以强化事后面向的风险监督，另一方面，其隐含一层消极不鼓励开发制造HBI类人智能机器人的意义。

作者认为就长期来看，自律型服务机器人将有跳脱出“风险监督”而进入“风险控制”的监管需求。开放组织风险有可预见的中核和不可预见的外延，随着未来“机器人运动”、“机器人感知”、“机器人操作与抓取”、“人类-机器人互动技术”等涉及自主决策功能之技术应用范围扩大，将不可避免地造成开放组织风险的“风险增生”，这也是开放组织风险对未来服务机器人安全监管所造成的一个重大隐患，将来机器人安全监管的趋势可能由对空间环境的限制，转为直接对机器人决策的限制，或称为“安全智能”，亦是“风险控制”所需考虑的主要监管手段。到目前为止学术界对于“安全智能”尚未建立起一种共识，而唯一可以作为参考的例子是科幻小说家艾萨克·阿西莫夫所创造的“机器人三原则”，因此作者透过“机械元伦理学”、“形式”、“管制”三点要素分析并论证阿西莫夫“机器人三原则”的不可行。作者认为在“风险控制”层次上则需要一种结合“第三的存在”与“法定机械语言”的综合治理机制以有效解决智能机器人的“开放组织风险”。虽然“法定机械语言”是落实“安全智能”的可能手段之一，但其“嵌入式伦理”的三项安全要求如何实践？以及“代码即法律”如何适当地接风险控制的预防和事后面向？仍有待未来数十年法学界和机器人学界双方持续不断努力沟通、携手合作方可能实现多功能、高风险的“人类-机器人共存”。

在目前许多国家尝试推动车联网、智能汽车、自动驾驶汽车作为竞争型产业的趋势下，对于发展相关安全监管和法律议题，特别是智能汽车与自动驾驶汽车的相关民事责任和安全监管将逐渐显露其重要性。作者现开放组织风险不仅适用于服务机器人，亦存在于智能汽车、自动驾驶汽车之中，在本个案研究中，作者尝试从科技政策视角建立区分智能汽车科技的分类，即“授权控制”的自动驾驶
汽车以及“共同控制”的智能汽车，并且在此分类框架下分析智能汽车科技所存在的安全隐患，以及提出对于安全监管规制上的一些个人建议。

作者旅日期间在早稻田大学人型机器人研究所高西研究室从事福冈机器人特区个案研究时透过实证材料的归纳分析发现对于未来“机器人法律”的潜在需求或可区分为三个层次。首先，必须确认的是机器人安全监管问题。自工业革命以后人类对于机械的依赖性逐渐增加，由最初工厂内部的生产力辅助扩展至人类日常生活的食衣住行。然而机械在使用上导致的意外却时有耳闻，因此法律也发展出一套监管制度在源头上治理机械安全以将这类人造物的技术风险降至最低，例如民航机、汽车、火车、升降机、工业机器人皆有相关的监管法规来确保其机械安全。因此“机器人法律”框架的最底层应属“机器人安全监管法（The Robot Safety Governance Act）”。基本上是目前机械安全监管法规的延伸，而其中一个显着例子是汽车的“型式认证”制度，由于ISO与IEC的国际机械安全标准缺乏强制性，所以对于若干较关键的技术安全性确保最终必须透过法律规范来落实，这种“技术法规”的特色在于同时夹杂法律文字和大量技术内容，属于一种典型“技术的治理”。

“机器人法律”的特殊性除了其“自主能力/自律性”衍生的安全监管问题之外，还有另一种特殊性在于考虑对仿人机器人的道德规范进一步法制化，或称为“仿人机器人道德法（The Humanoid Morality Act）”。无可避免地，“机器人伦理”对于未来人类-机器人之互动关系将扮演一种指导性角色，然而其本质仅仅就是一种道德规范，并不具备法律的强制力。内容庞杂、范围浩大的机器人伦理只有其中少数牵涉到重大道德伦理争议的部分才需要考虑加以法制化。

机器人法律框架的特殊性呈现在上下两侧对于“道德的治理”以及“技术的治理”上，而其普遍性则介于两者之间以“修订法规（Revisions）”的形式呈现。在人类-机器人共存社会萌芽期的此刻，已逐渐出现若干现存法律规范和机器人科技之间的冲突，如道路交通法、侵权责任法、国际人道法等，而作者认为政府考虑成立“机器人特区”不但可以作为调和机器人科技与法律规范的潜在冲突，亦可协助推进本土机器人产业的发展。例如日本政府透过“构造改革特别区域法”和“总和特别区域法”等法律框架成立的“机器人开发与实证测试特区（ロボット開発・実証実験特区）”即以特区内部的特殊实证实验制度领先美国8年解决
机器人科技和道路交通法之间所存在的矛盾。“机器人特区”不但能有效地达成（1）安全性确保、（2）防止诉讼风险、（3）和缓重大伦理争议等三大功能，在人类–机器人共存初期的重要性更是作为一种机器人与社会之间的“避震缓冲”。然而必须注意到的一点是，如早稻田大学人型机器人研究所所长高西淳夫教授所言：“日本人很清楚自己需要机器人，但是为了那个可能的、千分之一的不完美，宁可用重重法律来限制人与机器人的接触”。究竟机器人特区立法制度的严密事前监管能否取得产业竞争力以及安全性确保的平衡仍有待未来进一步的探究。

近年来下一代机器人的科技发展趋势反映了在未来服务机器人大量进入人类社会的可能性，当工程师与机器人学家正专注于思索各类技术议题时，另一种需要集合工程师、机器人学家、社会科学家、立法者之力来解决的“机器人社会化”问题之重要性也逐渐浮出檯面。而其中必须作为最优先考量的乃是“机器人安全性确保和监管”，因为未来社会的一个特征将会是“人类与机器人共存”，而这种新安全性之建构和配套制度的开展将会是关键的第一步。

參考文獻

英文文獻:

[e10] Ana M. Valdes (2012) Florida embraces self-driving cars, as engineers and lawmakers prepare for the new technology, Palm Beach Post (2012.5.7) Available via

[e18] Mary Shelley (1818) Frankenstein; or, The Modern Prometheus, London: Lackington, Hughes, Harding, Mavor & Jones

[e22] Alan Turing (1936) On Computable Numbers With An Application To The

2, 2009, Toyama, Japan

Michael Anderson and Susan Leigh Anderson (2007) Machine Ethics: Creating an Ethical Intelligent Agent, *AI Magazine*, vol. 28 no. 4

[e76] Lisa Zyga (2009) Living Safely with Robots, Beyond Asimov's Laws,

[e105] Karlin Lillington (2008) So Robots are Social Animals After All, In: Irish...

[e116] Isaac Asimov (1964) *The Rest of the Robots*, New York: Collins

[e122] Isaac Asimov (1957) *The Naked Sun*, New York: Doubleday

225

Adam Fisher (2013) Inside Google's Quest To Popularize Self-Driving Cars, 科技新时代 Popular Science, 总 256 期, pp. 68

[e181] Unsigned Editorial (2010) *Road Accident Data Recorder*, Booklet issued by IRF - International Road Federation

日文文献:

[j2] 田近伸和（2001）未来のアトム, 東京：アスコム, pp. 25

[j3] 菅野重樹（2011）人が見た夢 ロボットの来た道, 東京：JIPM-S, pp. 24-27

[j6] 堀田純司（2008）人とロボットの秘密, 東京：講談社, pp. 139
[j7] 石ノ森章太郎（1972）人造人間キカイダー, 東京：復刊ドットコム

[j8] 大西祥一、岸川真（2013）世界最先端兵器：衝撃の真相：ロボット兵器の全貌, 東京：宝島社, pp. 4-16

[j11] 畑村洋太郎（2010）危険不可視社会, 東京：講談社, pp. 57

[j12] 小林忍（2012）航空機事故に学ぶ, 東京：講談社, pp. 83

[j14] 中嶋洋介（2006）安全とリスクのおはなし, 東京：日本規格学会, pp. 27

[j15] 宮崎浩一、向殿政男（2007）安全設計の基本概念 ISO/IEC Guide 51 (JIS Z 8051) and ISO 12100 (JIS B 9700), 東京：日本規格協会, pp. 49

[j16] 山本隆司、岡本裕、吉田均（2008）第一章 規格と法規, 経済産業省委託事業である“平成 19 年度基準認証研究開発事業”

[j17] 日科技連 PL 編集委員会（1992）製造物責任と製品安全-安全確保のための技術とシステム, 東京：日科技連出版社

[j18] 藤田嘉美、藤川博己（2009）自動車と機能安全, 相模原: TriFoglio 出版社

[j22] 小林秀之（1998）新製造物責任法大系 II (日本篇) 東京：弘文堂

[j26] 白根禮吉（1985）筑波科学博と日本の科学技術、日本ロボット学会誌3巻4号、pp. 300-303

[j27] 桟田秀司（2005）ヒューマノイドロボット、東京：Ohmsha

[j28] 井上博允（2004）人間型ロボットが拓く未来社会と新産業の創成、日本ロボット学会誌22巻1号、pp. 2-5

[j29] 杉本のぼる（2006）愛・地球博で求めたロボットの“State of the Art”，日本ロボット学会誌、vol. 24、no. 2、pp. 167-168

[j31] 鴨志田英樹（2005）ロボット業界最前線の28人が語る！ロボットの現在と未来、東京：X-Media

西沢俊広 (2012) 家庭用ロボットの事故発生リスク低減のための音声対話に基づく取扱方法確認システムの研究 ～人と機械の新しい関係性の提案～、筑波大学大学院システム情報工学研究科博士学位論文

上田佑介 (2007) 「ロボット保険」の現状と今後の展望、日本ロボット学会誌 25 巻 8 号、pp. 1185～1187

石黒浩 (2012) 人とアンドロイド: 私はなぜロボットを作るのか、東京：日本評論社、pp. 50–51

稲垣敏之 (2012) 人と機械の共生のデザイン－「人間中心の自動化」を探る、東京：森北出版社

藤元正二 (2004) ロボット特区等ロボット開発の支援施策、日本ロボット学会誌 22 巻 7 号、pp. 816～817

「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第 63 号 (平成 15年 8月 28日)

高西淳夫、菅原雄介、砂塚裕之、川瀬正幹、橋本健二、太田章博、田中智明 (2005) 「ロボット開発・実証実験等に関する福岡市のポテンシャルと課題等の調査研究」報告書 (平成 17年)、早稲田大学理工学部高西淳夫研究室

「ロボット公道実験円滑化事業」に係る特例措置について」警察庁丁規発第 3 号 (平成 18年 1月 23日)

稲葉昭夫、千原健司 (2004) ギフ・ロボット・プロジェクト 21、日本ロボット学会誌 22 巻 7 号、pp. 818～821

平成 15年度WABOT-HOUSE 研究成果報告書 (平成 16年 3月) 早稲田大学 WABOT-HOUSE 研究所

美濃地研一 (2004) RT (ロボットテクノロジー) 産業クラスター形成を目指す大阪市、日本ロボット学会誌 22 巻 7 号、pp. 822–826

梶 善登: 関西圈におけるロボット産業の動向—大阪市および関西学術文化研究都市での取り組み— レファレンス 平成 19年 6月号

香山健太郎 (2006) ネットワークロボット実証実験 (公道走行等) 報告、NiCT (National institute of Communications Technology) News, 第 358 号,

[j52] 浅田稔（2005）共創知能から共創都市へ, 日本ロボット学会誌23巻8号, pp. 942-945

[j53] 浅田稔、石黒周（2004）ロボット・サイエンス&テクノロジーを核とする国際公開共同実験都市構想『RoboCity CoRE』, 日本ロボット学会誌22巻7号, pp. 833-838

[j54] 浅田稔（2010）ロボットと未来社会, 第28回日本ロボット学会学術講演会

[j56] 「搭乗型移動支援ロボットの公道実証実験事業」に係る特例措置について, 警察庁丁交企発第177号, 丁規発第92号, 平成24年12月27日

中文文献:

[c5] Unsigned Editorial (2013) 自主机器人杀手：未来武器系统的军事与道义内涵,

[c6] 储信艳（2013）一个无人机杀手的告白，北京：新报 B10 版（2013年11月3日）

[c7] Unsigned Editorial（2013）核潜艇的前世今生，北京：新报 B12 版（2013年11月3日）

[c9] 晋·陈寿《三国志·魏书》卷二十九

[c10] Rolf Pfeifer, Josh Bongard 着；俞文伟, 陈卫东, 杨建国, 许敏, 横井浩史, 金丹译（2009）身体的智能—智能科学新视角，北京：科学出版社，PP. 4

[c13] 先秦·孔丘《论语·卫灵公》

[c14] 陈建勋（2010）云的技术：云计算国际趋势介绍，北京大学互联网法律通讯（6）5：39-50

[c15] 翁岳暄（2010）云的管制：迈向社会系统设计之云计算法律框架，北京大学互联网法律通讯（6）5：64-72

[c47] 清・徐珂 (1917) 《清稗类钞》 北京: 商务印书馆
[c53] 翁岳暄、Gurvinder Virk、杨书评 (2014) 人类-机器人共存的安全性：新ISO 13482 服务机器人安全标准, 网络法律评论 第17卷, 北京大学出版社
[c59] 林清高 (2008) 劳动法学, 北京：中国财政经济出版社
什么是劳动安全卫生标准？劳动安全卫生标准分为哪些类型？

蔡志方、蔡达智 (2010) 汽车科技安全法制、台湾桃园: 正典出版社, PP. 114

Baruch Fishhoff (巴鲁克·费斯科霍夫)、色拉利·希腾斯坦、保罗·斯诺维克、斯蒂芬·德彼、拉尔夫·基尼著; 王红漫译 (2009) 人类可接受风险, 北京: 北京大学出版社, pp.184

肖雅毓 (2005) 论产品责任中产品瑕疵之判断与举证责任之分配 - 以民法第 191 条之 1 与消费者保护法为中心, 台湾: 成功大学法律系硕士论文, pp. 139

杨立新 (2010) 侵权损害赔偿, 北京: 法律出版社

勒内·达维著; 潘华仿、高鸿钧、贺卫方译 (2002) 英国法与法国法: 一种实质性比较, 北京: 清华大学出版社 pp. 188

邹海林著 (1999) 保险责任论, 北京: 法律出版社, pp. 45

王利明主编 (1995) 民法 侵权行为法, 北京: 中国人民大学出版社

Unsigned Editorial (2011) 什么是技术法规?

