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Abstract 

 

Over the past few years, U.S. agriculture and farmers have experienced a myriad of 

macroeconomic and environmental changes that have profound implications for the well-

being of farm households and the farm sector. An expanding biofuels market and 

growing export demand from China and India have led to rising agricultural commodity 

prices since mid-2000s. However, during the same time period, the residential housing 

market collapsed in 2007-2008 and resulted in the subsequent Great Recession, which 

could impose a downturn pressure on the farmland market. In addition, growing water 

quality problems due to excessive agricultural nutrient runoff have severely compromised 

many ecosystem services and have led to stronger calls for more effective nutrient 

management policies from both policymakers and the public. Economic analyses of 

farmer decisions in this constrained and evolving environment are critical to understand 

how these changes have impacted farmer welfare and trade-offs with ecosystem and other 

societal benefits. Using individual-level data on farmland parcels and farmers from Ohio 

and Lake Erie basin, my dissertation examines how the recent residential housing market 

bust, expanding ethanol production, and rising environmental concerns over nutrient 

management have impacted farmers’ land use, land management, and land transaction 

decisions and the implications of these changes for farmer welfare. 
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Farm real estate represents over 80% of the balance sheet of the farm sector and is the 

single largest item in a typical farmer’s investment portfolio, and thus changes in 

farmland values could affect the welfare of farm households and the farm sector in 

general. The first two chapters examine the trends and determinants of farmland values in 

the Midwest in the 2000s decade. In particular, the first chapter identifies the impact of 

the recent residential housing market bust and subsequent economic recession on 

farmland values, using parcel-level farmland sales data from 2001-2010 for a 50-county 

region under urbanization pressure in western Ohio. My estimates from hedonic 

regressions reveal that farmland was not immune to the residential housing bust; the 

portion of farmland value attributable to urban demands for developable land was almost 

cut in half shortly after the housing market bust in 2009-2010. This chapter offers the first 

analysis of the magnitude of the structural break in the effect of urban influence on 

surrounding farmland values due to the recent housing market bust. 

The second chapter investigates the capitalization of expanding biofuels market in 

surrounding farmland values. In particular, it tests for structural change in the relative 

effects of proximity to agricultural market channels before and after the construction of 

seven ethanol plants in or near western Ohio in late 2006 – early 2007. Instrumental 

variables regression on the matched sample demonstrates the positive capitalization of 

newly constructed ethanol plants. To the best of my knowledge, this chapter is the first to 

provide formal evidence of the effects of ethanol market expansion on farmland values 

during a strong recessionary time that exerted substantial downward pressure. 
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The last chapter examines the interplay between agriculture and the environment, as well 

as the trade-off between farmer welfare and benefits of ecosystem services resulting from 

alternative agri-environmental policies. Excessive agricultural nutrient runoff has 

severely compromised the sustainability of Lake Erie agri-ecosystem, however, current 

voluntary conservation payments policy have been proven insufficient for nutrient 

reduction. Using individual level data on farm, field, and farmer characteristics, the third 

chapter develops a structural econometric model of farmers’ profit-maximizing output 

supply and input demand decisions, and quantifies the social welfare impacts of 

alternative nutrient management policies, including uniform and targeted fertilizer taxes. 

Results reveal that neither a fertilizer tax nor an education campaign could alone achieve 

the policy goal of 40% reduction in nutrient runoff into Lake Erie, although a uniform 

50% fertilizer tax could lead to a 24% reduction in mean phosphorus application rates.. I 

also find that spatial targeting, such as phosphorus tax targeted towards ecologically 

sensitive subbasins, improves the cost-effectiveness of agri-environmental policies when 

only costs to farmers are considered; while a simpler policy such as a 50% uniform 

phosphorus tax would outperform other alternatives when the cost-effectiveness is 

measured as phosphorus reduction given net policy costs from an overall social welfare 

perspective. 
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Chapter 1:  The Housing Market Bust and Farmland Values: Identifying the 

Changing Influence of Proximity to Urban Centers 

 

Introduction 

The recent residential housing market bust and subsequent economic recession have led 

to a dramatic decline in urban land values and housing values across the U.S. According 

to Standard & Poor’s Case-Shiller repeat sales price index, residential property values in 

major metropolitan areas have declined by approximately 40% between 2007 and the end 

of 2008. Although farmland near urban areas provides a supply of land that could be 

developed for residential or commercial uses, a corresponding dip was not evident in 

farmland prices. Survey data reveals that farm real estate values witnessed a modest 

increase rather than a decline in many states over 2007 – 2009, including several with 

significant amounts of farmland subject to urban influence (Nickerson, et al. 2012). 

Favorable changes in factors that positively influence farmland values – including 

historically low interest rates that increase the attractiveness of farmland as an 

investment, and increasing demands for commodities (Gloy, et al. 2011; Schnitkey and 

Sherrick 2011; Wallander, et al. 2011)– may be masking declines attributable to changes 

in residential housing markets. These recent changes in urban housing values and the 

seeming immunity of nearby farmland values raise questions about the relationship 
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between urban and farmland markets: what was the magnitude, if any, of the drag 

imposed by the urban residential housing market downturn on surrounding farmland 

values? Understanding how farmland values respond to fluctuations in competing land 

markets is of perennial policy interest, as changes in farmland values can affect the health 

of the farm sector and of farm household wellbeing. Farmland values represent over 80 

percent of the value of farm sector assets, and farmland represents the largest asset in the 

typical farm household investment portfolio (Nickerson, et al. 2012). 

Farmland in close proximity to urban areas typically sells for a premium relative to 

farmland farther away from urban areas - as demand for developable land induces 

developers to bid above the agricultural production value of land closest to urban areas 

(Capozza and Helsley 1989). Many empirical studies have shown that in more urbanized 

areas the demand for developable land for residential or commercial uses is the most 

significant nonfarm factor affecting farmland values (Cavailhès and Wavresky 2003; 

Hardie, et al. 2001; Livanis, et al. 2006; Shi, et al. 1997). However, most of these studies 

use aggregate county level data, which generates a very coarse representation of the 

spatial extent and magnitude of urban influence, and masks important differences in the 

influence of spatially disaggregate locational attributes on agricultural land values, such 

as parcel specific variation in distance to nearby city centers as a proxy for future 

development pressure. One exception is the study by Guiling, et al. (2009).  They 

estimate a model that incorporates both county-level data and parcel characteristics, and 

find that urban influence on agricultural land values extended between 20 and 50 miles 

away from the closest urban centers, depending on the population and real income of the 
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urban area. While Guiling, et al. (2009) demonstrated the spatial heterogeneity of urban 

influences in farmland markets, their model did not address the potential for substantial 

variation at a subcounty level (Bajari, et al. 2012), as well as the possibility of influences 

from multiple urban centers (Shi, et al. 1997). 

