
galactose. We tested COX17 mRNA as a positive target of
Puf3p regulation, as well as CBS1 and STE3 mRNAs as
negative controls to ensure we specifically enriched for
Puf3p binding targets after the IP process. As shown in
Figure 9A and B, COX17 mRNA was enriched 200- to
800-fold following Puf3p IP from both galactose and
dextrose conditions as compared with input mRNA
levels, while there was no enrichment of either CBS1 or
STE3 mRNA. Having demonstrated specificity of Puf3p
binding, we next compared levels of COX17 that
copurified with Puf3p from dextrose and galactose condi-
tions. COX17 mRNA levels from the IP were >2-fold
higher in galactose versus dextrose, indicating that
Puf3p-mRNA interactions are not disrupted under condi-
tions that inactivate Puf3p-medicated decay stimulation
(Figure 9C). The higher level of COX17 mRNA that
copurified with Puf3p in galactose likely reflects the
increased amount of Puf3p expressed in galactose condi-
tions (Figure 9D). These results support the hypothesis
from previous studies that Puf3p binds and traffics its
mRNA targets to the mitochondria (38,39), and our
results demonstrate that such binding occurs regardless

of the conditions. In contrast, the inactivation of Puf3p
is likely disrupting its ability to stimulate decay of the
bound targets.

DISCUSSION

Yeast Puf3p is a member of the Puf class of eukaryotic
proteins that bind conserved 30 UTR sequences to
promote rapid decay and/or repress translation of the
bound transcript. This study has identified 10 new
mRNA targets of Puf3p-mediated decay, all of which
are nuclear-transcribed mRNAs encoding proteins
involved in mitochondrial function (Figures 1–3). In
addition, the activity of Puf3p to promote decay of these
transcripts is rapidly altered by changes in the available
carbon source (Figures 4–7). Puf3p is active to degrade its
target mRNAs in dextrose conditions when mitochondria
are not needed; however, Puf3p is inhibited by ethanol,
galactose and raffinose conditions when mitochondrial
function is required for efficient growth, resulting in sta-
bilization of the target mRNAs. These rapid changes in
Puf3p activity are not due to decreased transcription or
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translation, or altered localization under inactivating con-
ditions (Figure 8). Puf3p has previously been shown to
regulate COX17 mRNA decay, interact with the cytoplas-
mic face of mitochondrial membranes, regulate mitochon-
drial biogenesis and inheritance, as well as promote the
asymmetric localization of nuclear-encoded mRNAs that
are translated near the mitochondria (30,38,39). We dem-
onstrate that Puf3p can associate with its target mRNA
regardless of the available carbon source (Figure 9),
permitting Puf3p to traffic mRNAs to the mitochondria
even when it cannot stimulate their decay. Together, these
observations support Puf3p’s comprehensive role as a
global and dynamic regulator of mitochondrial function.

Our results indicate that only those Puf3p binding
sites that perfectly conform to the consensus (C/U)(A/C/
U)UGUA(A/U)AUA motif contribute to Puf3p-mediated
decay (Table 1). Many of the mRNA targets contain one
perfect site plus one or more imperfect sites, yet their fold
stimulation of decay is equal to or less than the decay
stimulation of targets with only one perfect Puf3p site.
These data imply that the imperfect sites, even if only
lacking conservation at a single nucleotide outside the
core UGUA, contribute little to Puf3p recruitment and
decay stimulation. In contrast, binding by Puf4p and
Puf5p appears to be more promiscuous because these
proteins can flip out nonconserved nucleotides away
from the binding surface (45). Previous binding experi-
ments have demonstrated that mutations altering the con-
sensus Puf3p sites in COX17 reduce binding affinity to
Puf3p (7). Our decay analysis of multiple mRNA targets
suggests that only the presence of a sequence that perfectly
conforms to the Puf3p consensus motif can predict the ex-
tent of Puf3p decay stimulation of an mRNA. mRNAs
lacking a Puf3p binding site, including other nuclear-
encoded transcripts encoding mitochondrial proteins, are
not regulated by Puf3p. Even so, experimental validation
is still necessary to validate targets containing perfect
Puf3p motifs, as RSM10 with one perfect and one

imperfect site shows no decay stimulation by Puf3p.
Sequences flanking the Puf3p motif or other trans
factors may influence the accessibility of the site to Puf3p.
The consensus Puf3p binding motif derived from global

association studies places either a cytosine or uracil at
the �2 position upstream of the core UGUA sequence.
However, the crystal structure of yeast Puf3p bound to the
conserved motifs from the COX17 30 UTR demonstrated
that a cytosine at the �2 position is important for high-
affinity binding as well as decay regulation (12). Our
analysis of Puf3p binding motifs in multiple target
mRNAs demonstrates a similar finding, in that most of
the fully conserved sites contain a cytosine at �2 (Table 1).
The MRP1 and MRP21 mRNAs that contain uracils at
the �2 positions of their conserved sites display a <2-fold
stimulation of decay by Puf3p, suggesting reduced binding
to these motifs.
A common mechanism by which Puf proteins promote