Unsigned Editorial (2012) 为何日本研究人员要制造人形机器人：「理解人类」一人形机器人研究最前线、nippon.com (2012.08.15)，Available via

Jeff Hawkins, Sandra Blakeslee 著; 洪兰译 (2006) 创智慧：理解人脑运作, 台北：远流出版社

翁岳暄 (2011) 人机共存社会中隐含的开放组织风险：评《开放式机器人》, 网络法律评论 第 13 卷, 北京大学出版社

240

技术标准、法规及判决:

[t26] 起草人：杨书评、王海丹、王思斯（2014）中华人民共和国国家标准 机器人与机器装备-个人护理机器人的安全要求（草案），起草单位：北京机械工业自动化研究所

[t30] 《中华人民共和国侵权责任法（2010）》

[t32] 高齢者、障害者等の移動等の円滑化の促進に関する法律 (バリアフリー新法)
博士在读期间主要科研工作与成果

翁岳暄（Yueh-Hsuan Weng），北京大学法学院

教育背景:

Ph.D. in Law, PEKING University Law School, Beijing, 2014
《北京大学法学院 法学博士》博士导师：强世功教授（法学理论 - 科技法学方向）

Ph.D. Joint Supervision (Robotics): Graduate School of Advanced Science and Engineering, Waseda University, Tokyo. October 2012 – March 2013 | Supervisor: Prof. Dr. Atsuo TAKANISHI博士联合培养(式)：《早稻田大学大学院先進理工学研究科》导师：高西淳夫教授

Ph.D. Joint Supervision (AI & Law): Department of Law, European University Institute (EUI), Florence. March 2012 – June 2012 | Supervisor: Prof. Dr. Giovanni SARTOR博士联合培养(式)：《欧洲大学研究院法律系》导师：乔凡尼·萨尔托尔教授

M.S. in Computer Science, National CHIAO-TUNG University, Hsinchu, 2007
《台灣新竹交通大學資訊工程學系 工學碩士》碩士導師：孫春在教授（人工智慧 - 法律資訊學方向）

Visiting Student of the Kyoto Consortium for Japanese Studies, Columbia University, 2009
哥伦比亚大学 KCS京都日本联合课程 访问学生（主修：古典日本文学 - 指导教官：Prof. Dr. Jamie Newhard）

Research Student in RT and Its Social Impacts, Waseda University, Tokyo, 2004
早稻田大学2004年度CIE委託履修生：ロボットと社会研究

科研相关工作经历:

Visiting Researcher, Humanoid Robotics Institute, Waseda University
Description: Policy and Law for Robotics Industry; Supervisor: Dr. Atsuo Takanishi
TWIns, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan (October 2012 – March 2013)
早稲田大学理工学術院 人型机器人研究所·高西淳夫研究室 外国人研究員

Coordinator, YSAiL Initiative for Robotics, Law & Policy, Peking University
Description: AI, Robotics & Law ; Supervisor: Dr. Ping Zhang
Zhongguanchun, Beijing, China (June 2012- Present)
北京大学互联网法律中心 YSAiL 亚机器人法律与政策工作组 主任

Member of the Advisory Board, European FP7 RoboLaw Project
Description: Law and Robotics; Supervisor: Dr. Erica Palmerini
SSSA DIHPOLIS & BioRobotics Institute, Pisa, Italy (June 2012 – May 2014)
欧盟第七科技框架计划“机器人法律”项目 外部支持网络 法律顾问

Research Intern, Department of Law, European University Institute
Description: EUI ALIAS Project; Supervisor: Dr. Giovanni Sartor
Villa Schifanoia, Florence, Italy (April 2012 - June 2012)
欧洲大学研究院法律系 ALIAS 项目 访问博士生/实习研究助理

Research Associate, Internet Law Center, Peking University Law School
Description: Cloud Computing, Networked Robotics; Supervisor: Dr. Ping Zhang
Zhongguanchun, Beijing, China (October 2010- July 2014)
北京大学互联网法律中心 YAHOO!资助课题 项目官员

Research Assistant, Center for the study of Law & Politics, Peking University
Description: Research & Publish Projects; Supervisor: Dr. Shigong Jiang
Peking University, Beijing, China (September 2010- July 2014)
北京大学法治研究中心 强世功教授科研助理
学术服务:

审稿人:
International Conference on Human-Robot Interaction (HRI), ACM/IEEE (2012 - 2013)
Ethics and Information Technology, Springer (2012)
Internet Law Review (网络法律评论), Beijing: Peking University Press (2011)

学术演讲（中/英文）:
"Introduction to Copyright Law in the Digital Environment", 2012 @ National Taiwan Normal University, Taipei
NTNU Undergraduate Course: Digital Publishing Research, 13:10-16:00, General Bldg 10F, National Taiwan Normal University, Taipei, September 28th 2012
(Organizer: Dr. Jilung Hsieh, National Taiwan Normal University)

"Law & Networked Robotics: Some legal Issues on the Internet of Things", 2012 @ Scuola Superiore Sant'Anna di Pisa
SSSA Seminar, 12:00-15:00, Aula 6, Scuola Superiore SantAnna, Pisa, June 6th 2012
(Organizer: Dr. Erica Palmerini, Dr. Pericle Salvini, Scuola Superiore SantAnna, Italy)

"Toward the Human-Robot Co-Existence Society: On Legislative Consortium for Social Robotics", 2009 @ IEEE International Conference on Robotics and Automation, Kobe
(Organizer: Dr. Pericle Salvini, Scuola Superiore SantAnna, Italy, Dr. Takayuki Kanda, ATR IRC, Japan)

参与科研项目:

Member of the Advisory Board, European FP7 RoboLaw Project, June 2012 – May 2014 (http://www.robolaw.eu/)
法律顾问：欧盟第七科技框架计划“机器人法律”项目 外部支持网络

Research Intern, ALIAS (Addressing the Liability Impact of Automated Systems) Project, European University Institute, March 2012 – June 2012
(http://www.aliasnetwork.eu/)
实习研究助理：欧洲大学研究院法律系 ALIAS 项目

课题主持人：雅虎 2012 年度资助课题《物联网与自动化之科技立法研究》，北京大学互联网法律中心，2012年10月-2013年10月。

课题主持人：雅虎 2010 年度资助课题《云计算与网络社会：社会系统设计之法律框架研究》，北京大学互联网法律中心，2010年10月-2011年10月。

奖项:

2013 年度 北京大学-宝钢教育奖 港澳台优秀学生奖（博士组），2013年10月
2011 年度 北京大学-宝钢教育奖 港澳台优秀学生奖（博士组），2011年10月
2010 年度 北京大学法学院第19届挑战杯 五四青年科学奖竞赛二等奖
International Journals:

Chinese Journals:

Monographs:

国际会议论文:

国际会议专题工作坊:

北京大学校内编辑刊物:

Abstract: Unlike current existing industrial robots’ safety standards, the new ISO 13482 Safety Standard for Personal Care Robots will be the first robot safety standard made by ISO international organization for standardization which allows robots and humans to touch each other, share the same space and provide the services to human beings. The new ISO 13482 safety standard includes (1) Mobile Servant Robots; (2)...
Person Carrier Robots; (3) Physical Assistant Robots as the three main categories of safety requirements. Furthermore, the “Safety for Human-Robot Co-Existing” could also bring structural and influential impact for next generation robots’ safety certification, product liability, ethics and insurance in the future.

Keywords: ISO 13482 Safety Standard, the Safety for Human-Robot Co-Existing, Service Robots

时间：2013年10月17日
地点：北京市海淀区三里河路1号 西苑饭店
语言：英语

访谈人：翁岳暄，北京大学法学院2010级法学博士，欧洲大学研究院法律系访问博士生（2012），台湾新竹交通大学计算机科学博士肄业，欧盟第七科技框架计划“机器人法律”项目法律顾问（2012-2014），日本早稻田大学理工学术院高西淳夫研究室外国人研究员（2012-2013）。

受访者：（1）Gurvinder Virk 教授，英国伦敦帝国学院控制理论工学博士（1981年），研究兴趣为控制系统工程学、机器人学和可再生能源工程，现任瑞典耶夫勒大学（Gävle）和KTH皇家理工学院机器人学教授并同时兼任ISO国际标准化组织个人护理机器人工作组秘书长；（2）杨书评教授，现任北京机械工业自动化研究所研究员和全国机器人与机器人装备分技术委员会秘书长，主要从事自动化领域的标准化研究。杨秘书长为中华人民共和国国家标准《机器人与机器人装备-个人护理机器人的安全要求（草案）》的起草人之一。

问 1：请问本会议全名以及它的目标是？

Virk：目前机器人标准领域里有几个工作组在进行这项工作，就我的了解大概有 5 至 6 个工作组在本周以及下周负责这些议程的进行。我参加的是关于机器人安全的议程，其他议程还包含“机器人术语（Robot Vocabulary）”和“机器人性能（Robot Performance）”等，同时我们也有一个更高级别的大型会议。通常情况下我们必须每隔 18 个月进行例会以及发行报告书，所以这次有许多工作组聚集在北京，全部都是负责各种不同的机器人专题，例如本周我加入的是医疗机器人的会议而下周我们即将进行的会议主题就是现在和你谈论的“个人护理机器人（Personal Care Robots）”。其实医疗机器人也有安全上的需求只是它们属于不同的规制框架，换句话说，医疗机器人安全与工业机器人安全是截然不同的。当然，它与服务机器人或个人护理机器人的安全也是不尽相同的，每一种机器人应用都有其专门的安全要求。

问 2：能否请您解释一下“机器人术语（Robot Vocabulary）”呢？

Virk：我们现在正在做的事情主要是希望当我们使用机器人相关术语时一般社会大众也能清楚理解其意涵。例如“机器人”这个词如果没有一个明确定义的话基本上它可以指涉很多事物，像是人型机器人、工业生产机器人、军型机器人（机器车）等等。因此制定出共同术语是一件重要的事情，这方面的标准是在去年刚完成修订的 ISO 8373。ISO 8373 的内容涵盖了机器人领域的所有重要术语，例如“什么是机器人？”、“机器人装备”、“控制器”等术语在这个标准里面都会以专业方式呈现。对我们而言拥有共通专业术语是一件重要的事情。

问 3：ISO 13482 个人护理机器人安全标准将会是全世界第一个针对服务机器人的安全标准。为何它如此重要？如果缺乏这个安全标准对于机器人产业将产生何种冲击？

Virk：到目前为止唯一存在于人类社会之中的只有工业机器人，它们的商业化大约始于 1960 年代中期而全世界第一个针对工业机器人的安全标准大约始于 1980 年代中期，以上是工业机器人的一致情况。当然所有国度都必须确保它们的产品是安全的，特别是对于体积庞大且力道强劲的工业机器人。有鉴于此，一般对于工业机器人安全标准的设计思维总是停留在它们是非常危险的机械，它们的安全设计是以当其运作时人类无法靠近为前提，因为它们可能对人类造成重大伤害。
所以现今的安全要求是建立在隔离原则的基础上，人类与机器人将被隔离，无论是真实栅栏或虚拟栅栏。但现在的情况是……历经过去 10 至 15 年的发展，许多国家与企业已经成功开发出能够相当接近人类的机器人，同时这些机器人在设计上并不是投入制造业的而是尝试提供人类各种不同态样的服务。当你被机器人提供服务时是不可能采行隔离原则来确保你人身安全的，所以你必须去发展一套当机器人运行时同时能够容许人类与机器人共存于同一空间的安全要求。这就是 ISO 13482 的重要之处，因为它将是第一个被国际性 ISO 标准化组织所制定用来确保人类与机器人能够碰触彼此、共享空间以容许机器人向人类提供服务的机械安全标准。如果缺乏这个标准虽然机器人公司依然能够制造与贩卖服务机器人，一旦发生问题时特别是遇到像你们这样的法律人这些公司将被送上法庭，他们到时必须证明他们的产品是安全的，但在缺乏一个国际性认可的安全要求情况下这些公司将以向法庭证明他们产品的安全性。

附带一提，ISO 是个自愿性组织，所有对机器人感兴趣的国家都能获邀参加，接着会有许多投票表决活动进行，当我们同意之后这些安全要求的内容将被以文件的形式出版。比方说我制造了一具机器人，我把它交给一个机构进行认证然后我也顺利地获得 ISO 认证，这时我就可以走进法庭向他们说“你看！我这里拥有安全认证文件，这表示我的机器人完全符合 ISO 的安全要求，我也达成了国际通行认可的安全标准，现在我的机器人是非常安全的。”这种认证是万一事情发生的一种保证，如果一部车导致死亡结果究竟是驾驶的责任或是汽车制造商的责任？如果你可以证明汽车制造商有设计方面的疏失，那么汽车制造商将必须承担法律责任。机器人的情况也是如此，就服务机器人领域而言我们目前还没有对应的安
全要求，这也是为何 13482 安全标准如此重要，它建立了基准。当然，因为它是新建立的标准所以在未来可能还需要面临持续性的修订，接下来的每三年里我们委员会将定期检视标准，看看这些内容是否仍然有效？是否需要被修改？以上是我们 ISO 国际机器人与机器人装备标准化分技术委员会 WG7 工作组
（ISO/TC184/SC2/WG7）对于新 13482 服务机器人安全标准的后续维护方式。

问 4：坊间有人宣称日本在 ISO 13482 服务机器人安全标准专家组里面占有领导的地位，请问这是否属实？ISO 13482 里面的大部分规则与内容都是按照日本代表所提出之方案为基础吗？
杨：ISO 13482 服务机器人安全标准的召集人是来自英国的 Gurvinder Virk 教授，按照国际标准的规则至少有 5 个 P 成员国家必须推荐专家共同起草此项标准。不可否认，日本专家对此标准的贡献很大，包括 HONDA 等日本大公司都派专家参加了 WG7 工作组，他们在会议上有很多输入，包括很多评论 (COMMENTS)。我记得在 2012 年 10 月韩国 WG7 工作组会议上专家们每天从早 9 点工作到晚 9 点， 5 天时间内处理完 600 多条评论，而大部分评论来自日本和德国。而且随着 ISO 13482 即将发布，这个工作组后续有两个与之相关的项目，其中之一《机器人与机器人设备-个人护理机器人与安全相关的测试方法》就是由日本 NEDO 项目组提出，现在由日本专家主导进行。但值得高兴的是我国纳恩博公司的王野先生也参加了此标准的制定，提出了不少代步机器人的测试方法。

问 5：能否请您介绍一下 ISO 国际机器人与机器人装备标准化分技术委员会 (ISO/TC 184/SC2) 以及其附属工作组？

ISO 与 IEC 有着紧密的合作，特别是在医疗机器人这个领域，我今天正好结束这个会议。医疗电子设备是 IEC 的强项，所以当你谈到医疗机器人标准化这一块时，必须同时关注到擅长机器人的 ISO 以及擅长医疗电子的 IEC。事实上医疗机器人标准化工作是在 ISO 与 IEC 联合委员会的体制下推展的。

问 6：您的 WG7 工作组是在何时决定制定 ISO 13482 标准呢？在什么动机之下？

问 7：能否请您介绍一下北京机械工业自动化研究所以及贵所近年来在 ISO/IEC 等国际化标准组织所参与的活动？

问 8：ISO 13482 标准何时将出版？从那里可以下载或取得文件？
Virk: 我想大概在 2014 年初。你可以直接从 ISO 官网下载，但这是必须付费的。很不幸地 ISO 与 IEC 的模式是政府参与但是经费由其他机构的购买作为资金来源。我个人认为这将会是一个问题，我们之中有些人试着反映这个问题并且呼吁我们必须考虑其他资金来源。对于这些开销或许政府可以考虑给我们资助，但不管如何我们最终还是输了，所以是政府决定你必须花钱来取得这些文本的。

问 9：您是如何选择 WG7 的成员？目前在 WG7 中有几位中国代表呢？

Virk：我们不做选择，事情的发生是当 WG7 工作组建立之后接着会有个“专家征求”的活动。首先有一个规划书策划这个领域的工作项目，然后所有国家都将被询问“您对此感兴趣吗？”与“您是否支持此项目？”等问题，这只是个 Yes or No 简单的投票表决过程。对于工作项目规划书被接受与否完全是基于简单多数决的方式，举个例子，我想分技术委员会大概有 21 个参与成员（P Member），P 代表“参与 (Participating)”，另外还有些观察成员（O Member），O 代表“观察 (Observing)”。国家必须透过出资以换取获得席次的机会。比方说中国的机器人产业发展很有潜力，所以中国就决定加入作为参与成员，对于有 21 位参与成员的分技术委员会来说，若有 15 位成员参与表决，那么至少必须 8 票赞成 7 票反对，你才能获得简单多数；或者有 2 位成员参与表决，如果 2 位都同意那么你也是获得简单多数，这就是基本的游戏规则—“在参与成员的投票表决中你必须获得多数”。这是第一件事。接着第二件事是至少必须有 5 个国家提供专家支援，这个工作项目才能成立，但如果参与成员的数目很少，例如只有 10 位或 9 位，那么可以将专家支援的数目减少至 4 个国家或更少。像纳米科技在 5 年前或 10 年前甚至可能只有一个国家参与标准化工作，所以根本不可能找到 10 或 5 个参与成员。对此他们另外有特殊的应对规则，然而机器人这个领域目前已经有足够的成员，无论如何都必须有 5 个以上的国家派出专家支援，所以如果中国对机器人标准化有兴趣，那么首先它必须先申请加入到 ISO 分技术委员会里面，然后再派几位专家来参与我们的工作。就中国目前在 WG7 工作组的专家，我想应该有 2 位。