The recent housing market boom-bust has sparked renewed interest in the impacts on 

land and house prices within and across metropolitan areas (Cohen, et al. 2012; Kuminoff 

and Pope 2013). Yet these studies on the influence of the housing boom and bust are 

limited to residential land and structure values, with no explicit representation of the 

impact on surrounding farmland that could be developed. A few recent farmland value 

studies have examined how changes in other non-land markets, such as demand for 

biofuels as an energy source, have affected farmland values but they did not consider the 

impact of changes in competing land markets (Blomendahl, et al. 2011; Henderson and 

Gloy 2009).  

The aim of this study is to identify, at the parcel level, the total dollar value of proximity 

to urban centers (the “urban premium”) and test for a structural change in these effects 

before and after the urban housing market bust that spanned from early 2007 through late 

2008. I hypothesize that the urban housing market bust imposed significant downward 

pressure on urban demands for developable land and hence the urban premium that 

accrues to farmland near urban areas. This study uses spatially explicit parcel-level data 

on arms-length agricultural land sales from 2001 to 2010, a period which encompasses 

the housing market bust, for a 50-county region of western Ohio - almost all of which is 

subject to some degree of urban influence. This unique and spatially disaggregate dataset 
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allows me to parse the data into pre (2000-2006) and post (2009-2010) time periods, and 

investigate the structural change in the effects of urban proximity on surrounding 

farmland values, yielding new insights into the impacts of changes in competing land 

markets on farmland values. 

The parcel-specific urban premium metric explicitly considers the possibility of 

influences from multiple urban centers by adding three additional parcel-level measures 

of urban influences to the traditional metric “distance to nearest city”, including 

surrounding urban population, the incremental distance to the second nearest city and a 

gravity index based on the nearest three cities to quantify the effects of multiple urban 

centers (Shi, et al. 1997).I also address the potential omitted variable bias embedded in 

the standard hedonic pricing approach by incorporating census tract fixed effects, which 

control for time-invariant unobserved spatial characteristics that could vary within a 

county and greatly affect the future development potential of farmland parcels, such as 

access to commuting opportunities, school quality, and air quality (Kuminoff and Pope 

2013). 

The main result provides evidence that the value of being within close proximity to urban 

centers on surrounding farmland values declined by an estimated 50 percent or so due to 

the recent residential housing market bust. On average, the urban premium for parcels 

under urban influence relative to a hypothetical parcel not subject to urban influence fell 

from $1,947 per acre before 2007 to $1,026 per acre shortly after the housing market 

bust, a decline of more than 40% to roughly 20% of per-acre farmland prices (without 

structures), respectively. The decline in the value of an urban premium due to the housing 
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market bust was greater for parcels in closest proximity to cities. In addition, the results 

illustrate the importance of incorporating parcel level measures of the influences from 

multiple urban centers. The average parcel-level urban premium would be 

underestimated by as much as 17 percent before 2007 if measures accounting for multiple 

urban centers are omitted– suggesting multiple urban centers represent a significant 

portion of the urban premium at least in periods of strong housing market growth.  

Overall, this study makes at least two contributions to the literature on farmland 

valuation. First, to my knowledge, this study offers the first analysis of the magnitude of 

the structural break in the effect of urban influence on surrounding farmland values due 

to the recent housing market bust. In addition, this study develops a parcel-level measure 

of urban premium that explicitly accounts for the influences of multiple urban centers and 

shows that not accounting for the effects of multiple urban centers can result in a 

substantial undervaluation of the urban premium. 

 

Conceptual Framework 

Among the most influential theories that help explain the value of land is Ricardo’s 

economic theory of rent (Ricardo 1996). Ricardo’s key insight was that land which 

differs in quality and which is limited in supply generates rents that arise from the 

productive differences in land quality or in differences in location. The valuation of 

farmland subject to urban influence dates back to a model developed by Von Thünen in 

1826, which posits that rent differentials for farmland also arise both from the value of 

commodities produced and the distance from central markets.  In this model the 
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Ricardian rent is a decreasing function of the distance to the urban center, and land closer 

to the urban center earns higher rents because of reduced transportation costs. Farmland 

value is comprised of the net present value of economic returns to land. The model is 

written as 

𝑉𝑖𝑡 =  𝐸𝑡 ∑
𝑅𝑖𝑠

(1+ 𝛿)𝑠−𝑡𝑠 , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑡, 𝑡 + 1, …               (1) 

In this formulation, the value of agricultural land parcel i at time t 𝑉𝑖𝑡 is defined as the 

expected annual returns to farmland R discounted at rate 𝛿. In many regions, farmland 

can earn returns not just from agricultural production and government payments, but also 

from “non-farm” sources such as wildlife viewing, hunting, and fishing. Principal among 

the non-farm sources of returns for farmland in close proximity to urban areas is the 

expected future rent increases arising from expected returns from future development for 

residential or commercial uses (Hardie, et al. 2001). Capozza and Helsley’s (1989) 

seminal work laid the theoretical foundation for this literature and showed how the value 

of expected future rent increases could be quite large, especially near rapidly growing 

cities.  

The study region - Western Ohio - is fairly homogenous in climatic conditions and 

opportunities for fishing or hunting opportunities, and hence little variation in generating 

recreational income is expected among the parcels. The area faces significant 

development pressure however, so I focus on returns arising from the option value of 

future land conversion from agricultural use to urban uses. Following Capozza and 

Helsley (1989), the value of an agricultural parcel i at time t under urban influence can be 

defined as 
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𝑉𝑖(𝑡) =  ∑
𝑅𝐴(𝐴𝑖,𝑠)

(1+𝛿)𝑠−𝑡
𝑡∗

𝑠=0 +  ∑
𝑅𝑈(𝑈𝑖,𝑠)

(1+𝛿)𝑠−𝑡
∞
𝑠=𝑡∗ ,                       (2) 

where 𝑡∗ is the optimal timing of land use conversion from agricultural use to residential 

or commercial uses, 𝑅𝐴 is the agricultural land rent, and 𝑅𝑈 is the urban land rent net of 

the conversion costs. The first term represents the present value of agricultural rents up 

to 𝑡∗, which depends on the parcel-specific variables affecting agricultural productivity 

𝑨𝒊𝒕 such as soil quality, slope of the parcel, and proximity to agricultural market channels 

such as ethanol plants and grain elevators. The second term captures the present value of 

returns to urban development from the optimal conversion time onward, which depends 

on the location-specific urban influences variables 𝑼𝒊𝒕 such as proximity to nearby cities, 

surrounding urban population, size of nearby multiple urban centers, and access to 

highway ramps and railway stations
1
. The recent decline in urban housing market 

demands may greatly diminish the urban option conversion value of agricultural land 

relative to the preceding period of high housing demand, and as a result, a declining 

significance of the urban influence variables 𝑼𝒊𝒕 in shaping surrounding farmland values 

is expected between the two periods.  