mRNA decay is through recruitment of deadenylase
enzymes (2). In yeast, Puf3p promotes both deadenylation
and decapping of COX17 mRNA (6), Puf4p and Puf5p
promote deadenylation of HO mRNA, and Puf5p inter-
acts with decapping factors (9–11). In both of the above
situations, two Puf proteins act together to stimulate
decay of a target mRNA, as COX17 binds two Puf3
proteins. Other mRNAs identified as targets of yeast Puf
proteins are also regulated by combinations of two or
three Pufs (48). These observations might suggest that
multiple Puf proteins are required for full decay regulation
of an mRNA. However, this study shows that Puf3p regu-
lation of the CYT2 mRNA occurs through a single Puf3p
binding site in the 30 UTR of CYT2 (Figure 2). Our
analysis of CYT2 decay also demonstrates that
Puf3p promotes both rapid deadenylation and
decapping of this transcript (Figure 3). Thus, a
single Puf3p can promote multiple steps of decay, presum-
ably through interaction with multiple decay factor
complexes.
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The kinetics of CYT2 deadenylation and decay are ex-
tremely rapid. Previously we found that in the presence of
Puf3p, a pool of adenylated COX17 is deadenylated
within 4min following transcriptional repression, then
decapped and degraded within 10min (6). In the absence
of Puf3p, COX17 deadenylates slowly for 10min and
persists for 30min. In contrast, in the presence of Puf3p
the majority of CYT2 transcripts are already fully
deadenylated at the time of transcriptional repression fol-
lowing the 8-min pulse of transcription. Subsequent
decapping and degradation occurs within 5min. In the
absence of Puf3p, the pool of CYT2 is still fully
adenylated at the end of the transcriptional pulse period.
The pool deadenylates for 4min following transcriptional
repression, then persists as a deadenylated species for
10min. In the presence of Puf3p, a species smaller than
the deadenylated form predominates at the time of tran-
scriptional repression. This species could represent mRNA
from an alternative internal cleavage and polyadenylation
site, as dT treatment to remove poly(A) tails resulted in an
even smaller species. These species were also seen in the
absence of Puf3p, but at a much lower fraction of the total
population. If these species are indeed from an alternative
polyadenylation site, the poly(A) tail would be �25 As,
which is abnormally short. In addition, these species are
not stabilized in the puf3� strain, even though the Puf3p
binding site is still present. The size of the smallest species
in the dT lanes also corresponds to cleavage at a large
internal poly(A) tract within the 30 UTR, which could
simply be a result of the dT binding this region for
cleavage by RNase H. RNase protection assays to
evaluate 30 ends revealed both the full-length 30 UTR as
well as a smaller end corresponding to the internal poly(A)
tract, but these species were found equally represented
between the WT and puf3� strains. Thus, Puf3p does
not influence cleavage at the internal site. In fact, it is
possible that we saw the smaller species in the RNase pro-
tection assays simply because large poly(A) tracts do not
hybridize well, so RNase could attack this region. An al-
ternative explanation for the smaller species detected pri-
marily in the WT strain at the time of transcriptional
repression is that Puf3p stimulates 30 trimming into the
30 UTR. Such trimming is typically not seen for other
mRNAs owing to slower kinetics of such 30 to 50 decay
compared with the kinetics of decapping and 50 to 30 decay
(49). However, 30 to 50 trimming can be seen with COX17
in the presence of Puf3p when decapping is blocked
(W.M.O., unpublished observation). The rapid 30 to 50

trimming of CYT2 could result from stimulation of the
exosome or hyperstimulation of the Ccr4p deadenylase
by Puf3p. We believe the latter possibility may be the
case because an exosome mutant does not block the 30

to 50 trimming of COX17 in the absence of decapping
(J.R., unpublished observation).
While Puf3p stimulates deadenylation and subsequent

decay of both CYT2 and COX17, the default rate of CYT2
decay in the absence of Puf3p is faster than the default rate
of COX17 decay (half-lives of 4.6 versus 24.3 without
Puf3p, respectively). We believe this may be due to add-
itional elements in the 30 UTR of CYT2 that modulate
decay. Specifically, the CYT2 30 UTR contains three

AU-rich elements, which have been shown to mediate
either stabilizing or destabilizing effects on yeast
mRNAs depending on the type of AU-rich sequence
(4,50). At least one of these elements is likely acting inde-
pendently of Puf3p to promote rapid decay of CYT2
mRNA. The presence of these elements may also explain
the >13-fold stabilization of CYT2 in the absence of
Puf3p in raffinose versus dextrose (Figure 4). Some AU-
rich elements stabilize mRNAs only in certain carbon
sources due to differential protein binding (50). We hy-
pothesize that in the absence of Puf3p, at least one of
the AU-rich elements becomes accessible for binding to
a stabilizing protein that is active in raffinose conditions.
Analysis of the mitochondrial-encoding transcripts in
general demonstrates that these mRNAs are degraded
rapidly even in the absence of Puf3p, suggesting that
many of the mRNAs use multiple mechanisms, including
Puf3p, to regulate their stability.