杨：只有 1 位，他是浙江大学的杨灿军教授。

Virk：杨教授是医疗复健机器人的专家，所以我们目前只有 1 位中国代表，我最
近正打算请杨书评教授帮忙寻找几位人选。

问 10：能否请您进一步解释一下“观察成员”呢？

Virk：观察成员他们不能参加工作项目但是可以获得相关文件。虽然观察成员不能直接影响工作组，但是他们支付较少的费用。理论上他们可以参加会议，可是必须坐到最后面，和参与成员的少许对话是被允许的，但他们不能参与投票表决。

问 11：新 ISO 13482 包含（1）移动仆从机器人（Mobile Servant Robots），（2）载人机器人（Person Carrier Robots），（3）身体辅助机器人（Physical Assistant Robots）。能否请您介绍关于这三个种类的区别以及基本概念？

Virk：移动仆从机器人，顾名思义它可以自由移动的，它的应用在于家事支援（Domestic Setting），它可以提供给你多样化的家事支援。基本上你给他一些指示然后他会依照你的指示来执行任务，例如你跟机器人说“去拿点东西过来”，然后它马上就按照你的指令把东西取给你。

翁：您是指机器人不需要人员的遥控操作就能完全自动地完成任务吗？

Virk：是的，它自动地替你完成工作。当然，它可能是 ROOMBA 吸尘器机器人，也可能是其他移动式服务机器人。接着是所谓的载人机器人，它的特色在于协助你由 A 地点移动到 B 地点，外观看起来有点像汽车的机器人，但是它不能上公共道路，它必须在公共道路之外的环境下运行，它可以是一部放在家中使用的小车，或者在机场里面用来提供载客服务的车辆，但是不被允许在公共道路上运行。至于身体辅助机器人是一种机器人透过提供物理性质的支持来协助人们进行一些工作，例如机械外骨骼，当你穿戴上它的时候它可以帮助你行走。以上三种就是目前个人照护机器人的基本分类。
问 12: ISO 13482 里面的 “移动仆从机器人 (Mobile Servant Robots)” 似乎是以车轮式自走机器人为主要对象，那么该标准是否也包含“履带式”、“双足步行” 等自走机器人在内呢？或者这些“非轮式”的自走服务机器人是您们在下阶段所规划进行的工作项目？

杨：如 Virk 教授所提到的，ISO 13482 标准适用的机器人分三类，一种是在室内或公共环境中活动的移动机器人（如图 1），第二种为可穿戴的外骨骼等身体辅助机器人（如图 2），第三种为载人机器人（图 3），载人机器人其中有一种是腿式移动机器人。（如下图所示）但 ISO 13482 确实不涉及履带式机器人。目前在下阶段的规划项目中暂时没有“履带式”机器人的安全标准项目。
问 13：就移动仆从机器人而言，ISO 13482 新安全标准是否涵盖服务机器人使用神经网络或遗传算法的功能？

Virk：13482 标准并未规范实践机器人安全的具体做法，所以上述两者并未被包含在标准里面。基本上它的要求是这样的，如果制造商要搭配神经网络或遗传算法是可以的，只要一切符合 ISO 的安全要求。总而言之，ISO 13482 安全标准并不要求你要“如何做”，它关注的是“什么是必须做的”。
问 14：今年初我在日本东京时曾关注到一则新闻报道是筑波 Cyberdyne 公司宣布他们的身体辅助机器人 “HAL” 成功获得 ISO/DIS 13482 安全认证的消息。我的问题是（1）像 HAL 机器人外骨骼套装可能有哪些潜在风险？（2）能否请你介绍一下 ISO/DIS 13482 安全认证的基本概念？

Virk：当套上机器人外骨骼套装后它将能够辅助你进行一些物理活动。很明显地穿戴使用机器人套装的潜在风险在于外骨骼套装可能移动你的关节往一个你所无法配合的方向或角度上面，像是用这种方式弯曲你的手肘很可能造成你的手骨折。如果机器人外骨骼套装的设计上出现问题的话，可能违反你关节通常的运作方向。以上就是 HAL 机器人外骨骼套装的潜在风险。

现在我们安全标准对于这个问题的对策有二。首先，你可以考虑用“低风险物件”的方式解决，这指使用者必须强过机器人套装最大出力的设计方式，在这种思维下的机器出力大约只有你的 50% 左右，假设一件工作所需的力量是 100%，我自己出力 60%，机器套件出力 40%，那么即使机器出错这种力道还在我的抵抗范围内，因为我的身体力量强度足以抵抗它，同时我也不会因此造成骨折。和高性能辅助比较起来这种方式下机器人套装提供更多层次的辅助可被视为一种较安全的方式。所以如果我很虚弱，我只有 20% 的力量我无法自行移动，我需要机器人套装提供 80% 的力量协助我移动，在这种情况下你可以想象万一机器人套装发生错误，我大概就会因此而骨折了。此外还有一种方式是比较复杂的，我必须搭载更多的传感器以及控制器，并且确认它们的情况是否完好，这种方式与前者相较之下需要更高的成本。

问 15：我的博士联合培养导师，早稻田大学理工学术院高西淳夫教授（Atsuo Takanishi）提醒我在将来有三件事将很大程度地影响机器人法制的发展，分别是“安全认证”，“保险”与“黑盒子”。就安全认证这一块，请问新 ISO 13482 安全认证和目前工业机器人安全认证相比有何差异之处？

Virk：黑盒子在我们的内部会议中已经被人讨论过了，还有保险与安全认证也是。
但是如何实践这些概念目前还没有人知道。

我想当 ISO 13482 服务机器人安全标准发布以后世界各国将陆续开始发展认证的方法，特别是对于依照安全要求的设计。所以他们会进行许多的测试，并且在相关经验与知识累积之后一切将会变得比较和缓。刚开始或许在日本采取的方法与欧洲的做法完全不同，也可能与中国的方式不同，所以我们 WG7 也注意到此事并且开始策划下一阶段的任务—“如何使用 ISO 13482？”。

翁：您是否指安全认证也会被涵盖在 ISO 13482 下一阶段的发展中？

Virk：是的，安全认证也是如何使用 ISO 13482 的一部分。这牵涉到管理者与使用者如何验证我们标准的条款。这就如同我前面所提到的，我的标准里面包含许多条款内容，你只选择 X 方案去达成条款的要求，然后我们需要的是找独立的第三者来确认你所做的是与安全标准的内容符合。如果没有这些测试的话到时候将发生一些事情，所以现阶段你可能必须在不同国家之间进行各式各样的认证活动，而且结果很可能不尽相同。在 ISO 制定认证方法之前，不同国家将会有不同的做法。下一步要做的就是制定 ISO 自身的认证程序。主要想法还是在于“公司要如何使用这些标准？”，“管理者与验证者要如何验证这些条款？”，这两件事情即将在本周的会议进行讨论，但是开始行动之前我们还需要三年的时间准备。

问 16：台湾大学智慧型机器人及自动化国际研究中心主任罗仁权教授（Ren C. Luo）曾经向我表示他的按摩疗程服务机器人面临安全认证的问题。请问台大按摩疗程机器人是否适用于新 ISO 13482 服务机器人安全标准呢？

Virk：仅从字面上我无法判断按摩疗程机器人是用于医疗或者非医疗的服务应用？

翁：我想可能是投入于医疗相关的应用。

Virk：当然，罗教授的机器人必须要通过安全认证才能走出实验室，不过他需要的可能是医疗机器人安全。不像一般机器人是归类于机械领域，医疗用机械的规
定比较复杂，这也是我们现在有许多工作组在处理医疗机器人安全规定的原因所在。我认为按摩疗程机器人应该适用医疗机械这一块。

问 17：刚刚 Virk 教授提到 ISO 13482 全球性的机器人安全认证最快在 2017 年前后推出，日本似乎也已经建立起自身的 ISO 13482 安全认证体系以满足其国内服务型机器人厂商的需求，那么在这段 3 年过渡期内中国是否会建立起自身的 ISO 13482 服务型机器人安全认证机制？或者国内厂商面对安全认证的需求时得透过海外安全认证专门机构来解决？
杨：安全认证这个领域我不太了解。但我希望在不久的将来中国能建立起自身的 ISO 13482 服务机器人安全认证机制。

问 18：富士康正在考虑采用更多的工业机器人在生产组装线上。新一代的工业机器人如 Rodney Brooks 教授开发的 Baxter 与川田工业的 Nextage 首次具备与人类工人一同上工的能力，根据我的调查，新一代工业机器人适用另一套 ISO 10218 安全标准，能否请您介绍一下 10218 给我们的读者呢？
Virk：10218 适用于工业安全，以往在工厂里面机器人与人类是被要求彻底分开的，但现在工业机器人发展的潮流趋势在于与人类合作进行作业的“合作式机器人（Cooperative Robots）”。举个例子，Baxter 是出力非常虚弱且移动极为缓慢的机器人，对于此点我们正在思考如何能做出点实质性的成果，当然制造用机器人需要力量但 Baxter 本身没有力量，它只能做一些小事情与慢工。这也是为何人们称 Baxter 是个符合“本质安全”的机器人，因为它移动的速度很慢以至于任何人都可以及时躲开。它的速度大约只有 120 毫米/秒，我还不确定，有一张表可以供你参考。

像我现在这样碰你一下对你来说应该没有什么。Baxter 遵循这些原则被制造，基本上慢速并不是问题，力量不足才是问题所在。如果你想做制造业，机器人无论如何都必须有足够的力量才行，这也是 Baxter 与工业机器人现在所面临的难题。不过工业机器人的 ISO 安全标准化工作组已经在思考要如何让工业机器人能够和人类合作上工。尽管目前还未实现，他们已经开始着手进行，他们的方式是研究“在对人类造成伤害之前机器人触碰人类力道的极限为何？”当然就机器人安全来说对人类造成伤害的结果是绝对不允许的，所以他们的目标
是确认“疼痛指数”。我们人类可以感受压力，如果机器人对你施加力量，这是压力，你可以感受到的这股力量。如果我接续地增加力量，当力量不断加强，在一个临界点上这股力量将转化为疼痛的痛觉。所以在感受“力量”与“疼痛”的中间应该是有一道界线的。

这个 ISO 工作组现在追求的也就是寻找在身体各个不同部位中由受力到痛感的临界点，我想他们应该已经完成人体 29 个部位的确认工作。由于疼痛还不是很伤害，所以他们以此作为设定安全的极限，如果机器人出力把你弄成瘀青，那是伤害；如果机器人把你割伤，那也是伤害；如果它把你弄成骨折，那是重大伤害。所以在不造成伤害的最低限度那就是疼痛，疼痛就是他们所追求的目标。

问 19：能否请您介绍一下 ISO 13482 在人机互动方面的基本规范？究竟“人为失误”在这个安全标准里是被如何看待的？

Virk：在风险评估方面 ISO 12100 是比较基本的规范，它也是一般人在设计机械时所必须遵守的基本流程。ISO 13482 与 10218 在风险评估上都是参考 12100 的规定，关于 ISO 12100 的设计方法论可以分成三部分。首先，你尝试设计一部系统，如果你的系统是机器人的话，那么你设计的机器人必须符合本质安全，所以你要去确认他们是小体积、重量轻、缺乏力量、移动缓慢的。如果你成功地落实这一步，那么即便机器人出了问题也无法对你造成严重的伤害，所以第一步是关于本质安全。但是在一般情况下你可能有特殊用途的需求，例如机器人套装可能要举起体重 100 公斤的人，那它在设计上就不能是轻量的，同时也要添加几个大型的电动机。当你在特殊功能的考虑之下不得不牺牲本质安全时，你接下来的做法就是考虑加上若干“保护措施”，例如你可以在机器人套装的设计上增加一些措施防止它移动到一些人类关节无法应对的方向与角度。所以第二步是“保护措施”，也就是你透过一些技术手段来减低你所确认的潜在危险。每一个步骤都是减低风险，直到它降低到一个可以接受的范围为止。当然你不可能将风险降低至零，第三个步骤先以汽车为例，由于汽车是很危险的机械所以通常会采取若干训练与规制，或者你附上相关的使用说明，举例来说，你放了一个标签，在上面可以写“这是危险物品，请小心使用!”。

以上大概就是 ISO 12100 风险评估的三步骤，首先你确认风险尽量避免它发
生，万一发生了则透过保护措施来减低伤害，最后则是提供使用者使用的说明与警语。

问 20：在 2007 年日本经济产业省发布了“次世代机器人安全性确保准则” 626，请问您对此有何评价？

Virk：我还没有看过这份安全准则所以我对它的详细情形并不清楚。我猜在 2007 年我们刚开始制定服务机器人安全标准不久，当时日本似乎也曾经参与其中。在时间上 2007 年实在有点早，他们大概有提过，那时候我们才刚了解如果要让下一代机器人持续发展与被接受最重要的一件事情就是确保机器人安全，我们必须确保机器人安全达到一个国际标准。我想日本的次世代机器人安全性确保准则大概是在谈这些事情吧。

问 21：一个正在浮现的“开放组织风险”- 一种来自于自动机械与非结构化环境之间互动产生的不确定性逐渐成为下一代机器人安全的热点 627。似乎传统的安全标准无法有效地解决这个问题，那么 ISO 13482 对此是否有任何解决对策？

在高风险区域产生伤害的机率是很高的，首波进入市场的机器人大概也不会投入这些高风险区域之中。目前我们正在思考的是关于自律性该如何被妥善地运用，自律性可以增加风险同时也能减少风险，例如一部智能化汽车它的情感与反应都比人类来得快许多，所以在这种情形下自律性的确可以增加安全，但是在一些场合中自律性会使得安全性更加难以保障。换句话说，自律性与危险并不总是在相同的方向上，我们必须特别小心的是当自律性增加风险的情况，这不是一个好点子，为何要让自律性增加风险而使事情变得更糟呢？你必须考虑的是能够降低风险的自律性，因为人类的反应实在太慢了，特别是在高风险的非结构化环境中一切将变得更糟，所以现阶段仔细考虑为何要导入自律性是较根本的做法，直到我们能够开发出足够稳定的自动机器人为止。这也是目前 ISO 几个安全标准化工作组在思考的问题。附带一提，自律性与危险并没有必然的关系，一切取决于你如何使用它们，你可以增加或减少风险。如果你想增加风险，那么你必须思考为何你要增加风险？例如一个手术经验丰富的老外科医生，由于上了年纪以至于

626 METI 製造産業局：《次世代ロボット安全性確保ガイドライン》，日本経済産業省，2007 年。
627 翁岳暄：《人机共存社会中隐含的开放组织风险》载《开放式机器人》，戴张平主编《网络法律评论》(第 13 卷)，北京大学出版社 2011 年版，页 88-99。
有着手抖的毛病，或许他可以藉由操作远程控制医疗手术机器人来替他掌手术刀，由于老医生的动作缓慢所以它能够降低自动移除肿瘤产生的风险。还是一句老话，在初期最好不要把机器人自动化应用投入到高风险环境中，特别是它将可能会招惹到你们这些法律人。

问 22：请问 ISO 13482 安全标准在现阶段是否有与任何法律机构或保险公司进行合作呢？

Virk：我最近确实收到不少邮件，除了你之外还有好几位律师与我联系，他们也意识到了这标准的重要性所以和你问了差不多的问题。我想律师的投入与公众对于机器人安全性议题的重视可能也是未来趋势之所在，只要机器人大规模地投入商业化那么法律纠纷就必然会出现。但是就实质合作方面，我们现在还没有与任何法律或保险机构进行合作，我所做的就只是像现在这样在能力范围内提供一些信息给你们。