 

Econometric Procedures 

The Hedonic Price Method 

Hedonic models are a revealed preference method based on the notion that the price of a 

good or parcel in the marketplace is a function of its attributes and characteristics. With 

                                                 
1
 The increased access to customers could also influence farmland values by increasing expected 

agricultural returns. However this effect may be most relevant when there are many dairy, fruit 

and vegetable farms, which is not the case for my study region. 
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Rosen's (1974) seminal work as a backdrop (Rosen 1974), the hedonic price method has 

become the workhorse model in the studies of real estate or land values (Palmquist 1989), 

and the determinants of farmland values. Numerous applications of hedonic models 

applied to farmland markets have examined the marginal value of both farm and non-

farm characteristics of farmland, including soil erodibility (Palmquist and Danielson 

1989), urban proximity (Shi, et al. 1997), wildlife recreational opportunities (Henderson 

and Moore 2006), zoning (Chicoine 1981), and farmland protection easements 

(Nickerson and Lynch 2001).  The farmland returns 𝑅𝑖𝑡 in equation (2) can be 

approximated by a linear combination of parcel attributes and location characteristics 

using Taylor expansion. Hedonic models are commonly specified in log-linear form
2
, 

which is defined as 

log(𝑉𝑖𝑡) =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕 + 𝜏𝑡 +  휀𝑖𝑡,         (3) 

where 𝜏𝑡 is time fixed effects which captures the temporal variations in returns and 

discount factor, and 휀𝑖𝑡 is the remaining normally distributed error term, and the 

agricultural land values 𝑉𝑖𝑡are approximated by the nominal sale prices per acre of the 

agricultural land without structures. 

                                                 
2
 I choose a log-linear functional form rather than the Box-Cox transformation of both dependent 

and independent variables because my interaction terms of urban influence have many zeros: 

Box-Cox transformation requires positive values. A robustness check using a Box-Cox 

transformation of the dependent variable (sale prices of farmland parcels) only yields a Box-Cox 

transformation parameter of 0.27, which is close to 0 as the parameter implied by log-linear 

functional form; also, the Box-Cox regression yields qualitatively similar results. I also add one 

robustness check using log-log specification and the results shown in Table 6 column (d) yield 

similar conclusions. 
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In this hedonic setting, agricultural land is regarded as a differentiated product with a 

bundle of agricultural quality and location characteristics, and each characteristic is 

valued by its implicit price.  

 

Incorporating the Hedonic Model with Localized Spatial Fixed Effects 

Despite its popularity, the hedonic pricing method suffers from a number of well-known 

econometric problems. Foremost among them, the researcher cannot directly observe all 

land characteristics that are relevant to farmers and developers, and omitted variables 

may lead to biased estimates of the implicit prices of the observed attributes (Bajari, et al. 

2012). In the case of agricultural land under urbanization pressures, access to 

employment opportunities, school quality, and air quality could greatly affect future 

development potential and could vary significantly within a county, but be difficult to 

measure (Kuminoff and Pope 2013). For agricultural land parcels under no immediate 

urban conversion pressures, some other significant unobserved characteristics may also 

exist, such as access to public services and local climatic conditions. These characteristics 

are relatively homogenous within a census tract, so I address the omitted variable bias 

problem by incorporating local-level spatial fixed effects at the census tract level, which 

are denoted as 휃𝑗  (where the subscript j represents the census tract): 

log(𝑉𝑖𝑡) =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕 + 𝜏𝑡 +  휃𝑗 + 휀𝑖𝑡,         (4) 

Previous studies have shown that coarser fixed effects at the county level may exclude 

too much intra-county variation and thus perform poorly in controlling for unobserved 

spatial heterogeneity (Anderson and West 2006). The localized spatial fixed effects I use 
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here at the census tract level have been shown to effectively remove most of the time-

invariant omitted variable bias, such as spatial autocorrelation (Abbott and Klaiber 2011). 

In addition, regression diagnostic techniques (e.g. Moran’s I and Geary’s C) are used as 

robustness checks to test for spatial autocorrelation in the residuals.  

 

Construction of the Urban Premium 

To better quantify the structural break in the effect of urban influences on surrounding 

farmland values induced by the housing market bust, I develop a parcel level measure of 

an “urban premium”. This metric quantifies for each parcel, relative to a hypothetical 

agricultural land parcel with no urban influence, the total dollar value resulting from 

being located closer to urban areas. This urban premium measure consists of four distinct 

parts: value derived from being closer to the nearest city with at least 40,000 people
3
 than 

the reference parcel, additional value derived from being within proximity to multiple 

urban centers – including incremental distance to the second nearest city, the positive 

effects resulting from surrounding urban population  within 25 miles of the parcel 

centroid, and the value derived from total weighted population of the three nearest cities 

captured in a gravity population index. With these measures, I are able to identify the 

parcel-level structural change in the influence of urban premium before and after the 

                                                 
3
 In this study, I define cities as those with at least 40,000 people, and this threshold is used 

throughout the paper for distance calculations unless noted otherwise. While 50,000 people are 

used by the U.S. Census Bureau to define urbanized areas, I choose the threshold of 40,000 

people because some core cities in Ohio Metropolitan Statistical Area such as Lima, OH have less 

than 50,000 people. The results are similar when a 50,000 threshold is used. 
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housing market bust. To construct this metric, the coefficients from the hedonic model 

with spatial fixed effects are used: 

log(𝑉𝑖𝑡) =  𝛽0 +𝛽𝐴
′𝑨𝒊𝒕 + 𝛽𝑈_𝑏𝑜𝑜𝑚

′𝑼𝒊𝒕 +  𝛽𝑈_𝑏𝑢𝑠𝑡
′𝑼𝒊𝒕 ∗ 𝐷𝑡_𝑏𝑢𝑠𝑡 + 𝜏𝑡 + 휃𝑗

+  휀𝑖𝑡,             (5)  

where 𝐷𝑡_𝑏𝑢𝑠𝑡 is a binary time dummy indicating that the parcel is sold after the housing 

market bust. My main specification uses 2001 to 2006 as the pre (boom) period, and 2009 

to 2010 as the post (bust) period. The pre- and post- periods were determined based on 

changes in the residential housing price indexes in Cleveland and Cincinnati metropolitan 

areas. These indexes exhibited rapid declines through the end of 2008, and a relative 

leveling off in 2009 and 2010 (Lincoln Institute of Land Policy 2012). The years 2007 

and 2008 are treated as a transition period. 