The competence of Puf3p to mediate rapid mRNA
decay is dependent on the environmental growth condi-
tions. For the CYT2, TUF1 and COX17 mRNA targets
tested, Puf3p is only fully active to stimulate rapid decay
in dextrose (Figures 4–6). In the presence of ethanol or
raffinose, the mRNA targets are stabilized, with their
extended half-lives indistinguishable between WT and
puf3� strains (except for CYT2 in raffinose as described
above), suggesting complete inactivation of Puf3p by these
carbon sources. In galactose conditions, Puf3p’s decay
activity is also inhibited, but some transcripts are still
affected by a residual amount of Puf3p activity. The
half-lives of CYT2 and COX17 are similarly extended
betweenWT and puf3� strains in galactose, demonstrating
no decay stimulation by Puf3p. For TUF1, galactose
extends the half-life over 2-fold, but deletion of PUF3
results in a further 1.5-fold extension in the half-life.
Because steady-state levels of TUF1 mRNA are higher
than either CYT2 or COX17 mRNA, we hypothesize
that the residual amount of active Puf3p in galactose is
more likely to bind mRNAs that are more abundant.

Analysis of the dynamics of condition-specific Puf3p
activity revealed that decay stimulation is quickly altered
by changing the available carbon source. For all carbon
sources tested, Puf3p is fully activated or inactivated
within 2–10min of changing the carbon source to or
from dextrose (Figure 7). We also observed no reduction
in PUF3 mRNA or protein levels in conditions that in-
activate Puf3p (Figure 8). In fact, Puf3p levels appear to
be increased under all inactivating conditions, especially in
the insoluble fraction of the protein extract. Similar results
were seen previously, with PUF3 cDNA levels significantly
higher in ethanol conditions than in dextrose (51). One
previous study did report a decrease of Puf3p levels in
lactate (30), but that result is likely unique to that
carbon source where many proteins are downregulated,
and not representative of other Puf3p inactivating condi-
tions. Together, these data suggest that changes in Puf3p
decay activity are regulated posttranslationally. One pos-
sibility is that Puf3p is sequestered into aggregates or its
localization is otherwise altered to render it inactive.
However, our results indicate that localization is not sig-
nificantly altered between conditions, being diffusely
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localized with multiple small foci throughout the cyto-
plasm (Figure 8). A second possibility is that phosphoryl-
ation modulates Puf3p activity, as Puf6p-mediated
translational repression is regulated by CK2 phosphoryl-
ation (52). Activity may also be altered by changes in
proteins that interact with Puf3p.

In addition to its role in stimulating mRNA decay, Puf3p
stimulates mitochondrial localization of nuclear-transcribed
mRNAs containing Puf3p binding sites. In a puf3� strain
grown in galactose (38) or glucose (39), these transcripts
have decreased association with the mitochondria. It is
hypothesized that Puf3p shuttles mRNA targets to the mito-
chondrial outer membrane surface, where they are
translated and imported into the mitochondria. This hy-
pothesis is supported by physical interactions between
Puf3p and Mdm12p, a mitochondrial outer membrane
protein (30). Tom20p, a component of the translocase of
the mitochondrial outer membrane complex, is also
required for mitochondrial localization of Puf3p target
mRNAs (40). Our results demonstrating that Puf3p physic-
ally associates with its target mRNA in both dextrose and
galactose conditions further supports the shuttling hypoth-
esis (Figure 9). The following model accounts for the dual
condition-specific functions of Puf3p. In dextrose condi-
tions, yeast cells can readily perform fermentation, so
mitochondria are not required and are in low abundance.
To limit mitochondria, expression of mitochondrial proteins
is downregulated. One mechanism of such repression
involves Puf3p binding to mRNAs such as COX17, TUF1
and CYT2 and acting to mediate rapid degradation of the
transcripts, presumably by recruiting deadenylase and
decapping factors. In ethanol, galactose and raffinose con-
ditions when yeast require additional metabolism via the
mitochondria, Puf3p’s ability to stimulate decay is turned
off, but its ability to bind its target mRNAs remains. With
the bound mRNA now stabilized, Puf3p can increasingly
shuttle the mRNA to the mitochondria for translation and
import, though mRNAs could also be shuttled in dextrose
conditions before degradation. This role of Puf3p in mRNA
localization explains why Puf3p is not downregulated in
nonfermenting conditions. Posttranslational modifications
such as phosphorylation of either Puf3p or Puf3p binding
partners may serve as the molecular switch that inhibits the
decay activity of Puf3p. Future work will elucidate the
mechanism of these activity changes.
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