问 23：我在欧盟 FP7 机器人法律项目的同事 Pericle Salvini 博士告诉我，他们曾经在一个意大利小镇里投入 DustCart 机器人在户外公共区域里进行收集垃圾的实验。他们发现服务机器人投入人类日常生活环境除了面临到法律障碍之外还有保险的障碍。由于机器人具备自动化功能伴随相当高的不确定性，所以保险公司表示费率难以计算。请问您是否相信 ISO 13482 将有助于保险公司计算出服务机器人的保险费率方案？

Virk：我认为 13482 标准对于保险费率的计算将有所帮助，因为我们发展出一套方法论主要是关于界定低风险的应用。基本上精明的制造商应该会采用我们的方案，因为除了制造出低风险的产品之外，保险费率也更加地容易计算。

其实我对于这个实验也有所了解，主要是 Paolo 告诉我的（注：Paolo Dario 教授，欧盟 FP7 机器人法律项目主持人），虽然他当时在替机器人办理保险上并不顺利但最后他还是决定去做了。他自己决定承担可能的风险，不过幸好一切顺利地完成。我还告诫他如果出事情的话，说不定你的大学就得关门大吉了。这实

在是一个很大的风险，如果操作是我的话很有可能就不会去做这件事，因为这实在不值得，除了保险之外背后牵涉到的法律责任问题也很大。不过多亏他的坚持我们才能够有在户外环境中实际测试服务机器人的机会。

问 24：自 2003 年以来日本开始投入设置所谓的“机器人特区”，在特区内公司与科研机构可以进行户外环境中的机器人实验。您是否对于机器人特区有任何评论？

Virk：我想类似日本的这种制度将会有助于鼓励机器人的研究与开发，不若 50 或 60 年前，在高诉讼风险的现代社会里开发科技产品是越来越难了，有这种制度可以增强公众对于产品的信心，所以我喜欢这个想法。

问 25：事实上 ISO 13482 与 ISO 10218 修订版也可能会影响到法律。例如在过去劳工卫生安全法规规范工业机器人必须用栅栏与人类隔离开来，但现在各国相关法规面临被修改的命运，特别是在对隔离人类的规定上。此外，当我们有了新安全标准之后，我们才能更进一步去界定什么是“安全”、“可容忍的风险”与“危险”，这对于判断服务机器人的产品责任来说是非常重要的。然而，这里还有一个问题是目前仍无法律解决的——“如果机器人的判断失误导致人员受伤，这是谁该负责，制造商？设计者？持有人？”。我的问题是“功能安全（Functional Safety）”是否能够避免机器人判断失误的情形？或者相反地，在一些特别的条件下功能安全是否会导致机器人的判断失误？

Virk：就我所知目前的情况是如果工业机器人发生失误的话通常是由系统整合者来承担责任。你的工厂可以买 KUKA 机器人，ABB 机器人或安川电机机器人，然后你会需要一个系统整合者来统整这些机械，所以一般情况下是由系统整合者来负责。除非这个机器人有特殊的设计瑕疵存在，尽管去证明设计瑕疵并不容易，一旦成功的话那么就可能是设计系统的人必须承担责任。以上是目前工业机器人的处理方式。

现在我要介绍一种合作式系统，它的一个问题在于能够与人类合作生产的范围非常地小，主要原因还是在于背后庞大的法律责任。工业机器人也出现了一种

629 菅原雄介, 高西淳夫, 砂塚裕之, 川瀬正幹, 橋本健二, 太田章博, 田中智明: 《ロボット開発・実証実験等に関する福岡市のポテンシャルと課題等の調査研究》報告書，早稲田大学ヒューマノイド研究所，2005年。 264
“共同作业窗（Cooperation Windows）”，例如在箱子里里面你玻璃窗外透过双手与另一侧的机器人合作，而我们关注的部分主要是当人靠近窗户时安全应该如何被确保？像是手指在挥动时机器人就必须减低速度。这还是工业面的应用，至于服务机器人将会完全地不一样，因为服务机器人的设计在本质上就是以确保人类与机器人互动之间的安全性。工业机器人则是不同的方式。

问 26：您的标准是否有任何知识产权政策？如果是的话，谁是贡献者？他们是否持有许可证？
Virk：没有，我们的标准没有知识产权政策。

问 27：请问您的标准是否有任何商标权？例如谷歌的“安卓（Android）”？
Virk：完全没有，标准由 ISO 工作组制定，到时候它将和其他一般的标准一样供人使用。

问 28：依您的看法 ISO 13482 的移动仆从机器人与早稻田大学的仿人双足步行机器人 WABIAN-2R 有何差异？何者是对于未来发展双足步行机器人的安全性其最大的挑战？
Virk：我想发展双足步行机器人安全性这方面，首先要考虑的是它从事的任务，它可能适用移动服务机器人的安全标准也可能适用载人机器人的安全标准，它们的确可以替你完成一些任务，或者就我所知有些人型机器人可以提起重物，那么它们也可以被考虑用于身体辅助机器人。总之双足步行机器人可能适用三者当中的任何一个，完全取决于它的任务性质而定。

然而就稳定性这方面，我们知道让机械两只脚平衡步行仍然是件不容易的事情，所以让机器人用两只脚的方式执行任务还是深具挑战性的，例如如果双足步行机器人载人行走的话，对于其安全性之确保我想还是难以做到的。

问 29: ISO/TC184/SC2 分技术委员会是否考虑过发展无人自动驾驶汽车的相关安全标准？
Virk：没有，无人自动驾驶汽车必须投入在公共道路上。对于汽车有着和人员搭

630 WABIAN-2R，〈http://www.takanishi.mech.waseda.ac.jp/top/research/wabian/>，2013 年 11 月 1 日最后访问。
载机器人不同的安全规制。

问 30：您是如何看待 20 年后的机器人安全？您是否相信佐治亚理工学院 Ron C. Arkin 教授的“嵌入式伦理”概念将可能在融入未来的机器人安全体系中？
Virk：当然，伦理议题将日益显得重要但并不限于 Ron C. Arkin 的研究。事实上 Arkin 正在搞许多军事机器人的相关研究，这也是机器人伦理之所以重要的主要理由。

一般说来当你开发了一种 X 应用，通常会衍生出另外一种 Y 应用，而 X 应用相当受人欢迎，但是 Y 应用却非如此。例如物理辅助机器人用在协助老年人生活起居是一件好事，但是相同的技术却也可能用在提升军人在战场上的行动力，这也是一般人所不喜欢的，所以我认为机器人伦理非常地重要。

266
7.2: UN 联合国人权理事会 Christof Heyns 特别报告员专访

北京大学法学院互联网法律中心 YSAiL 工作组专访

北京大学法学院 翁岳暄（采访、翻译）

时间: 2013 年 6 月 1 日

方式: 通讯采访

语言: 英语

专访对象: 克里斯托夫·海恩斯（Christof Heyns）联合国特别报告员，南非比勒陀利亚大学（Pretoria）法学院人权法教授以及国际与比较法研究中心副主任。海恩斯教授拥有南非比勒陀利亚大学法学士及文学硕士、美国耶鲁大学法学硕士、南非金山大学（Witwatersrand）法学博士等学位。自 2010 年 8 月起他被任命为联合国法外处决、即审即决或任意处决问题特别报告员（UN Special Rapporteur on extrajudicial, summary or arbitrary executions），在其职权范围内负责向日内瓦联合国人权理事会（Human Rights Council）与纽约联合国大会（General Assembly）定期进行相关人权事务报告。

海恩斯教授在英美国家有丰富的科研教学经验，他目前是美国美利坚大学华盛顿法学院合聘教授以及英国牛津大学 Kellog 学院访问研究员，从 2005 年起至今担任牛津大学兼职硕士生导师。他曾任比勒陀利亚大学法学院院长与法学院人权研究中心主任，在人权法学研究方面出版了许多著作，例如“The Impact of the United Nations Human Rights Treaties on the Domestic Level (with Frans Viljoen)”以及“非洲的人权法”收录于《Human Rights Law in Africa》专书中。他的著作也广泛地以英语、南非语（Afrikaans）、法语、西班牙语、葡萄牙语、阿拉伯语等多种语言形式出版。海恩斯教授的学术成果亦获得海内外高度肯定与承认，作为德国洪堡学者他曾在海德堡马普国际公法与比较法研究所从事国际人权法研究。他曾获得比勒陀利亚大学 Chancellor’s Award for Teaching and Learning 以及美国富布赖特学者身份在哈佛大学法学院从事访学活动。

* 北京大学法学院博士候选人，日本早稻田大学理工学术院外国人研究员。
1.非常感谢您拨冗接受北京大学互联网法律中心-亚洲机器人法律与社会课题组的采访，我代表中心主任张平教授带上来自北京的问候。能否请您给我们简单介绍一下对于您所指的“自主机器人杀手（Lethal Autonomous Robotics）”之开发与部署，可能存在哪三大核心争议呢？

海恩斯：首先，我必须强调的是虽然“自主机器人杀手（LARs）”与“无人机（Drones）”外观上都是无人航空载具的形式，但它们是十分不同的。无人机透过远程操控由人类做出扣动扳机的决定，然而自主机器人杀手却是由机上的电子计算机做出射击的决定。对于这些自主机器人杀手而言并没有人类督导介入其决策回路，所以自主机器人杀手在本质上与无人机以及任何我们已知的武器系统是不同的。

这种新科技产生了一连串的关注，包含以下几点：（1）我们是否认为让机器处于一个地位来决定人类生死是件正确的事？（2）自主机器人杀手（LARs）是否能够符合武装冲突法的要求，例如辨别敌方士兵与一般平民百姓？（3）对于机器人造成的人员伤亡究竟谁该来承担责任，如果相同情况由人类造成属违法事项？

Heyns：The first point I should make is that while LARs and drones are both forms of unmanned vehicles, they are very different. Drones are remote controlled, by humans who take the decision to “pull the trigger”, but with LARs an on-board computer takes that decision. With LARs there is no “human in the loop”. LARs are thus qualitatively different from drones, and from any other weapons system we know.

This new technology raises a number of concerns, including the following: 1) Do we
think it is right that machines should be in a position to decide whether human should live or die? 2) Can LARs meet the requirements of the law of armed conflict, such as distinguishing between military and civilian targets? 3) Who is to be held responsible for deaths caused by robots that would have been unlawful if caused by humans?

2. 目前巴基斯坦、俄罗斯与中国是支持联合国大会（UN General Assembly）对于无人机在战争的部署使用启动特别调查的主要国家[1]。能否请您简要地谈谈关于联合国特别调查目前的最新进展？

海恩斯：该特别调查由我的同事 Ben Emmerson 律师负责，他是回答此问题的最佳人选。

Heyns: My colleague Ben Emmerson is conducting this investigation, he is best placed to answer this question.

3. 在今年二月 Ben Emmerson 律师与您一同出席欧洲大学研究院举办的“锁定目标狙杀、无人机与欧盟政策“高级别政策研讨会[2]。您认为欧洲国家在此议题上也有政治利益吗？

海恩斯：是的，我想在这方面他们（欧洲国家）热衷于发展自己的位置。

Heyns: Yes I think they are keen to develop their own position in this regard.

4. 一个正在浮现的问题："开放组织风险 (Open-Texture Risk)"，一种基于自律机械和非结构化环境互动过程所衍生的风险，逐渐成为智能机器人安全性确保的最大挑战[3]。自主机器人杀手势必也将面临其开放组织风险的监控问题。请问目前是否有任何政策白皮书着眼于“杀手机器人”在战场上可能产生不必要的系统行为（Unwanted System Behaviors）？

海恩斯：我明确地提出在联合国架构下选派设置一个高级别专家组探究这个问题，不论是特别管制或彻底禁令对于这些潜在问题而言都是必需的。

Heyns: I have proposed the appointment of a High Level Panel precisely to investigate the question whether special regulations – or an out-right ban – are
necessary as a result of these potential problems.

5. 您对于美国佐治亚理工学院 Roland Arkin 教授所主张的机器人“嵌入式伦理 (Embedded Ethics)”机制有何评价 [4]？

海恩斯：Arkin 教授他提倡的道德调节器是一个有趣的构想，同时他本人也高度参与此议题。这个问题值得继续探索。

Heyns：Prof Arkin’s proposed Ethical Governor is an interesting concept and a serious engagement with the issue. It is worth exploring further.

6. 在四月份发布的联合国报告书“UN report of the Special Rapporteur on extrajudicial, summary or arbitrary executions”里[5]，您建议联合国成立高级别专家组来研究管理这些自主机器人杀手，能否请您详细地介绍此一构想给中国读者？

海恩斯：我的报告书有两个主要的诉求。第一是对于使用这些自主机器人杀手的国家应该先实施全国性的暂缓机制；第二则是在联合国所召集组织相关领域专家成立的高级别专家组对于如何处理自主机器人杀手所衍生的相关问题作出结论之前这些暂缓冻结应该被持续实施。我认为将有三种可能的结论：（1）联合国专家组可能判定现存的法律与政策已经十分充足；（2）也许我们将需要增加一些特别的管制规定；或者（3）自主机器人杀手必须被彻底禁止。

Heyns：My report makes two key proposals. The first is a national moratorium in the countries of the world on the use of these weapons. Secondly, these moratoria should be imposed pending the outcome of a study by a High Level Panel, consisting of experts in the field, on how the issue of LARs should be approached. I think there are three possible outcomes: 1) they may say the existing legal and policy framework is sufficient; 2) there should be additional, special regulation for LARs; or 3) they should be banned.

7. 对无人机投入战争的道德伦理管控方面存在一个组织叫做“国际机器人武器控制委员会 (ICRAC)” [6]。请问该组织与您所提倡的联合国高级别专家组，两者主要区别在于？

270
Heyns: ICRAC is an NGO. They do important work but they do not have any official authority, and they are in advance committed to a ban. The panel I propose should be an official UN body and it should investigate all the possibilities with an open mind.

8. 最近美国总统奥巴马签署官方文件, 为利用无人机在海外打击武装人员制定新规定[7], 对此决定您有何评论?

Heyns: 他的言论是受到欢迎的。虽然美国仍有许多秘密进行的无人机相关研发项目但至少这是迈向正确方向的一步。

Heyns: His comments are to be welcomed. Much of the drones programme remains secret but this was a step in the right direction.