The parcel level urban premium is calculated as the difference between the predicted 

prices exp(log (𝑃𝑖𝑡)̂ + σϵ
2̂ 2⁄ ) using actual distance and population variables 𝑼𝒊𝒕 for one 

parcel and the predicted prices exp(log(𝑃𝑖𝑡)⃛ + σϵ
2̂ 2⁄ ) using distance and population 

variables �̅� of the reference parcel with no urban influence, where σϵ
2̂ is the 

corresponding mean squared error (MSE) from the regression model following equation 

(5): 

log(𝑃𝑖𝑡)̂ =  𝛽0̂+𝛽�̂�
′
𝑨𝒊𝒕 + 𝛽𝑈𝑏𝑜𝑜𝑚

̂ ′
𝑼𝒊𝒕 + 𝛽𝑈𝑏𝑢𝑠𝑡

̂ ′
𝑼𝒊𝒕 ∗ 𝐷𝑡𝑏𝑢𝑠𝑡

+ 𝜏�̂� + 휃�̂�     (6) 

log(𝑃𝑖𝑡)⃛ =  𝛽0̂+𝛽�̂�
′
𝑨𝒊𝒕 + 𝛽𝑈_𝑏𝑜𝑜𝑚

̂ ′
�̅�  +  𝛽𝑈_𝑏𝑢𝑠𝑡

̂ ′
�̅� ∗ 𝐷𝑡_𝑏𝑢𝑠𝑡 + 𝜏�̂� + 휃�̂�  (7)  

𝑢𝑟𝑏𝑎𝑛 𝑝𝑟𝑒𝑚𝑖𝑢𝑚 = exp (log (𝑃𝑖𝑡(𝑼𝒊𝒕)) + σϵ
2̂ 2⁄̂ ) − exp(log(𝑃𝑖𝑡(�̅�))⃛ + σϵ

2̂ 2⁄ )   (8) 
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Guiling, et al. (2009) estimated the extent of urban influence using parcel level data in 

Oklahoma, and found that for a city with around 50,000 residents, the urban influence on 

farmland prices extends 45 miles from the city center. Semiparametric regressions using 

my data in Ohio reveal that the effects of urban influence become negligible around 60 

miles away from the nearest city center, and the effects of the incremental distance to the 

second nearest city center
4
 are no longer evident beyond 40 miles

5
. As a result, the 

distance and population variables for the reference parcel in this study are 60 miles for 

the distance to nearest city, 40 miles for the incremental distance to the second nearest 

city, and zero for surrounding urban population and gravity index. Using this definition, 

my measure of the urban premium is constructed relative to the hypothetical, rural parcel 

whose urban influence variables are denoted as �̅�6. In my study region of Ohio, this 

metric is always positive for all the agricultural parcels.  

 

 

 

                                                 
4
 The incremental distance to second nearest city is defined as the difference between the distance 

from the second nearest city center and the distance from the nearest city center. For example, a 

parcel located 10 miles away from the nearest city center and 30 miles away from the second 

nearest city center will have an incremental distance to the second nearest city of 20 miles. 
5
 The semiparametric regressions are estimated using the semip() function from the McSpatial 

package in R, and the model specification is following equation (4) with county fixed effects, 

with either distance to nearest city center or incremental distance to the second nearest city center 

estimated nonparametrically using locally weighted regressions. A robustness check using 50 

miles and 30 miles for the thresholds of distance to nearest city center and incremental distance to 

second nearest city center respectively yield qualitatively similar results regarding the parcel-

level urban premium. 
6
  Numerically U̅ for this hypothetical parcel is assumed to be 60 miles away from nearest city 

center, 40 additional miles from the second city center, and 0 for surrounding urban population 

and the gravity index. 
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Data 

Western Ohio hosts the vast majority of the state's agricultural land and provides an 

excellent laboratory to study the structural change in the determinants of farmland values 

that was precipitated by the residential housing bust. Ohio was hit hard in the housing 

market bust and accompanying recession, as evidenced by the sharp decline in residential 

housing prices for its metropolitan areas in 2007 and 2008 (Lincoln Institute of Land 

Policy 2012). To analyze the impact of the housing market bust, I assembled a detailed 

database of 21,342 arm’s length agricultural land sale records for 50 western Ohio 

counties obtained from county assessors’ offices and from a private data vendor.  

The sample was further screened to eliminate farmland parcels under no or little urban 

influences: parcels were dropped if they were both outside the Core Based Statistical 

Area counties
7
 and more than 10 miles away from the edge of the nearest city (with a 

population at least 40,000 people). In addition, only those agricultural parcels sold at 

arm’s length between 2001 and 2010 were retained. These agricultural parcel sale records 

were merged with georeferenced parcel boundaries, or were geocoded based on property 

addresses using ArcGIS when georeferenced parcel boundaries were not available
8
. In the 

                                                 
7
 Core Based Statistical Areas (CBSAs) are defined by the U.S. Census Bureau as “consist[ing] of 

the county or counties or equivalent entities associated with at least one core (urbanized area or 

urban cluster) of at least 10,000 population, plus adjacent counties having a high degree of social 

and economic integration with the core as measured through commuting ties with the counties 

associated with the core. The general concept of a CBSA is that of a core area containing a 

substantial population nucleus, together with adjacent communities having a high degree of 

economic and social integration with that core.” 
8
 For these geocoded parcels, the parcel boundaries are proxied by square-shaped parcels with the 

same acreage. 



14 

 

hedonic regressions, parcels that sold between 2001 and 2006 were treated as sold during 

the pre (boom) period, and in the post (bust) period if sold in 2009-2010. 

Construction of the dependent variable is a common problem in farmland value studies, 

given that sale prices reflect the value of both land and buildings including farm 

structures, residential dwellings, or both (Nickerson and Zhang 2014). Because I do not 

have data on the quantity and quality of buildings, I constructed a sales price for farmland 

only to use as the dependent variable. Similar to Guiling, et al. (2009) who subtracted the 

value of buildings from farmland sales prices, I calculated the sales price for farmland 

only as the original sales price times the ratio of the percentage of assessed values of land 

only over total assessed values of land and buildings. This assumes the portion of sales 

price attributable to land only can be approximated based on the contribution of assessed 

value of land to the total assessed value of land plus buildings. Parcels were dropped 

when the estimated sales price for farmland only was above $20,000/acre or below 

$1,000/acre. Figure 1 shows a plot of the filtered sample consisting of 12, 432 valid 

parcel transactions. As is evident from the figure, these data are widely distributed over 

the entire region. The temporal trends of farmland prices with and without structures for 

these filtered parcels are plotted in Figure 2, and the drastic decline experienced in the 

residential housing markets is not evident. A modest decline in average farmland prices 

with structures (the farm real estate values) from the mid-2000s is noticeable. The 

average nominal farmland sale prices without structures stayed fairly  
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Figure 1. Farmland Land Sales under Urban Influence in Western Ohio 2001-2010 
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constant around $4,500 per acre over the 2000 decade, yet a noticeable dip occurred 

between 2008 and 2009. 

 

 

 

Figure 2. Distribution of Real Arms-length Farmland Prices 2001-2010 in Western Ohio 

 

 

Data on parcel attributes and location characteristics were obtained largely from the U.S. 

Department of Agriculture Natural Resources Conservation Service’s GeoSpatial Data 

Gateway (USDA GeoSpatial Data Gateway, 2012), including the Census TIGER/Line 

Streets, National Elevation Dataset, National Land Cover Dataset (NLCD), and Soil 
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Survey Spatial Data (SSURGO). Additional data on locations of cities and towns in Ohio 

were obtained from the Ohio Department of Transportation (2012). I also used Census 

Block Shapefiles with 2010 Census Population and Housing Unit Counts (U.S. Census 

TIGER/Line 2012) to calculate the surrounding urban population. Data on ethanol plants, 

grain elevators and agricultural terminal ports were obtained from the Ohio Ethanol 

Council (2012), the Farm Net Services (2012) and the Ohio Department of Agriculture 

(2012). Using these data and ArcGIS software, I were able to create the parcel attributes 

and location characteristics. Table 1 reports summary statistics for these variables. 

Several variables in Table 1 are self-explanatory; however, a number of explanations are 

in order. First, the variable National Commodity Crops Productivity Index (NCCPI) is an 

interpretation in the National Soil Information System (NASIS). Specifically, the 

interpretation is based on natural relationships of soil, landscape, and climate factors and 

assigns productivity ratings for dry-land commodity crops, where the most desirable 

properties, landscape features and climatic conditions lead to larger values of NCCPI (see  

Dobos, et al. (2008) for details). The percentage of prime farmland variable is based on 

the suitability of soils for most kinds of field crops: for each parcel, the percentage 

measure of land area in prime soil is calculated. The grain elevators and agricultural 

terminals were in operation before the start date of this study, and thus the distances to 

these two types of agricultural delivery points are constant over the study period. 

However, all of the six ethanol plants in Western Ohio did not start operations until 2008.  
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Table 1. Summary Statistics of Agricultural Land Sales under Urban Influences in 

Western Ohio  

  Unit Mean Std. Dev. Min. Max. 

General Parcel Attributes 

Sales price per acre (with structures) Dollars 7374.65 6037.55 1106.2 31260.4 

Sales price per acre (without 

structures) 
Dollars 4456.96 3497.43 1000.16 19999.7 

Assessed land value % of total 

assessed 
% 72.87% 29.96% 5.38% 100.00% 

Total acres Acres 46.83 64.68 0.14 2381 

Sale year Year 2004.96 2.67 2001 2010 

Agricultural Profitability Influence Variables 

National Commodity Crops 

Productivity Index 
Number 5739.35 1571.55 0 8800.8 

Cropland % of parcel % 54.49% 37.80% 0.00% 100.00% 

Prime soil % of parcel % 37.52% 36.18% 0.00% 100.00% 

Steep slope  
 

0.42 0.71 0 3 

Distance to nearest ethanol plant Miles 29.65 13.89 0.55 69.84 

Distance to nearest grain elevator Miles 8.18 6.88 0.03 55.27 

Distance to nearest other agricultural 

terminal 
Miles 31.37 14.66 0.13 74.62 

Forest area % of parcel % 16.38% 26.84% 0.00% 100.00% 

Wetland area % of parcel % 0.34% 2.92% 0.00% 100.00% 

Urban Influence Variables 

Distance to nearest city center with 

over 40,000 people 
Miles 22.56 10.57 0.12 57.39 

Distance to nearest city center * after 

2008 
Miles 7.36 12.37 0 55.13 

Incremental distance to second nearest 

city with at least 40k people 
Miles 15.10 13.72 0.01 63.59 

Incremental distance to second city * 

dummy of sale after 2008 
Miles 4.68 10.24 0 63.57 

Total urban population within 25 

miles 
Thousands 312.83 236.60 64.77 1187.38 

Total urban population * after 2008 Thousands 89.24 176.58 0 1184.37 

Gravity index of three nearest cities 
 

1326.87 39204.4 62.14 4255332 

Gravity index * after 2008 
 

674.62 39194.53 0 4255332 

Building area % of parcel % 3.32% 12.45% 0.00% 100.00% 

Distance to highway ramp Miles 3.21 2.05 0 11.94 

Distance to railway station Miles 3.07 1.81 0.01 11.25 

Number of observations 12432 
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As a result, I assume the positive value of proximity to ethanol plants did not get 

capitalized before 2007 and thus the variable distance to nearest ethanol plant is 

interacted with a post 2008 time dummy.  

Several measures of urban influences are considered: distance to nearest city center 

captures the importance of urbanized areas as a commuting hub or sources of non-farm 

income, and the potential for future urban development. Surrounding urban population 

within 25 mile-radius for each parcel also represents nearby demand for future land 

conversion to urban uses. The incremental distance to second nearest city is a measure 

commonly used in housing and labor market studies on Central Place Theory and urban 

hierarchy to capture the additional value of influences from multiple urban centers 

(Partridge, et al. 2008). The incremental distance to second nearest city (see footnote iv), 

the surrounding urban population, and the gravity index account for the aggregate urban 

influences resulting from multiple urban centers. The gravity index is calculated as the 

weighted average of population divided by distance squared for the nearest three cities 

following Shi, et al. (1997). Together, these four measures capture the most salient 

aspects of urban influences and are used to construct the urban premium described in 

section III.c.  Some additional measures related to urban influences are also considered as 

controls. The percentage of building area within a parcel is included to capture any 

unobserved value of farm structures and houses that may remain in my “land only” 

measure of sales price. The unobserved value captured by the percentage of building area 

within a parcel is more closely tied to heterogeneous preferences of houses or 

agricultural production needs than to urban proximity, and thus is excluded in the 
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construction of the urban premium. The distance to the nearest highway on-ramp and the 

distance to the nearest railway station represent the additional value of being in close 

proximity to the interstate network and railway system, respectively. Variables on 

proximity to road networks are relatively homogenous among parcels and across time in 

my study region; in addition, they are shown to have a minor impact compared to the four 

main urban influence variables described earlier in this paragraph. As a result, these two 

road network proximity variables are not used to construct the urban premium.  

 

Results and Discussion 

Table 2 presents the results of my tests for structural change in the effect of urban 

influence using a hedonic model with 505 census tract fixed effects, denoted as the 

default model – model 0. The key variables are the urban influence variables such as 

distance to nearest city and their interactions with the post-2008 dummy. The post-2008 

dummy is defined to be 1 if the parcel is sold after 2008. The interaction terms include the 

four urban influence variables mentioned in section III.c.  Compared to the effects before 

2007, the coefficients of these interaction terms indicate the significance and the 

magnitude of the structural break in the effects of urban influence after the housing 

market bust. The distance to nearest city center is further decomposed into whether the  
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                                                                                                                          Continued 

Table 2. Hedonic Regression with Structural Changes in Urban Influence Variables       

 

 

Model Model 0 

  Coef. Std. Err. 