References:
[6] International Committee on Robot Arms Control (ICRAC), see http://icrac.net
7.3: 欧盟 FP7 机器人法律项目 Paolo Dario 教授专访

北京大学-互联网法律通讯

物联网与自动化特辑（四）社会机器人：作为市民伙伴的机器人

翁岳暄（采访、翻译）

专访对象：Paolo Dario 教授，比萨圣安娜高等大学仿生机器人研究院院长，IEEE 机器人与自动化学会 (RAS) 前主席，欧盟委员会未来技术与新兴技术旗舰研究计划（FET Flagship Initiatives）民用机器人伙伴试点项目（CA-RoboCom）总主持人。Dario 教授于 1977 年自比萨大学获得工学博士学位，在圣安娜高等大学任教期间他一手创立了许多机器人研究所，如 ARTS Lab（Advanced Robotics Technology and System）、CRIM（Center for the Research in Micro-Engineering），并在多所世界知名大学担任客座教授，包括布朗大学、瑞士洛桑联邦理工学院、早稻田大学、东京大学、法兰西学院、浙江大学等。Dario 教授的研究关注仿生机器人（BioRobotics）、医疗机器人（Medical Robotics）、微机电纳米工程学。除此之外他对于人机共生社会中的伦理与法律议题亦相当感兴趣，他目前是欧盟委员会 FP7 框架性项目“机器人法”项目共同主持人。

时间：2012 年 5 月 25 日下午 3 点

地点：Director Office, The Biorobotics Institute, Scuola Superiore Sant’ Anna, Pisa

语言：英语

1. 也许我们的访谈可以从仿生机器人学（Biorobotics）开始，在日本机器人学会志的论文“Biorobotics” 中您提出仿生机器人的三个发展方向，分别是“Beyond Tele-operation Platform”，“Beyond Orthoses Platform”与“Beyond Prostheses Platform”，您认为在未来十年内何者对于中国而言最为重要？

* 北京大学法学院博士候选人，日本早稻田大学理工学术院外国人研究员。

这篇论文是2005年出版的，已经将近8年的时间了。在那时候我们试图预想一些能够突破现状并且具体反映在经济上的科技进展，所以这是为何我们称之为超越（Beyond）。Beyond 一词代表发明或发展出开创性的新解决方案，将此框架套用于仿生机器人的概念中，在（院长办公室）墙上的海报你可以看到上面写着第一届仿生机器人学、科学与工程博士生课程。这个学科试图融合生物学以及人造机械，因此以 Bio 和 Robotics 合成的“Biorobotics”一词来呈现，但是更深一层的含义是透过机器人科技来理解生物系统，机器人可以用来作为科学仪器来理解生物系统的运行原则，例如：我们发展人型机器人来理解人类，制作鱼型机器人来理解鱼类及其群体动态，这是科学的面向。除此之外我们也开发机器人用来照护人类、协助人类以及在医疗手术上作为医师的一种辅助，这些应用超越了一般的生医工学。仿生机器人学同时具备科学与工程两种特质，为了引导出该学科的愿景当时我们策划了这些方向。首先，“Beyond Tele-operation Platform” 指发展出新一代的远程操控医疗机器人，像胶囊内视镜（Endoscopy Capsules）它可以在人体内部进行周期性的任务，这是一种非常先进的远程操控机器。其次，“Beyond Orthoses Platform” 则指发展出能够恢复人类丧失的一些机能，例如对于老年人有一种外部支撑骨架能够提升其日益衰退的肌肉机能。最后是“Beyond Prostheses Platform”，这是指新一代的人造义手、人造义足。在我们最近参与的欧盟 FET 旗舰试点项目 CA-RoboCom 中亦包含这几个方向，未来与人共存的机器人伙伴（Robot Companies）可能以医疗机器人、同步作业机器人（Orthoses Platform）、居家服务型机器人等态样呈现。你知道这些机器人伙伴是非常重要的，因为他们是物联网技术应用的另一种体现，这些机器人将和网络相连，他们将不会是全自动的，反之，他们将成为网络的一部分。就你的问题而言我认为这三个方向都很重要，但是其中对中国最为重要的机器人技术应该是下一世代手术用机器人，因为他们能提供更精确的动作不但减轻病患的成本负担也增加医师的技术品质。

[英语]：This article was published in 2005, so it has already been 8 years. At that time, we were trying to predict what could represent real progress in comparison
to what exists currently in the economy. Therefore, we named it “Beyond.”
‘Beyond’ represents the invention or development of new radical solutions. We
made this framework as a concept of biorobotics. In the director’s office, one can
see the poster on the wall of the student that wrote the first Ph.D. program for
Biorobotics, Science and Engineering. This discipline tries to fuse “biology” with
“artificial machines” (bio and robotics, respectively), but more specifically, the
discipline calls for the use of robots to understand biological systems. Thus, robots
can be used as scientific instruments to better understand principles of the
biological systems. For example, we developed a humanoid robot to understand
humans, as well as fish robots to understand fish. Furthermore, we developed
robots to take care of and assist humans in tasks such as to surgery. It is becoming
more than biomedical engineering. This is Biorobotics, which includes science
and engineering. In order to represent this vision of Biorobotics we proposed to
build these platforms to explore and even perform tasks periodically in the human
body. We named this product “Beyond Tele-operation Platform,” hoping for it to
become a new generation of tele-operator medical robots similar to Endoscopy
Capsules. In another case, “Beyond Orthoses Platform” are robots that could
possibly restore missing capabilities of the elderly or the disabled. An example of
this current technology can be seen in exoskeletons that have the ability to reform
muscles of the elderly. In “Beyond Prostheses Platform,” we hope to develop new
generation artificial limbs. In the “robot companion for citizens” proposal we
submitted to European FET Flagship Initiative, we suggested medical robots,
coworker robots, rescue and explorer robots. These robots will be connected to a
network (“the internet of things”) therefore they will not be completely
autonomous. These platforms are all important, but I think the most important for
China will be the next generation surgical robots, because it will not only reduce
the cost for the patients, but it will also add to the quality of surgeries.

2. 能否请您简单地介绍圣安娜高等大学仿生机器人研究院（The Biorobotics
Institute, Scuola Superiore Sant’ Anna）给中国的读者呢？

274
比萨圣安娜高等大学是一所意大利的公立高校（注：比萨大学、圣安娜高等大学、比萨高等师范皆属于比萨大学系统的一部分⁶³⁵），和一般意大利高校收生政策不同，它采取精英制选拔最优秀的学生进入本科及研究生院。目前这里也有一些中国留学生但以研究生为主，我们的教育提供学生最先进

的科研机会，这些前瞻性的研究领域可以分为医疗机器人（Medical Robotics）、手术机器人（Surgical Robotics）、复健机器人（Rehabilitation Robotics）、人型机器人（Humanoid Robotics）、创造性工程设计（Creative Engineering Design）、神经义肢工学（Neural Prosthetics）、神经机器人（Neural Robotics）、机械手（Artificial Hands）等。圣安娜仿生机器人研究院的规模十分庞大，约有数百名博士后研究员与博士研究生，我们目前也有与机器人伦理、法律相关的科研项目正在进行中。

[英语]：Scuola Superiore Sant’Anna is an Italian public university that adopts elitism to select excellent students from undergraduate and graduate schools. Although some Chinese undergraduates study at Sant’Anna, most of them are graduate students. Our education provides advanced research divided into: medical robots, surgical robots, rehabilitation robotics, humanoid robotics, creative engineering design, neural prosthetics, neural robotics, artificial hands, bioimatics. The scale of the Biorobotics Institute is huge. It is composed of 160 researchers and 770 Ph.D. students and the research projects include robot ethics and robolaw.

3. 您也曾经提到 I-SWARM 项目，该项目的目标为何呢？

这个项目现在已经结束了，其主要的目标是在探讨微型机器人如何合作。群智能（Swarm）指复数的机器人能够像蚂蚁或蜜蜂一样地合作执行任务，透过合作他们可以做许多不同的事情。在当时这是一个原创性的构想，我们后来也发展出相应的科技、传感器、驱动器及控制系统等，现在这个概念已经具体落实在模组化手术（Modular Surgery）上。所以群智能的概念是指复数

⁶³⁵ Scuola Superiore Sant’Anna, http://www.sssup.it/
⁶³⁶ SSSA – The I-Swarm Project http://www.i-swarm.org/MainPage/Project/P_Overview1.htm
的微型机器人能够在人体内部探索与执行任务甚至在血管内运行作业，以上是群智能的一种可能性。现在我要说的是 I-SWARM 在操作上的另一个概念，也就是在水下的机器人如何呈现模组化。我们现在思考的是探究类似鱼类的水下机器人要怎么实现群集的动态机制，这个想法也就成了 The Angels Project，其内容是模仿鱼类感测环境电流并且与同类沟通的能力，借此来侦测避开水下环境的障碍物，以上是关于 I-SWARM 项目的大致情况。

[英语]：This project is finished: its main objective was the collaboration between micro and miniature robots. “Swarm” means a number of robots that perform tasks together, like ants and bees. Through collaboration, they can do many different things. This is an original idea and we developed technology, sensors, actuators, and control systems to implement the idea. Now, this concept is implemented in modular surgery. Essentially, “Swarm” is a group of minute robots that can explore and perform tasks in the human body and even in blood vessels. This is one kind of operation, and there is another kind of operation: I-SWARM. In this operation, modular, underwater robots swarm together like fish. This new project called “Angels” aims at investigating imitation of cooperative behavior and communication within schools of fish so they are able to successfully avoid obstacles underwater.

4. 每当提到纳米群集机器人，许多人总是会马上联想起麦可·克莱顿的科幻小说“猎物(Prey)”638，然后开始担忧是否机器人会危及到人类的安危？事实上对于与人类共存的机器人伙伴而言来自法律与伦理的检视是不可或缺的。在 Gianmarco Verruggio 教授的文章“The Birth of Roboethics”639 中，他曾经提到您与 Jose Maria Galvan 教授促使科技伦理学(Technoethics)的诞生。最近几年您也先后成立了 EU Ethical-Bot Project 与 RoboLaw Project。作为一位工程背景的权威学者，为何您对于机器人衍生的伦理以及法律议题有特殊兴趣呢？

主要有两个理由。首先，我们认为“人”因素是相当重要的，特别是在
西方国家人们只接受对他们有用的、安全的、恭敬的机械，所以在此面向上
人类居于中心位置，我们想在进一步探究人类的同时发展出完善的、满足人
类生活需求的机械。因此去了解人类的期望、需求与其权利等对于我们研发
机器人而言是不可或缺的。其次，我们并不希望开发出危险的机器人，所以
去理解机器人科技可能衍生的法律议题是很重要的，例如：责任分配的具体
实践与对于使用者人格的尊重（注：对隐私侵害的风险）等等。

5. 欧盟 FP7 机器人法项目的目标为何呢？

欧盟 FP7 机器人法项目的目标是准备架构出欧洲机器人立法政策白皮书。
简言之，即检视欧洲现行法律如何应对机器人科技进入社会。我们都知道目
前的机器人主要是部署在与社会半隔绝的工厂生产作业线中，但是机器人终
究会进入人类社会，所以我们希望确立一些原则以及提供管制机器人在居家
环境、办公处所乃至于整个社会的相关立法建议。

[英语]: The objective of the robolaw project is to prepare a white paper document
on how European laws should manage the presence of robots in society. At this
time, we know robots are used in factories, but eventually, robots will enter the
community. We want to identify principles and suggest possible lays to regulate

640 European FP7 Project: RoboLaw, http://www.robolaw.eu
277
robots at home, in the office and in the community.

6. 您是欧盟委员会未来技术与新兴技术旗舰研究计划（FET Flagship Initiatives）民用机器人伙伴试点项目总主持人，现在与您一同参加遴选的有其它5个试点项目，在今年底被选中的最后两个项目将会获得欧盟委员会10亿欧元的长期资助，如果您的计划获得了最后的资助的话，CA-RoboCom 究竟要如何对欧洲社会许下承诺呢？

首先，我们想创造出新科学、新知识，我们想更进一步了解生物背后的秘密，从生物中抽取出一些原则来促成新的科技应用，例如：柔软机器人（Soft Robots），这种机器人在运行上动作更加柔和、安全。642其次，则是开发新一代的协作平台，像是我之前提过的手术机器人，透过与医疗专业人员的合作能够有效提升医疗品质。我们也重视救灾机器人，这种技术不止可以用于欧洲更可以广泛地在世界各地使用并协助人类进行重大灾害后的重建工作，包含消防机器人、飞行机器人、水下机器人与跳跃机器人等。当然，面对老龄化社会思考支持老年人生活起居的机器人技术也是重要的，例如：减轻身体负担的力学套件—机器人套装。我们希望尽可能开发出能展示上述机能的机器人但是其目的还是以发展出对欧洲社会有具体实益的机器人科技为依归。

[英语]：First, we want to generate new science and knowledge to better understand the secret of living beings, and then extract principles from living creatures and new technology to build applications such as soft robots – robots that behave safely and are gentle. The second objective is to develop new co-working platforms. Like the one I mentioned earlier, health robots assist caretakers to improve medical practices. We also want to develop search and rescue robots in the Europe to assist humans in event of a catastrophe, using robots that fly, swim, and jump. Also, we want to develop robots to assist aging people (eg. exoskeletons). Then, we want to develop an impressive new prototype

that integrates all these capabilities and performances, but specifically focusing on European society.

7. 我先前看过 CA-RoboCom 的展示影片，其中提升机械的知觉（SENTIENCE）是 CA-RoboCom 的目标之一，为何 SENTIENCE 这概念对于创造出市民的机器人伙伴如此地重要？

因为机器人并不应该仅仅能够提供人类在生活上的劳动服务，它们也应当能够具有处理情感交流的能力来满足人类的需求。尽管这是很重要的但这种层次的智能却并不等同“自主（Autonomy）”，我们希望机器人能够预期人类的需求并提供相应的解决方案，这也是为何在与人互动方面它必须具有相当程度的情感接收表达能力来预期人类使用者的需求。同时，感知（Sensing）也意味着机器人能够与环境互动、主动躲避障碍物、避免伤害到人类（注：SENTIENCE包含感知、认知、情感交流与行动）。

[英语]：Because robots should not only be able to assist humans, but they also have to have feelings and understand the needs of people. In terms of interaction with human, they need to emotionally anticipate the needs of person. This is the most important thing, but this level of intelligence doesn’t mean autonomy. We intend for the robots to understand the needs of humans and devise a solution for its user. At the same time, sensing also means robots are able to interact with the environment, avoid obstacles, and not hurt people.

8. ELSI - 伦理、法律与社会议题也是 CA-RoboCom 中的一个重要部分，究竟 CA-RoboCom 与机器人法项目之间存在什么样的关系呢？

非常接近，但是它们是彼此独立的两个项目。当然，我们先前在 CA-RoboCom 所获得的成功经验可以直接套用到机器人法项目上。
Very close, they are independent. Of course, we plan to use the experience of Robo-Com to Robolaw if it is successful.

9. 您主持的 DustCart 项目透过实证测试来评估人机在真实环境共存的可能性，对于机器人管制研究而言这可以说是一个里程碑。能否请您简单地介绍一下此项目？

关于 DustCart 项目或许 Percle Salvini 博士可以告诉你。他是圣安娜研究院中专门负责机器人伦理、法律与社会议题的学者，你待会儿可以到楼下与他谈谈。643

[英语]：Maybe Percle Salvini can further elaborate on the DustCart project. He is the researcher in charge of robot law, ethics and social issues at our institute. You can go downstairs to his office later to discuss this with him.

10. 浙江大学前阵子透过媒体展示了“利用猴子脑波控制的机械手臂”研究，从媒体报道图片中我发现他们使用的机械手臂是圣安娜制造的，能否请您谈一下目前圣安娜仿生机器人研究院在中国的合作计划？

是的，我们与浙江大学有非常紧密的合作关系，我曾在 1983 年担任浙大访问教授，到目前为止我还是经常到浙大并与他们保持相当良好的互动关系，例如你刚才提到的研究，基本上猴子的脑波读取是中国的项目而我们只提供机器手臂，这是我们之间具体合作的一个环节。我在比萨也曾经指导过许多浙大的学生，例如浙大工学院的刘伟副教授是我的学生之一。

[英语]：Yes, we have very close ties with Zhejiang University. I was the visiting professor of Zhejiang University in 1983. I have been there many times. Although this was a project hosted by the Chinese, we collaborated with them and provided

the robotics hand. I have also supervised many students from Zhejiang University: one of them is the Associate Professor of Faculty of Engineering of ZJU, Dr. Wei Liu.

11. 中国十二五规划的一个主要目标是将中国从“世界工厂”转型成为“世界市场”，在此转型期间工资的提升也将是不可避免的。然而，一些企业例如富士康计划部署百万部产业机器人投入到生产线中并且取代人类劳工，不少人担忧机器人将会抢走他们的工作，您是如何评论此次富士康的决定呢？

这是当然可能发生的事情，但是根据国际机器人联盟（IFR）最近发布的报告指出在过去 40 年来即便是在发展中国家被机器人所取代的工作机会最终会补偿在其它形式的工作上面。从宏观的角度来看机器人抢走人类工作的说法并不正确，或许从少数的样本来看是这样没错，但是从长远来看这样的说法是有问题的。

[英语]：This is certainly possible, but there is a recent report issued by International Federation of Robotics (IFR) indicating that if you consider the history of last 40 years (including developing countries), the total amount of jobs eliminated by robots where compensated by other jobs. Overall, it is not true that robots take jobs away from people. Maybe in some cases, yes, but in the long run, it is not true.

我们的机器人希望成为市民的伙伴，而伙伴又意味着必须被人类所接受，我不认为机器人伙伴的意思是取代人类。比方说你有部洗衣机，或者吸尘器

281
如 Roomba，这都是很受欢迎的机械，而这也正是我们所想要的，即机器人对人友善、有益，例如：我喜欢脚踏车、我喜欢摩托车、我喜欢汽车、我喜欢我的手机，因为它们对我来说非常的友善，而且我也可以非常容易地与它们互动，这些都是我们目前期望达成的目标。让机械更进一步地被人类所接受，我们最终想要研发的还是人类所喜爱的机械。

[英语]：Our robots want to be companions, and being companion means to be accepted. I don’t think companion means substitution. When you have a washing machine, or a cleaning machine like Roomba, it becomes a very welcomed machine. This is what we would like to have: robots as companions like a bicycle, motorcycle, car or cellphone because they are very user friendly. This is what we want to achieve: invent machines that people like.
1. 请问目前欧洲大学研究院法律系进行的 ALIAS 项目的具体情况是怎样呢？

我们的 ALIAS 项目关注的是空中交通管制系统（Air Traffic Management - ATM）的自动化以及其衍生的民事责任问题，同时更一般性的复杂社会技术系统（Socio-Technical Systems）也在我们的研究范围内，它分析现今与未来 ATM 空中交通管制系统的技术发展以及其所带来的社会冲击，并且评估现行责任分配体系与面向未来的发展建议。我们期望的科研产出有

*北京大学法学院博士候选人，日本早稻田大学理工学术院外国人研究员。

下列几点：（a）作为以一种方法论上的分析工具 “The Legal case” 将不仅支持 ATM 空中交通管制系统自动化的推进，并将确保相关层面的法律都能在设计、发展的阶段就被纳入考虑（b）建立“Network of Legal Research in ATM”。我们需要跨学科的研究社群，并且透过集结不同背景成员的科研经验来促进讨论与交叉学科的合作。

[英语]：The project addresses liability and automation in ATM (Air Traffic Management), and more generally in complex socio-technical systems. It analyses present and future technological developments and their impacts on ATM, assesses current responsibility regimes and proposes future developments. The expected outputs include the following: (a) A methodological tool, “The Legal case”, that will support the introduction of automation in ATM, ensuring that relevant legal aspects are taken into consideration at the right stage of the design, development and deployment process; (b) a “Network of Legal Research in ATM”, a multidisciplinary community of practice and meeting place drawing on the collective experience of its members to foster discussion and collaboration across disciplinary lines.

2. 远程操控塔台（Remotely Operated Tower - ROT）作为 ATM 空中交通管制系统的一个重要部分，在最近几年欧洲是否有任何机场正计划采用 ROT 塔台系统来指挥飞机航班的起飞与降落? 如果不是的话, 何者是对于部署 ROT 塔台系统的主要法规障碍呢?

ROT 远程操控塔台是欧洲机构 SESAR（Single European Sky ATM Research）所倡之新一代空中交通管制操作概念的其中之一，在此提案中有一组 360° 摄像机、传感器以及监控雷达置于机场并允许来自位于远端中心所提供的机场飞行信息服务（Aerodrome Flight Information Services – AFIS）以及空中交通操控（Air Traffic Control – ATC）。目前这种操控概念仍然在欧洲许多小型机场（例如: 瑞典的 Ängelholm 机场）发展以及测试之中，
但是不久之后将会逐步推广至全欧洲的中小型机场。在ALIAS 项目里我们分析了许多采用 ROT 远程操控塔台系统可能衍生的民事责任议题，如果不这么做的话机将会造成日后采用此科技的阻碍，下列是目前所遭遇到的几个问题点：

A. 对于过度信任科技而导致事故发生的责任：ROT 远程操控塔台系统可能造成塔台控制员的若干预期并未在现实系统里被实现。对于过度信任导致的意外事故究竟谁应该来负起责任？究竟牵涉到何种态样的责任？

B. 涉及到监管部门对 ROT 远程操控塔台批准的责任：ROT 远程操控塔台的安置、运作乃至维护都必须经过监管部门确认如同其所宣称的功能，保证安全运作并且对于失误与不利的情况有相当的弹性。虽然系统已经经过监管部门确认，主要的问题在于判断由谁负担因机械失误所引发之事故，以及牵涉到何种态样的责任？

C. 与错误、未更新与/或不连贯信息有关的责任：对 ROT 远程操控塔台来说 ATC 操控员被迫只能依赖来自系统提供的信息而非来自本身的观察，他们无法直接以肉眼观察机场发生的情况只能依赖 ROT 远程操控塔台屏幕上显示的信息来做判断，所以对于因为错误、未更新与/或不连贯信息而导致的事故究竟谁该负责呢？

D. 责任与技术性失误：ATC 操控员的工作可谓完全依赖在 ROT 远程操控塔台，因此处理技术性失误以及进行恢复之程序将充满问题，对于这种与航空安全高度相关的关键性科技，其所引发的技术性失误应该如何追究责任呢？

[英语]：The Remotely Operated Tower (ROT) is one of the new operational concepts proposed by SESAR (SESAR P06.09.03 D26 OSED). In this proposal, a set of 360 cameras, sensor and surveillance radars located at aerodromes will provide Information for Air Traffic Control (ATC) and Aerodrome Flight Information Services (AFIS).

Currently the operational concept is still being developed and tested in several small airports (for example, the Ängelholm airport in Sweden) and will be soon
introduced in many small/medium sized airports in Europe.

In ALIAS project we analyzed several liability issues related to the adoption of ROT, which – if not addressed - could potentially hamper the adoption of this new technology:

A. Liability for accidents/incidents that are due to over trust in the support provided by the technology: ROT may create in the operators expectations which may not be realised by the actual performance of a technological system. Who is responsible for accidents/incidents that are due to over trust in the support provided by the technology? What kind of liability is involved?

B. Liability in relation to the regulatory approval of ROT system: The ROT system as installed, operated and maintained shall be approved for its declared operations, to allow for safe operation and to be resilient against failures and adverse conditions. The main issue is to assess who is responsible for accidents/incidents that are due to technical malfunctions, although the system has been approved for operation, and what kind of liability is involved

C. Liability in relation to reliance on wrong, dated and/or irrelevant information: with the ROT system, the air traffic controller are forced to relay only on information provided by the system, and not to their own perception: they cannot directly see or sense what is happening in the airport, but they should instead relay on what is shown on the ROT display: who is responsible for accidents/incidents due to wrong, not updated and/or incoherent information? What kind of liability is involved?

D. Liability and technological failure: with the ROT system, the air traffic controllers’ work is completely dependent on the technology, which they cannot substitute anymore, so coping with technological failures and attempting recovery procedures may be problematic: Who is responsible for accidents/ incidents due to a failure of a key technology on which the users rely and from which they depend (although purposely trained to work without)? What kind of liability is involved?
3. “社会技术系统（Social-Technical System）“一词的含义是？何者是目前社会技术系统所遭遇的民事责任争议？

所有的生产性、行政性与社会组织（例如：空中交通管理系统）在今日都能被视为互相连接的“社会技术系统（Social-Technical System）“，换句话说它是一种由技术物（Technical Artifacts）、社会物（Social Artifacts）与人所组成的复杂系统。技术物（Technical Artifacts），好比工具与机械，决定在组织中何者能够做，负责决定行动被增强或限制的机会；社会物（Social Artifacts），如规范与机构，决定在组织中何者应该做，负责任务、义务、目标、优先性与机构权力的治理。然而规范需要为人所理解、诠释、协商乃至驱动，而人可以偏离这些规范或甚至决定改变这些规范。更一般性的是人类在社会技术系统的运作中扮演着不可或缺的角色，提供它们运作方面的治理、维护与支持。

ATM 空中交通管制系统自动化的推行将面对在工作分派、角色以及责任等方面的重大修正，不仅止于直接管理飞航操作，飞行员与塔台控制员也将参与 ATM 运行的监管。当指派给自动系统的工作比重逐渐增多时人类的角色将再度被检视，人-机之间的互动才能以此为基础做出调整。ALIAS 项目将尝试整理作为一种社会技术系统的 ATM 所衍生之相关议题，如此一来，功能、责任与民事归责都将被视为提升 ATM 机能的治理机制。

［英语］：All main productive, administrative and social organisations (e.g. the Air Traffic Management system) can be seen nowadays as interconnected socio-technical systems (STS), namely, integrated systems constituted of technical artefacts, social artefacts, and humans. Technical artefacts, like tools and machines, determine what can be done in and by an organisation, amplifying and constraining opportunities for action. Social artefacts, like norms and institutions, determine what should be done, governing task, obligations, goals, priorities, and institutional powers. However, norms need to be understood, interpreted, negotiated and actuated by humans, who may ultimately decide to deviate or change them. More generally, humans play an essential role in the functioning of
STSs, providing them with governance and maintenance and sustaining their operation.

The introduction of automation in Air Traffic Management will require a critical revision of the allocation of tasks, roles and responsibilities: rather than directly governing flight operations, pilots and controllers will supervise automated systems doing the job. As operational tasks are increasingly delegated to automatic systems, the actual human contribution needs to be reconsidered, and human-machine interaction reengineered. ALIAS project will address such issues approaching the ATM system as a socio-technical system, so that the allocation of functions, responsibilities, and liabilities may be viewed as a governance mechanism enabling the enhancement of the functioning of ATM.

4. 责任制度如何处理伴随自动化系统衍生的风险（不确定性）呢？我们是否必须考虑一种超越严格责任/制造物责任的解决途径？

当自动化系统更进一步地导入复杂系统（例如：飞航或 ATM）时，首先发生的就是对于损害或伤害的归责将从人类操作者转移到利用自动化科技替代人类的企业或者自动化科技的制造者，因此我们可以预见一个由个人责任移转到更一般的企业责任与制造物责任之趋势。当工具朝向自动化方向发展，归责也会变得着重在使用这些工具的组织以及制造工具的人或负责维护的人，超过单纯与机械互动操作者的层次。此外，在交通运输领域也有些严格的责任规制，为了让企业得以主张一定程度的赔偿责任限额。然而，我们必须避开归责体系下致使企业承受无法忍受之经济负担的风险，否则将导致自动化科技推行与采用的阻碍，特别是安全性强化技术（Safety-Enhancing Technologies）

- 就制造物责任而言，我们必须提供企业一种”科技发展水平抗辩（State of the Art Defense）”的可能性。如此一来，当自动化技术依照现行工业标准制造同时在目前科技知识水平无法预见产品缺陷的情况下制造商将可免
就严格责任而言，我们必须考虑到不论赔偿责任限额（Liability Cap）必须被修改或者应该透过配套措施来确保损害赔偿额度不会造成企业的过重负担，例如：对于牵涉到自动化科技的设计/开发/使用者采取强制保险，以及推广赔偿基金（Compensation Fund）

[英语]：When automated systems are more and more introduced into a complex system (eg. aviation or ATM), the first effect is that liability for damage is transferred from the original human operators to enterprises which replaced them with automated technology or to the technology programmer.

We can therefore see a shift from personal liability toward general enterprise liability (liability for creating a risk through the use of the technology) and product liability. Thus, as the tools are becoming more and more automated, then the liability will be attributed to the organizations using these tools and those who have built and currently maintain them, rather than to the operators interacting with them.

Moreover, in such domains as transportation (and aviation is part of it) there are also some strict liability rules, with caps for the amount of damages that could be claimed from the enterprise.

However, we should avoid the risk that the liability regime could result in unbearable costs for enterprises and therefore it could hamper the adoption of automated technologies, and in particular safety-enhancing technologies:

- concerning product liability, we should provide enterprises with the possibility to rely on the “state of the art” defense, so that they should not be held liable when automated technologies were developed according to available standards and when it was impossible to foresee malfunctioning of the technologies at the current state of the scientific and technological knowledge available in the field;
concerning strict liability, we should consider whether liability caps should be modified, or complementary measures should be adopted to ensure that damages will be paid without creating a too high burden for enterprises (e.g. compulsory insurances for all stakeholders involved in the design/development/use of automated technologies, and the introduction of compensation funds).

5. **International Civil Aviation Organization (ICAO)** is responsible for managing world civil aviation traffic. **Remotely controlled Aircraft** (Remotely-controlled Aircraft) and **Uncontrolled Aircraft** (Uncontrolled Aircraft) differ mainly in what? Additionally, what attitude does the **International Civil Aviation Organization** (ICAO) hold toward **Unmanned Aircraft Systems (UAS)**?

 According to the ICAO's definition (Circular 328 / AN 190), unmanned aircraft (Unmanned Aircraft – UA) refers to aircraft designed to allow human flight crews not to be on board. To further clarify, an unmanned aircraft system (Unmanned Aircraft Systems – UAS) is defined as a system incorporating unmanned aircraft (Unmanned Aircraft – UA) as the primary body and combined with other flight-related sub-systems, such as: remote flight control center (Pilot Station), flight control communication network, engine, and recovery components. Generally, UAS unmanned aircraft systems can be divided into two categories: autonomous unmanned aircraft systems (Autonomous Unmanned Aircraft Systems – AUAS) and remotely piloted aircraft systems (Remotely Piloted Aircraft Systems – RPAS). The ICAO's flight management framework is centered on RPAS remotely piloted aircraft systems, which are believed to be the most likely to be integrated into the current international aviation system in the foreseeable future. Furthermore, the 1944 Chicago Convention (The Convention on International Civil Aviation (Chicago Convention), 1944) Article 8 sets regulations for unmanned aircraft flying into the national airspace of contracting states. **Global Air Traffic Management Operational Concept (Doc 9854)** (Global Air Traffic Management Operational Concept (Doc 9854)) also confirms this point, indicating that unmanned aircraft must be remotely controlled or programmed for complete automation. However, the AUAS autonomous unmanned aircraft systems are not included in the ICAO's flight management framework. In unmanned aircraft systems, the unmanned aircraft are managed mainly...
要关注的焦点还是在于 RPAS 远程控制飞机系统。

[英语]：According to the ICAO definition (Circular 328 / AN 190) an Unmanned Aircraft (UA) is “an aircraft which is intended to operate with no pilot on board”. By extension, an Unmanned Aircraft System is the combination of an UA and the associated elements enabling its flight, such as Pilot Station, Communication Link and Launch and Recovery elements. There may be multiple UAS, Pilot Stations or Launch and recovery Elements within a UAS.

There are two classes of UAS: Autonomous Unmanned Aircraft Systems (AUAS) and Remotely Piloted Aircraft Systems (RPAS).

The ICAO regulatory framework focuses on RPAS, as the only UAS that will be able to be integrated into the international civil aviation system in the foreseeable future.

The reason for this choice is Article 8 of the Convention on International Civil Aviation, signed at Chicago on 7 December 1944, which stipulates: “No aircraft capable of being flown without a pilot shall be flown without a pilot over the territory of a contracting State without special authorization by that State and in accordance with the terms of such authorization....”. The Global Air Traffic Management Operational Concept (Doc 9854), confirms Article 8 and states: An unmanned aerial vehicle is a pilotless aircraft, in the sense of Article 8 of the Convention on International Civil Aviation, which is flown without a pilot-in-command on-board and is either remotely and fully controlled from another place (ground, another aircraft, space) or programmed and fully autonomous.