Intercept 8.0343*** 0.1743 

Assessed land value % of total assessed 0.4270*** 0.0226 

Total acres -0.0054*** 0.0002 

Total acres squared 2.95E-06*** 1.26E-07 

Agricultural Profitability Influence Variables 
  National Commodity Crops Productivity Index 1.27E-05** 5.16E-06 

Prime Soil area % of parcel 0.0473** 0.0206 

Steep slope -0.0112 0.0114 

Forest area % of parcel 0.0053 0.0303 

Wetland area % of parcel -0.2851 0.2198 

Distance to nearest ethanol plant * Post 2008 dummy -0.0023* 0.0014 

Distance to nearest grain elevator -0.0011 0.0014 

Distance to nearest other agricultural terminal -0.0040*** 0.0006 

Urban Influence Variables 
  Distance to city center*within 10 miles from urban boundary -0.0088*** 0.0013 

Distance to city center*within 10 miles from urban boundary*Post 2008 

dummy  0.0051** 0.0026 

Distance to city center*beyond 10 miles from urban boundary -0.0091*** 0.0012 

Distance to city center*beyond 10 miles from urban boundary*Post 2008 

dummy  0.0057*** 0.0025 

Incremental distance to second nearest city center -0.0035*** 0.0008 

Incremental distance to second nearest city center*Post 2008 dummy 0.0027* 0.0016 

Total surrounding population within 25 miles 2.30E-04*** 4.64E-05 

Total surrounding population within 25 miles*Post 2008 dummy 9.57E-05 1.20E-04 

Gravity index of three nearest cities 2.14E-05*** 5.68E-06 

Gravity index of three nearest cities*Post 2008 dummy -2.20E-05*** 5.71E-06 

Building area % of parcel 0.1014** 0.0513 

Distance to highway ramp -0.0050 0.0033 

Distance to railway station -0.0003 0.0036 

  

Year fixed effects yes 

Census tract fixed effects yes 

Adjusted R-square 0.2335 

Root mean squared error 0.6240 

Number of observations 10604 



22 

 

Table 2 continued 

Note: the dependent variable in this model is the log of per-acre agricultural land prices 

without structures. *, **, and *** indicates the coefficient is significant at 10%, 5% and 

1% level, respectively. 505 census tract fixed effects are included in the model. 

 

 

parcel is within or beyond 10 miles from the boundary of an urbanized area with at least 

40,000 people
9
.  This term allows me to assess whether the marginal effect of distance to 

city is significantly different for parcels within 10 miles of the boundary of population 

centers, which previous research suggests is a point beyond which the effect of urban 

influences on farmland values is much less evident (Nickerson, et al. 2012).   

Several points are notable regarding the urban influence variables and their effects. 

Before 2007, all of the coefficients of the four major urban influence variables are 

significant at the 1% level, confirming previous findings that urban influence is the most 

important non-farm factor in shaping farmland values in areas facing urbanization 

pressures. The biggest of these contributors is the distance to nearest city center, whose 

effect is almost twice as big as that of incremental distance to second nearest city center. 

The magnitude of the effect of distance before 2007 is a 0.88% increase in surrounding 

farmland values for each one-mile reduction in distance to nearest city center, and is 

comparable to the findings of previous studies (Ma and Swinton 2011). All else equal, the 

positive benefit per acre resulting from being closer to the nearest city declined from a  

                                                 
9
 The “within 10 miles” binary variable equals one for parcels inside or within 10 miles of the 

boundary of an urbanized area, and is zero otherwise. The “beyond 10 miles” binary variable 

equals one for parcels more than 10 miles of the boundary of an urbanized area, and is zero 

otherwise. As explained in footnote iii, I use 40,000 people as the threshold of urbanized areas, 

and similar results are found when a 50,000 or 25,000 threshold was used. 
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                                                                                                                                                                                           Continued 

Table 3. Robustness Checks of the Hedonic Regressions  

 

Model Model I
#
 Model II Model III Model IV Model V Model VI Model VII 

Dist_City*within 10 miles -0.0095*** -0.0103*** 

 

-0.0085*** -0.0119*** -0.1001*** -0.0096*** 

 

(0.0013) (0.0011) 

 

(0.0014) (0.0018) (0.0013) (0.0015) 

Dist_City*within 10 miles 0.0048* 0.0047** 

 

0.0052* 0.0045** -0.0024 0.0004 

*Post 2008 dummy (0.0026) (0.0022) 

 

(0.0027) (0.0025) (0.0029) (0.0017) 

Dist_City*beyond 10 miles -0.0090*** -0.0120*** 

 

-0.0089*** -0.0121*** -0.0100*** -0.0098*** 

 

(0.0012) (0.0008) 

 

(0.0012) (0.0018) (0.0012) (0.0013) 

Dist_City*beyond 10 miles 0.0060** 0.0053*** 

 

0.0060** 0.0051** -0.0033 0.0008 

*Post 2008 dummy (0.0025) (0.0018) 

 

(0.0026) (0.0024) (0.0026) (0.0016) 

Dist_City 

  

-0.0091*** 

   

 

   

(0.0012) 

   

 

Dist_City*Post 2008 dummy 

  

0.0055** 

   

 

   

(0.0024) 

   

 

Incre Dist_2nd City -0.0036* 

 

-0.0035* -0.0034* -0.0072*** -0.0038*** -0.0041*** 

 

(0.0008) 

 

(0.0008) (0.0008) (0.0012) (0.0008) (0.0009) 

Incre Dist_2nd City 0.0024 

 

0.0027* 0.0033** 0.0022 -0.0004 -0.0010 

*Post 2008 dummy (0.0016) 

 

(0.0016) (0.0008) (0.0016) (0.0017) (0.0011) 

Urban popu within 25 miles 0.0002*** 

 

0.0002*** 0.0003*** 7.55E-06 0.0002*** 0.0002*** 

 

(4.69E-05) 

 

(4.49E-05) (4.83E-05) (5.44E-05) (4.63E-05) (5.12E-05) 

Urban popu within 25 miles 0.0001 

 

8.23E-05 4.19E-05 0.0002 -0.0004*** -1.60E-05** 

*Post 2008 dummy (0.0001) 

 

(0.0001) (0.0001) (0.0001) (0.0001) (7.26E-05) 

2
3
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Table 3 continued 

Gravity index 2.09E-05*** 

 

2.12E-05*** 1.78E-05*** 2.06E-05*** 1.95E-05*** 1.87E-05*** 

 

(5.68E-06) 

 

(5.67E-06) (5.92E-06) (5.79E-06) (5.68E-06) (6.04E-06) 

Gravity index*Post 2008 dummy -2.10E-05*** 

 

-2.20E-

05*** -1.90E-05*** -2.10E-05*** -1.89E-05*** 

-1.90E-

05*** 

 

(5.71E-06) 

 

(5.70E-06) (5.95E-06) (5.82E-06) (5.68E-06) (6.05E-06) 

Building area % of parcel 0.1001* 0.1266** 0.1015** 0.1386*** 0.1009** 0.0657 0.0973** 

 