On the basis of these considerations, fully AUAS are not considered in the current ICAO regulatory framework for civil aviation, that just focus on RPA.
6. 推广无人自动车（RoboCar）的动机在于降低车祸的发生率，部分专家认为机械适合取代人类驾驶因为不论在何种状况下它们都能够理性地制定决策。至于无人飞机，请问什么是采用 RPAS 远程控制飞机系统以及 ATC 空中交通操控系统的主要动机呢？

自1950年代就已经有发展 RPAS 远程控制飞机系统的构想，军方采用 RPAS 也有数十年历史之久，从最近在全球发生的武装冲突事件以及维和行动中不难看出 RPAS 的优越性能，同时 RPAS 在军方的应用也呈现大幅增长。然而 RPAS 远程控制飞机系统在民用领域其实也有很大的发展潜力，这些非军事的应用将被公共与商业双方利益所驱动。透过远程控制 RPAS 能够进行一般飞行器所无法达成的任务，例如长时间（大于 24 小时）的监测任务或穿入火山灰云与事故后接近核电产之高风险任务。RPAS 远程控制飞机系统在危机管理、执法、边境巡逻、消防之应用皆能有效地补充现存飞行基础设施（飞机或人造卫星）的不足。RPAS 也可以在许多地区传送营利性质的空中商业服务，例如：农渔业，电力/瓦斯管线监控，基础设施检查，自然资源监控，媒体/娱乐，数字地图，空气品质监控等。

[英语]：The development of RPAS started in the 50's. RPAS have been used by armed forces for decades. Recent conflicts and peace-keeping operations around the world have demonstrated their operational capacities and led to a quasi-exponential increase of military applications. RPAS have also a great potential for civil applications. These applications are starting to develop, driven by both state and commercial interests: being remotely piloted, RPAS can perform tasks that manned systems would not be able to perform. They are well suited to perform long monitoring tasks (e.g. > 24 hours) or risky flights into ash clouds or in proximity of nuclear or chemical plants after major incidents. RPAS can efficiently complement existing infrastructure (manned aircraft or satellites) to support governmental applications like crisis management, law enforcement, border control or fire fighting. RPAS can also deliver profitable commercial aerial services in various areas, such as agriculture and fisheries, power/gas line monitoring, infrastructure inspection, natural resources monitoring,
media/entertainment, digital mapping, land and wildlife management, air quality management/control.

7. 根据国际民航组织的飞航管制框架在未来是否有任何经由科技来取代飞机驾驶本身责任的可能性呢？

在一个可预见人类驾驶员无法完全被科技所替代的未来里，推行更高层次的自动化势必对驾驶的责任体系带来若干影响。高阶自动化系统将在人类若干层次的监督下进行决策与采取行动，驾驶与控制员的角色是从旁监督机械的运作而不是直接介入从事飞机起降的每个操作环节。事实上，人类将成为自动化系统的控制者而不是操作者，这种结构性的转变必然在未来影响到民事责任的理论和实务。

[英语]：While pilots will not be completely replaced by technologies in the foreseeable future, the introduction of higher levels of automation will surely impact on pilot responsibilities: highly automated systems will make choices and engage in actions with some level of human supervision, or even without any such supervision, so that, rather than directly governing flight operations, pilots and controllers will supervise automated systems doing the job. The fact that humans become controllers of automated systems, rather than operators, question the very notion of individual agency, and require a critical revision of the actual human contribution to the performance of ATM, and consequently of the criteria for the allocation of liability.

8. 能否谈谈基于您的观察欧洲未来十年在法律、科学与技术（Law, Science and Technology）这一领域所面临的挑战为何？

欧洲未来十年在法律、科学与技术所面临的挑战其实在2009年欧盟出台的“Europe 2020策略”650白皮书中就已经被讨论过了。特别值得一提的是有个

一些科技被认定为“关键使能技术（Key Enabling Technologies）”，其中包含：ICT信息通讯技术、纳米技术、先进材料技术、生物科技、先进制造与航天技术等。我认为法律的角色必须是（也希望会是如此）更加积极能动的而非被动反射的。在此考虑下为了去除科技发展与使用所面临的法律障碍，法律议题应该在科技开发初期的设计阶段就被界定与解决，与此同时还能保障市民基本权利以及防止环境衍生之科技风险。

[英语]：The Challenges for Law, Science and Technology in Europe for the next years have been properly identified by the European Union in its “Europe 2020 strategy”, which has been recently adopted. In particular, some technologies are considered as “Key Enabling Technologies” for the future growth: ICT, nanotechnologies, advanced materials, biotechnology, advanced manufacturing and processing, and space technologies. I think that the role of the law should (and hopefully will) be more and more pro-active rather than reactive, in the sense that legal issues should be identified and tackled at the earliest stage of design of such technologies, in order to remove legal barriers for the development and use of such technologies, while at the same time preventing risks for fundamental rights of citizens and for the environment.
7.5 欧洲大学研究院 FSR 佛罗伦萨监管学院何娴博士专访

北京大学-互联网法律通讯

物联网与自动化特辑（三）智能电网：网络经济与信息安全间的平衡

翁岳暄（采访）*

专访对象：何娴博士，欧洲大学研究院-佛罗伦萨监管学院（Florence School of Regulation）高级研究员，欧盟委员会（European Commission）智囊项目组成员。在正式加入 EUI 佛罗伦萨监管学院负责能源政策咨询与研究之前，何博士在欧洲大型能源机构已有 3 年以上的实务经验，并且于 2011 年获得法国巴黎十一大学经济管理学博士学位。2012 年 7 月何博士代表佛罗伦萨监管学院参加欧盟委员会框架性项目（FP7）2013 年竞标开启会，作为 FP7 中唯一关于能源监管政策的竞标项目代表。何博士参与过多项欧盟能源政策制定过程，她对于欧洲智能电网的未来发展和挑战也有自己的一番独到见解。

时间: 2012 年 8 月 23 日上午 10 点
方式: 通讯采访
语言: 中文

1. 何博士你好，很荣幸能邀请你接受“通讯”的专访。首先，请问智能电网（Smart Grid）是什么样的概念呢？

谢谢你岳暄，我非常高兴能和你探讨智能电网这个有趣的话题。其实到目前为止，对智能电网尚未有一个统一的定义。电网智能化可以说是我们对未来的电网的一种展望，会给我们带来一种生活方式的改变。在现有的电网结构下，我们大部分人都是纯粹的电力消费者，电是我们一打开开关就输送到达电器上的能源，我们并不知晓有可能远方的一处发电厂因此而开动了。但
以后随着小型可再生能源在用电端的铺开，电力储蓄技术的成熟，电动汽车的推广，人人都有可能是电力生产者和调度者。我们可以像远程购物一样，在工作的地方，或者堵车的时候用手机预设或者调节家里的电力使用，获得更经济，更舒适的生活。

2. 为何要在目前电网的架构下推动 Smart Grid 或 Energy Internet 呢？

你这个问题提得很好，我们不能为了智能而智能。智能电网的概念是在当今电力生产和消费所面临的前所未有的挑战下浮出水面的。这个挑战就是低碳经济，在能源生产领域的诠释就是绿色能源的大规模使用。绿色能源让我们享受能源带来的便利的同时避免对环境的破坏，空气的污染。战略上来看，它让一个国家的能源供给更有独立性和可持续性。因此很多国家，包括中国，都制定了很有前瞻性的可再生能源发展计划。但是可再生能源嵌入到能源供给中会面临一个问题，就是它很难准确的预测和控制。有阳光则有电，天空飘过一片云就没电了。这样看似诗意的情境却给电网的安全运行和可靠的电力供给带来了很大的问题。我们知道，目前电力不可能大规模储蓄，电力的消费和生产必须保持实时平衡，否则就会导致大规模的断电或事故。传统的电网都是靠调节电力生产来跟进电力消费。但如果电力生产与消费一样难以预料和控制，要保证稳定的电力供应是很难的。这就是绿色能源给我们带来很多好处的同时出的一个难题。智能电网的概念应时而生，以通讯和信息技术为媒介促成电力的供给和消费侧的双向沟通，互相协调，从而实现可再生能源的大规模嵌入，保证能源的有效调度，和电网的安全运营。

3. 看来智能电网将给我们全新的能源生产和消费模式。那么电力系统的产业结构也有变化吗？

是的，对电力系统产业结构的影响是一定的。电力系统形成之初，根本就不成系统，就是分散性的，大概就是工厂或者居民楼附近搭一个发电厂，电力生产者和消费者是邻居。后来有了输电网，才形成了电力系统和大型电力生产，比如煤电啊，水电和核电。所以结构上从分散型转化到了集中型，
自上而下单向传输电力。现在低碳目标的驱动下，要大规模取代消耗性能源的发电，必须发展绿色能源。这些绿色能源也有大型和分散性之分。大型的集中绿色能源好比海上的风力发电厂，小型的分散绿色能源好比屋顶的太阳能。他们不仅产量喜怒无常，而且分散型绿色能源会打破以前高压至低压的输电模式，产生与上级电网的双向交换。所以我们从分散型（电力系统发展之初）到了集中型（电力系统成熟），现在又在低碳目标的趋使下又发展分散型。但是这次的分散型与刚开始的分散型又不一样，因为点与点之间不是隔离的，而是互联的，可以实现跨时段（峰时谷时），跨地域的互通有无，互相支持。这就是智能电网的对分散型资源进行的智能调度。

4. 非常有趣！电网与跟计算资源发展的路径是相反的，云计算之前 1960 年代计算资源主要是集中在 IBM 的大型主机(Mainframe)里面，1980 年代在个人计算机的产业革命下开始解放，计算资源由少数集中分散至一般平民家中并且造就 PC 产业的荣景，但是这几年由于在更有效率地应用计算资源的考虑下，云计算逐渐开始受到重视。曾经有学者指出云计算的概念就是电力公司的概念，只要简单可以上网的终端，就可以使用计算能力（电力）。看来智能电网的概念又在此基础上进了一步！

是呀，这个类比真的很有意思，其实电力和计算机都可以称作网络经济（Network Economy），因为它们所提供的服务都需要强大的基础设施为载体。不过在电网智能化的趋势下，也许你们这样类比的时候需要在电力公司前加上“传统”二字呢！

5. 以计算机领域的经验来看，产业结构变化常常伴随着商业模式的变化。你对智能电网的商业模式发展有何看法？

是的。在智能电网的支持下有可能会诞生新的市场主体和商业模式。比如说，生产者和消费者的区分日益模糊，欧洲出现了“prosumer”这样一个合成词，来指代拥有一定电力生产能力的消费者。这样的消费者，已经不是电价的被动接受者，而是可以根据电价和自己的需求来决定自己生产和消费
的量与时间，更主动地参加电力的买卖。为了方便这样的 prosumer 参加电力市场，更出现了 aggregator 这样的市场主体，将这些分散的资源整合成更具规模的产品，在各种电力市场中博利。值得注意的是，在智能电网的框架下，不仅 “电” 有价值，以智能的方式调控电的生产和消费也有价值。从智能手
机的繁荣我们不难预见，智能电网也可能成为各种电器提供创新平台，比如说家用电器的智能化控制。要实现智能电网和电器的契合亟待标准的建立，需要电网与各电器产业的紧密合作。在欧洲，手机可以是免费，付费的是以手机为载体的通讯和各种应用：机票可以非常廉价，但挣钱的是以航班为载体的各种增值服务。未来在各种终端用电器与智能电网的紧密契合之后，又会出现什么样的商业模式呢？我们可以把想象带来的享受留给读者。

6. 如果跳脱科技的范畴把巨型，复杂的智能电网视为一种“有机的社会系统”的话请问需要什么样的前提条件呢？

是的，要将智能电网这个梦想照进现实，我们需要铺设必要的前提条件。前提条件有技术和非技术方面。前者包括实时数据读取、远程操控和储能技术、电网互动运转等技术，覆盖通讯、计算机、配电网、材料、传感器等多个产业。这些技术，包括技术之间的兼容标准，可以理解为智能电网的硬件条件。同时，智能电网的实现还需要两个软性条件，一个是电力市场，一个是法律规范，这两者是一个技术是否能在实际中为市场主体所用的关键，也是技术创新所必须的土壤和游戏规则。

7. 你刚才提到电力市场化是智能电网的基础。可是作为消费者，电价对我来说一直都是不随时间浮动的单价。你能说说电价管制与智能电网的发展有什么关系呢？

是的，电力长久以来与水资源一样，被视为基本消费品，价格一直是被政府补贴和管制的。管制电价在某种程度下适应以前集中生产，供给跟进需求的模式。但是这种单一的管制电价掩盖了在不同时段发电成本不同的事实，没有给消费者传达实际的经济信号。试想，如果电价如果任何时刻，任何地
方都是统一的，大家还有必要去智能化自己的电力消费或生产吗？在欧洲，智能电表的铺开和电力零售市场自由化是基本同步的。没有有效的经济信号，即使技术上能实现电力数据的双向实时读取，也并不能引发所期待的需求侧的主动调节。智能电网互通有无互相支持的终极目标是为了降低使用电力的成本，因此将发电的成本与电力零售价格挂钩是智能电网发展的基本推动力。

8. 你之前提到欧洲有一个很有意思的角色出现，叫“Prosumer”，是 Consumer 和 Producer 的合并。可以预料当用户的角色由 Consumer 转换为 Prosumer 时，透过智能电表用户个人数据与配电厂之间的数据双向传输将不可避免。在欧洲，智能电网是否出现个人数据的相关法律争议？

是的，在欧洲，智能电表的确引发了隐私权和信息安全方面的担忧。传统的电表只显示累计用电量，并且采用人工抄录的方式采集用电总量。这样的数据记录方式不能反映消费者在不同时段，不同的电价下的用电量，因此消费者无从优化自己的电力消费，电网公司也无法更好的预计消费者的需求而优化电力的生产调度。与之相比，智能电表可以显示每小时甚至更短间隔的电力消费量，并且实现与电网系统数据的双向传输。在此基础上，智能电表还能实现一些智能操作，比如远程开启或关闭某些电器。如果消费者采用不同的用电合同，智能电表会自动调整相应的操作。

由此看来，智能电表不仅可以反映消费者的用电习惯，并且可以根据用电合同进行远程干涉。这种全新的用电方式自然会引起一系列的法律争议，主要有两点：一个是个人数据隐私保护，由于电表数据可以详细记录到家庭中各种电器制品并反映出该户的用电习惯，还有透过电表也能将个人身份与所在位置做出链接，所以智能电表数据应属于个人数据保护的标的；另一个是信息采集安全，指的是防止智能电表读取的失灵或者被恶意入侵进行骇客操作，解决方法是技术上的。应对这些争议的相关法规包括欧盟95年通过的信息保护指令（Data Protection Directive）和“Privacy by Design”原则，主要是通过技术手段来确保隐私能够被有效的保护，目前在智能电网的

651 Directive 95/46/EC on the protection of individuals with regard to the processing of personal data and on the free movement of such data.
建设上已被欧洲各国采用。652 美国在智能电网隐私方面的保护则可以参考 NIST 发布的 PIA (Privacy Impact Assessment)。