(0.0513) (0.0511) (0.0512) (0.0534) (0.0500) (0.0535) (0.0481) 

Distance to highway ramp -0.0055* -0.0071** -0.0051* -0.0052 -0.0042 -0.0051 -0.0036 

 

(0.0033) (0.0033) (0.0033) (0.0034) (0.0032) (0.0033) (0.0031) 

Distance to railway station 0.0005 0.0018 0.0004 0.0018 0.0023 0.0005 -4.42E-06 

 

(0.0036) (0.0036) (0.0036) (0.0037) (0.0035) (0.0036) (0.0034) 

County fixed effects 

    

Yes 

 

 

Census tract fixed effects Yes Yes Yes Yes 

 

Yes Yes 

The post period is 2008 only 

     

Yes  

Shifting the year of change to 2005              Yes 

Root mean squared error 0.6239 0.6239 0.6239 0.6502 0.6169 0.6227 0.6203 

Adjusted R-square 0.2336 0.2314 0.2336 0.5033 0.2508 0.2355 0.2197 

Number of observations 10604 10604 10604 10604 10604 10350 11723 

#: Model I distinguishes parcels not by within 10 miles of the boundaries of urbanized areas with at least 50,000 people, but by within 20 miles of the boundaries of urbanized 

areas with at least 100,000 people. Standard Errors are in parentheses. The dependent variable in this model is the log of per-acre agricultural land prices without structures. 

*, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, respectively. All models include year fixed effects.  

2
4
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significant effect of $30.92 per mile before 2007 to an insignificant $12.97 per mile effect 

after the housing market bust, an almost 60 percent reduction. In other words, due to the 

housing market bust, the single largest source of urban influence became insignificant in 

shaping surrounding farmland values, at least in the immediate short run. The decline is 

universal across parcels that are located within 10 miles from the boundary of urbanized 

areas or that are farther away. In addition, the effects of multiple urban centers are no 

longer significant after 2007
10

. In 2009 and 2010, the only urban influence variable that is 

still significant is the surrounding urban population. 

The validity of the results is tested using multiple robustness checks shown in Table 3
11

. 

Different specifications and different samples are used to construct these robustness 

checks. Model I changes “within 10 miles from the boundary of urbanized areas with at 

least 50,000 people” to “within 20 miles from the boundary of urbanized areas with at 

least 100,000 people”, because semiparametric analysis reveals that the effects of large 

urban centers (with at least 100,000 people) may not disappear until 20 miles away from 

its boundary
12

. I only include the distance to nearest city center in model II to investigate 

                                                 
10

 The significance of the urban influence variables after 2008 is tested using joint-restriction 

Wald test. For example, the F-statistic of distance to nearest city center + distance to nearest city 

center * post 2008 dummy reveals that the proximity to nearest city center is still significant at the 

1% level after 2008, although the magnitude of the coefficient is reduced. However, similar 

results show that the other three urban influence variables, incremental distance to second nearest 

cities, surrounding urban population, and gravity index, are no longer significant after the 

housing market bust at the 10% level.  
11

 Additional robustness checks using township fixed effects reveal almost identical results as the 

main specification shown in Table 2 and thus were not included in Table 3. These results are 

shown in Tables 6 and 7 column (b). 
12

 See Figure 3 for the coefficient of distance to the boundary of urbanized areas from 

semiparametric regressions. Other regression results and corresponding figures for 

semiparametric regressions used to define the hypothetical parcel subject to no influence are 

available from the authors upon request. 
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the significance and contribution of the other three measures of multiple urban influences 

in the total urban premium; model III does not distinguish parcels within 10 or 20 miles 

from the boundary of urbanized areas from those beyond the cutoff; models IV uses the 

log of nominal farmland prices with structures as the dependent variable; model V uses 

county fixed effects rather than census tract fixed effects; model VI tests my assumption 

of the time lag effects by using parcels sold in 2008 as the post period group; and model 

VII assumes the housing market bust happened in 2005 rather than 2007-2008 to examine 

the possibility of falling urban influence due to factors other than the housing market 

bust, such as preference changes.  

 

 

 

Figure 3. Semiparametric Analysis – Miles to the Boundary of Urbanized Areas with At 

Least 100,000 People 
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The results across different specifications can be grouped into four groups. First, models 

I, II, and III using census tract fixed effects and model IV using farmland prices with 

structures yield similar results as the main specification in Table 3: the impact of all of 

the four major urban influence variables except the surrounding urban population 

switched from significant before 2007 to negligible in 2009 and 2010. For example, 

model III reveals that the effect of proximity to the second nearest city center after the 

housing market bust (that is, the sum of the coefficients on Incre Dist_2nd City and Incre 

Dist_2nd City*post-2008 dummy) is statistically insignificant
13

. Secondly, in model V 

with county fixed effects, the proximity variables to nearest and second nearest city 

center are both significant throughout the decade, however the evidence of structural 

change is consistent: the effects are greatly reduced after the housing market bust. 

Comparisons of model V and others also show that county fixed effects obscured the 

value of some important urban influence variable, namely surrounding urban population 

even before the housing market bust. In addition, in model V with county fixed effects, 

the magnitude of the coefficient on distance to the nearest city center is about 30 percent 

higher than that in other model specifications with census tract fixed effects – both before 

and after 2007, suggesting a higher estimate of the urban premium in models with county 

fixed effects. This higher estimate could result from omitted characteristics at the 

subcounty level; however, it may also be possible that due to measurement errors and 

crude functional form, the census tract fixed effects in my main specification captured 

                                                 
13

 For model I, although the coefficient on the variable Incre Dist_2nd City* Post 2008 Dummy is 

not statistically significant, the Wald statistic for incremental distance to nearest city center in 

2009 and 2010 is 0.52, with a p-value of 0.4714, which means the effect of second city center is 

no longer significant after 2008. 
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part of the effect of urban proximity, leading to a lower estimate of the urban premium. 

Thirdly, model VI reveals that there is no significant decline in urban influence in the 

year 2008 compared to 2001-2006, validating my assumption that there is a time lag 

before the housing market bust starting from early 2007 transmitted into related 

surrounding farmland markets. Finally, results of model VII reveal that there is no 

significant change in the effects of the most important influence variable the distance to 

nearest urban center if I assume the housing market bust happened in 2005. This 

supports the notion that there were no fundamental demand concerns other than the 

housing market bust in 2007 that could result in a downward trend in urban influences on 

farmland values since 2001. 