当然，在细致思考和应对智能电表所带来的信息安全方面的隐患的同时，我们也不必一叶障目，低估了这项新技术会给我们的能源生产和消费模式以及成本带来的革命性变化。

9. 面向这些法律问题欧盟有统一的对策吗？

我认为这些对策的具体实施在欧洲会因国而异，因为信息安全和管理的问题与智能电表所处的市场环境密切有关。

在欧洲智能电表可以处于两种不同的市场环境：一个是管制市场，一个是自由竞争市场。欧洲电力市场自由化已经进行了 16 年，竞争领域（发电，卖电）和非竞争领域（输电，配电）分得很清楚。非竞争领域的公司处在监管者的管制之下，不以逐利为目的，旨在以最低成本，公平地向竞争领域的市场主体提供基础设施服务。在大多数欧洲国家，智能电表的所有权和使用权，包括智能电表的安装、维护、数据读取，和数据管理，都由非竞争领域的配电商所有。这也在一定程度上减少了信息泄露的动机和风险。在少数国家，如德国、荷兰和英国，智能电表处于自由竞争市场，可由消费者或者卖电商来决定智能电表的安装。智能电表的读取和管理可由第三方独立公司来进行。在这样开放的制度下，建立有效的数据保护的规范尤为重要。

在消费者隐私方面，欧洲电力天然气监管组织（ERGEG， European Regulators Group for Electricity and Gas）认可的最优原则是除了某些核心的，为提供基础设施服务所必需的数据以外，消费者应该选择他们的消费数据能否被使用以及被谁使用。这个选择需要权衡的是详尽的消费者资料所带来的更有效的能源消费管理和更大的信息安全隐患。在英国，如果卖电商或者电
网公司要求获取更细致的电表数据，比如每半小时的用电量，他们需要向监管者为其必要性提供充分的证明，量化其带来的收益，并且提供对消费者的分析。一言以蔽之，消费者隐私保护的核心在于保护消费者的知情权和选择权。特别是在智能电表处于自由竞争市场的环境下，一个强有力的监管者非常必要。

10. 中国十二五规划的战略新兴产业中新能源集成应用工程里面也提到“在风电、太阳能、海洋能发电等可再生能源电力开发集中区域，示范建设以智能电网为载体、发输用一体化、可再生能源为主的电力系统”。美国能源部 DoE 预计 2030 年将完成全美的智能电网建设，欧洲的日程又将如何规划呢？

欧盟的能源政策可以总结为“3 个 20”，即在 2020 年之前减少 20% 的碳排放（与 1990 年水平相比），可再生能源在能源消费的比重达到 20%，提高 20% 的能效。为了达到这个目标，欧盟于 2009 年发布了第三套能源指令，出台了一系列市场化和鼓励可再生能源和相关技术的措施，包括智能电网。该指令要求 2020 年之前 80% 的消费者配备智能电表，各成员国需保证智能电表系统的互操作性。目前欧洲的智能电表的铺设在世界上居于领先地位。各成员国的进度略有不同。瑞典、意大利、芬兰为先锋国家，法国、英国、西班牙、葡萄牙也在大规模换装，东欧国家的换装相对较慢。

此外，智能电网的其它技术也在积极研究开发中。欧盟智能电网技术平台（SmartGrids technology platform）制定了 2035 年之前的需要特别支持的优先技术，包括中小型分布式电力储蓄技术、实时能源使用测量（metering）和电力系统状态监测工具、可以设计和演示高压直流输电系统的电网模型，配电网的保护系统等。欧盟还给通过框架性项目（Framework Programme）致力于新技术的研究和开发，特别是跨成员国之间的合作。各成员国的各市场主体都可以通过公开招标申请该项目来得到欧盟的资金支持和其它的政策便利。值得一提的是欧盟即将要推出的一套能源基础设施法案，加强对被确定为优先项目的电网、天然气网、电力储蓄以及智能电网项目在资金和行政手续方
面的支持。我们作为欧盟委员会的官方智囊，参与了优先项目的选择方法的制定。该方法预计明年初出台，希望能给决策者和消费者对包括智能电网在内的基础设施所带来的社会效益提供清晰和完善的解读。
Eric Hilgendorf 教授简历：

Hilgendorf 教授的主要研究兴趣为：刑法、数据保护、法律与科技。

日期：2013 年 9 月 9 日
工作语言：英语

首先，非常感谢您接受北京大学互联网法律中心访谈，我代表中心主任张平教授向您致上欢迎之意，欢迎您造访北京！

* 北京大学法学院博士候选人，日本早稻田大学理工学术院外国人研究员。
Q1. 您认为关于服务型机器人在欧洲的开发与布局上可能牵涉到哪些重要议题呢？

Hilgendorf 教授：核心议题包含有“服务型机器人造成损害所伴随的民事与刑事责任”，“数据保护”，最后但并非最不重要的一点是关于“社会对机器人的接受度”。如果围绕在这些新型服务型机器人的法律问题无法被解决的话，新产品将无法成功地进入市场之中。

Key issues are questions of civil and criminal liability for damages caused by the service robots, questions of data protection and last but not least questions of acceptance in the public. If the legal problems surrounding these new types of service-robots cannot be solved, the new products will not be successful on the markets.

Q2. 能否请您给我们介绍一下维尔茨堡大学以及您目前所主持的机器人法律研究中心（Robot Law Research Centre）？

Hilgendorf 教授：德国维尔茨堡大学（Wuerzburg University）创立于 1402 年，是欧洲最具历史的几所大学之一。本校涵盖了全科学术研究，包含医学、自然科学、社会科学以及法学等。2010 年，维尔茨堡大学成立了欧洲第一所机器人法律研究中心，目前约有 20 名工作人员投入半自动智能汽车、服务型机器人（特别是面向老年人）与工业机器人的法律问题研究。该中心与德国经济部有紧密的合作关系。

Wuerzburg University, founded in 1402, is one of the oldest universities in Europe. All type of research, both in medicine and the natural sciences as in the social sciences and in law, are done there.

In 2010, Europe's first Center for Robotlaw was founded in Wuerzburg, which now has a staff of nearly 20 persons working on legal problems of semi-autonomous cars, service robots, especially for the elderly, and industrial robots. The center is working...
305

in close connection with the German Ministry of Economics.

Q3. 什么原因导致您当初决定创设维尔茨堡大学机器人法律研究中心？维尔茨堡以外的德国大学法学院之下是否有其它关于机器人科技与法律的研究中心存在呢？

Hilgendorf 教授：德国的机器人研究在科技上是较为突出的，但近几年，一个越来越显着的情况是法律上也开始必须面对它。我们国内市场不容许产生不可接受的法律风险的产品（其它已开发国家市场也是如此）。在德国政府当局请我从事一些关于“自动系统与法律”的研究之后，许多公司开始找上我并寻求建议。在此之后我决定成立一个研究中心使得我的研究进行能够更有效率。就我所知，敝中心是德国在机器人法律研究领域中唯一的科研机构。

Germany is rather strong in the technical aspects of robot research. In recent years, it became more and more clear that also the legal side has so be considered. Products that produce inacceptable legal risks will not be successful on our market (and other developed markets in the world). After German government authorities asked me to do some research in the area of “autonomous systems and the law”, a lot of companies contacted me for advice. After that, I decided to found a research center to do thing more efficiently. As far as I know, it is still the only one of its kind in Germany.

Q4. 您是否认为机器人自身可能面临刑事责任问题？或者是使用机器人的人可能面临刑事责任问题？

Hilgendorf 教授：前者给予刑法学一个新的意义。我们不能够处罚机器/机器人，但是当然，人们在使用机器人的过程中一旦有过失将可能面临刑事责任，现在已经出现许多相关案例了。人们有意图地利用机器人制造麻烦也将面临刑事责任。

The first idea gives a new meaning to criminal law. We cannot punish machines. But of course, people who use robots in a negligent way might face criminal liability. There have been several cases already. The same is true for people using robots with the intention to cause trouble.

Q5. 一个正在浮现的风险—“开放组织风险（Open-Texture Risk）”，发自于智
能机械与非结构化环境（unstructured environments）之间互动所衍生的一种不确定性将逐渐成为下一代机器人之安全性确保的热点。有鉴于此，ISO国际标准化组织将在不久之后面向全世界发布新的ISO 13482 服务型机器人安全标准（Safety Standard for Life-supporting Robots）。您对此有何评价？

Hilgendorf 教授：我认为有这些科技（标准）规范是很好的。它们非常有益，特别是对于从事工程事务的人。但是根据欧洲（也包含中国）法律，即便你小心翼翼地遵守 ISO（标准）规范你还是可能（在机器人使用上）出现过失行为。我认为奉行科技（标准）规范仅仅是遵守法律的明智做法之中一个元素。

It is very good to have these technical norms. They help a lot, especially the people who do the engineering work. But of course, according to European (and also to Chinese) law you can act negligently even if you observe a ISO-Norm carefully. The observance of technical norms is only a single element in an intelligent concept of legal compliance.

Q6. 您对于 Roland Arkin 教授提出用于限制杀伤性军事用智能机器人的“嵌入式伦理（Embedded Ethics）”机制有何评价？

Hilgendorf 教授：好主意！但我并不确定这想法是否可行？

A good idea. But I am not sure it will really work.

References:

致谢

本论文得以顺利完成必须感谢许多人在我研究过程中所提供的协助与支持。首先必须提及的是我的博士导师强世功先生。我在北大的这几年间从强老师治学之严谨、思想之活跃以及待人处事之圆融三方面获得莫大的启发。事实上在来北大读博之前我对大陆的法理学非常陌生，和许多台湾学生一样，只读过沈宗灵老师的《法理学》教科书。在强老师的引领下我得以一窥堂奥，领悟到法学理论的博大精深。虽然在校期间也与同门师兄弟们在陈明楼读书会老老实实读了《利维坦》、《论美国的民主》、《资本主义、社会主义与民主》等几本西方经典译著，但由于博士期间几次出国至日本、意大利、德国参加学术会议和接受联合培养的缘故，以致没有太多时间能够在这上面继续深入钻研，实为一大缺憾。对一般学生来说，北京大学创校以来所标榜的“学术自由 兼容并包”说不定只是一句招生的宣传话语，但是在自己经历过一些事情之后才深深体会到“学术自由 兼容并包”的难能可贵，并且在就读北大期间我也不断用这句话提醒自己莫忘初衷。其次，感谢我的博士联合培养导师早稻田大学理工学术院人型机器人研究所所长高西淳夫教授。报考北大法学院前一年我曾经尝试留学日本，由于当时机器人法律的研究题目太过新颖所以过程中遭受重重阻力。因缘际会下高西老师得知我的状况后曾亲自出面拨打电话至早大法学部替我询问以博士联合培养入学的可能性，尽管最后早大法学部还是没有任何意向表示，但高西老师不吝提携后进的举动仍然令我十分感动。2012 年至 2013 年我在早稻田大学理工学术院担任外国人研究员期间负责研究机器人特区立法制度，并且透过在 TWIns、喜久井町两地和早稻田大学以及比萨圣安娜高等大学的机器人学者们进行交流而获得了对机器人科技更深一层的体认，这也对于我博士论文撰写产生关键性的帮助，特别是本文第一章以及第五章个案研究必须感谢早稻田大学理工学术院高西研究室所提供的协助和支持。天下无不散的宴席，离开东京前与高西老师在新宿黄金街酒吧小酌、畅谈人类—机器人共存社会的机遇和挑战的种种也成了我一生中难忘的回忆。

沈宗灵著；林文雄校订《法理学》台北：五南出版社，台湾版（1994）
另一位要感谢的博士联合培养导师则是欧洲大学研究院法律系乔凡尼・萨尔托尔（Giovanni Sartor）教授。我与萨尔托尔老师最初结识于 2007 年斯坦福大学法学院主办的 ICAI国际人工智能与法律学术会议，我以第一作者在 ICAI 发表本篇博士论文的原始雏形“The Legal Crisis of Next Generation Robots: On Safety Intelligence”。之后与萨尔托尔老师的再度会面已是 2011 年在德国法兰克福大学举行的 XXV. IVR 世界法哲学与社会哲学大会，很幸运地我在 IVR 大会发表完论文后顺利取得欧洲大学研究院法律系访问博士生的机会。在风光明媚、人文气息浓厚的佛罗伦萨做自己感兴趣的研究实在是人生一大幸事，除本论文的开放组织风险管制框架得益于与萨尔托尔老师的讨论以外，在他的推荐下我得以参与佛罗伦萨法律信息理论与技术研究所（ITTIG-CNR）的 FALM 项目并且获得全球 LII（Legal Information Institute）组织架构及其实务操作的宝贵经验。

特别感谢北京大学法学院互联网法律中心主任张平教授在我就读博士期间连续提供我两次雅虎课题资助进行云计算、物联网和机器人等前沿科技法律研究，以及批准由我在北大互联网法律中心之下成立 YSAiL 亚洲机器人法律与政策工作组以应对与欧盟 FP7 机器人法律项目的合作事宜，同时对 YSAiL 工作组成员林柳岑、李含、牟媛、神野将志等人在这段时间的辛劳付出致上谢意。

还有，感谢我的硕士导师，台湾新竹交通大学资讯工程系孙春在教授。孙老师是一位极为聪明但待人谦和的学者，在台湾大学分别获得电机工程学学士及历史学硕士学位后远赴美国加州大学伯克利分校研究人工智能并且在模糊逻辑理论（Fuzzy Logic）创始人拉特菲・札德（Lotfi A. Zadeh）教授的指导下完成伯克利工学博士学位。回想当时基于单纯想了解马克思・韦伯之“自动售货机”理论与实践的动机下决定跟随导师学习（人工智能）以及（计算机科学・法学交叉学科研究）。由于这两个主题缺乏明显而立即的前景/前景，因此被很多人视为冷门研究。然而“无用之用，是为大用”654，交大资工系的交叉学科科研训练却为我积累丰富的知识与经验来整合人工智能、机器人工学与法学这三个跨度很大的学科，对我进行博士研究提供很大的帮助。

654 先秦·庄周《庄子》
谨此就下列人士对本论文所提供的协助致上谢意：

（1）北京大学法学院赖骏楠博士、梁景瑜博士、周辉博士
（2）北京大学信息科学技术学院任全胜、王花蕾教授夫妇
（3）北京机械工业自动化研究所杨书评秘书长
（4）国士馆大学理工学部菅原雄介讲师和
（5）早稻田大学理工学术院桥本健二讲师
（6）早稻田大学理工学术院 Dominic Hillenbrand 洪堡-JSPS 外国人特别研究员
（7）欧盟 FP7 机器人法律项目 Paolo Dario 教授、Pericle Salvini 项目经理
（8）答辩秘书刘天骄博士生和多次协助论文校对的 Diane Chiang、Judy Hsieh

最后致上深深感谢之意的还是我的父母和家人亲友，如果没有他们在这一段漫长期间内对我无怨无悔地包容和支持的话，我想我可能难以坚定自己的志向来贯彻这一条学术探索之路。在此希望能与他们一同分享这篇论文完成时的喜悦和成就感。

2014 年春，本博士论文于北京大学畅春园付梓之际，回顾 2004 年当时我以本科委托履修生身份前往早稻田大学短期留学，为了撰写日本机器人研究之演进和现况的专题报告而拜访早大 Wabot-House 研究所薮野健研究员与小星伸客讲师，两位老师十分热心地向我介绍日本和早稻田在机器人科研的发展进程以及最近关注的“人类与机器人共存”交叉学科议题。听到许多前沿机器人研究固然让我大开眼界，但是更令我感到好奇的是何以画家出身的薮野老师和都市计划出身的小星老师能够在早稻田大学机器人研究所中承担科研任务？这似乎颠覆了一般人对于“机器人研究”一词的认知。”机器人有属于自己的伦理吗?“万一机器人在路上发生交通事故，这属于谁的责任?”，“工业机器人的 ISO 安全标准是否能够完全覆盖智能机器人?”，“阿西莫夫的机器人三原则应该如何导人现存法律体系?”，早稻田大学的专题报告完成后，我不但没有解决问题反而对机器人产生了更多的疑问。“人类与机器人共存”至今在我心中留下深刻的印象，也促使我走上另一条人烟稀少且遍布荆棘的道路来探索即将到来的“人类与机器人共存社会”所面临的伦理、安全与法律等问题。

2014 年 5 月
于 北京大学畅春园