 

 

                                                                                                                        Continued 

Table 4. Comparison of Urban Premiums Before and After the Housing Market Bust – 

Model 0     

 

  Whole sample <10 miles 10-20 miles 30-60 miles 

  Boom Bust Boom Bust Boom Bust Boom Bust 

Total Urban Premium $1947 $1021 $2993 $1670 $2258 $1350 $1158 $669 

  ($1086) ($579) ($1493) ($739) ($1006) ($635) ($465) ($281) 

1) miles to nearest city center 
$1374 $571 $2185 $951 $1631 $741 $721 $351 

($727) ($279) ($865) ($312) ($600) ($252) ($322) ($140) 

2) incremental distance to 

second nearest city center 

$284 $85 $255 $75 $268 $70 $308 $104 

($199) ($54) ($294) ($61) ($217) ($61) ($122) ($45) 

3) surrounding urban 

population 

$231 $368 $390 $662 $294 $541 $112 $215 

($231) ($320) ($328) ($404) ($246) ($399) ($95) ($140) 

4) gravity index 

  

$59 -$2 $165 -$17 $66 -$2 $17 -$1 

($93) ($39) ($183) ($133) ($66) ($2) ($12) ($1) 

         
Number of observations 9079 1517 1293 128 2854 406 2044 478 
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Table 4 continued 

Note: The values of miles to nearest city center, incremental distance to second nearest 

city and gravity index after 2008 are also included in the total value of the urban premium 

although their corresponding coefficients are not significant at 10% level. <10 miles, 10- 

20 miles, and 30-60 miles are the distance from a farmland parcel to nearest city center. 

Standard deviations are in parentheses.  

 

 

To better understand the magnitude of the structural change, I use the regression results 

in Tables 2 and 3 to develop estimates of urban premiums in Tables 4 and 5 following the 

methods illustrated in section III.c. The four main urban influence variables are included 

in the construction of the urban premium even if their coefficients are statistically 

insignificant. From Table 4, I observe that, before 2007 relative to the reference parcel 

not subject to urban influence, the agricultural parcels subject to urban influence on 

average enjoy a $1,947 per acre urban premium, or roughly 43% of the per-acre sales 

prices (without structures). However, after 2008, a sizeable reduction in the urban 

premium occurred: it declined to only $1,021 per acre on average, which is about 23% of 

the average per-acre sales price.  

I also find that, as expected, the urban premium is on average higher for parcels in closer 

proximity to urban centers (Table 4), and the impact of the residential housing market 

bust varied with urban proximity: the difference in the size of the urban premium for 

parcels within 10 miles of the nearest city center was around $1,835 greater than that for 

parcels at least 30 miles away from urban centers before 2007, on average, and this 
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difference shrank to about $1,001 after the housing market bust
14

. In other words, the 

housing market bust has a greater impact on parcels closer to urban centers than those 

farther away, and resulted in some convergence of the size of the urban premium between 

these two groups. Also, previous studies have typically only considered the distance to 

nearest city center when measuring urban influence (Guiling, et al. 2009), yet comparison 

of Table 4 and Table 5 model II reveals that not accounting for the joint effects of 

proximity to multiple urban centers may significantly underestimate the size of the urban 

premium by as much as 17%, at least in periods of strong housing market growth: before 

2007, the total urban premium would drop to $1,627 on average without three measures 

for multiple urban centers, including the incremental distance to second nearest city 

center, surrounding urban population, and the gravity index. This highlights the 

significant undervaluation of the effects of the urban influences when only the distance to 

nearest city center is included, which is common in previous studies.  

Measures of urban premiums across different specifications shown in Table 5 are fairly 

robust: agricultural land parcels in all specifications experienced, on average, a 

significant decline in urban premium after the housing market bust, by more than half for 

models with census tract fixed effects.  Although the absolute dollar value for the urban  

                                                 
14

 Alternative specifications of urban influences yield similar results: e.g. the urban premiums for 

parcels in MSA counties are about 1.5 times that for parcels in non-metropolitan counties, on 

average. 
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Table 5. Robustness Checks of Predicted Urban Premium Across Different Hedonic Models 
Note: The values of miles to nearest city center, incremental distance to second nearest city, surrounding urban population and gravity index 

are also included in the construction of urban premium although their corresponding coefficients are not significant at 10% level. Standard 

deviations are in parentheses.  

 

Model I Model II Model III Model IV Model V Model VI Model VII 

  Boom Bust Boom Bust Boom Bust Boom Bust Boom Bust Boom 2008 01-04 06-10 

Total Urban 

Premium 

 

$1993 $1136 $1627 $959 $1829 $826 $3379 $1685 $2273 $1675 $2056 $1899 $2016 $1745 

($1127) ($693) ($810) ($420) ($1028) ($456) ($2292) ($1513) ($1111) ($670) ($1128) ($870) ($1127) ($728) 

1) miles to 

nearest city 

center 

$1417 $633 $1627 $959 $1296 $465 $2355 $978 $1730 $1079 $1509 $1734 $1430 $1403 

($770) ($367) ($810) ($420) ($694) ($219) ($1601) ($774) ($882) ($871) ($804) ($871) ($765) ($626) 

2) incremental 

distance to 

second nearest 

city center 

$282 $119 

  

$262 $73 $511 $5.3 $487 $447 $290 $311 $309 $270 

($197) ($75) 

  

($184) ($46) ($454) ($4.8) ($332) ($278) ($201) ($205) ($221) ($174) 

3) surrounding 

urban 

population 

$238 $387 

  

$218 $290 $437 $710 $6.3 $151 $206 -$147 $227 $71 

($234) ($327) 

  

($217) ($253) ($429) ($802) ($6.2) ($128) ($203) ($129) ($227) ($60) 

4) gravity 

index 

$56 -$2 

  

$54 -$2 $76 -$8 $50 -$2 $51 $1.25 $49 $0.24 

($87) ($36) 

  

($85) ($32) ($105) ($164) ($81) ($31) ($81) ($37) ($81) ($9) 

       

  

    

  

Number of 

observations 9078 1517 9086 1477 9079 1517 8558 1513 9083 1517 9079 1262 6271 5445 

3
1
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premium is much higher for model IV, the total urban premium accounts for 45.8% of the 

prices with structures on average, which is consistent with model 0 using prices without 

structures. Consistent with previous discussions on the magnitude of the coefficients, 

model V with county fixed effects yields a much higher estimate of the urban premium. 

Model VI shows that in the year 2008, there is no evidence of significant decline in the 

urban influence and the proximity to nearest city center remains the most important 

contributor of the urban influence variables. In addition, model VII reveals that the urban 

premium stayed fairly constant before 2007
15

, and the significant downward pressure was 

imposed by the housing market bust rather than other demand issues.  

These results also reveal that there is rich spatial heterogeneity in the parcel-level 

measure of urban premium from one parcel to another: prior to 2007 the urban premium, 

with an average of $1,947 per acre (Table 4 whole sample), ranges from $145 per acre for 

parcels that are more than 50 miles away from the nearest city center to almost $8,000 

per acre for parcels within urbanized areas. A map of estimated urban premiums based on 

the results of model 0 (Table 4) is included in Figure 4 in the following. This rich spatial 

heterogeneity of the urban premium suggests that even in Ohio where almost all parcels 

are subject to some degree of urban influence, the actual magnitude of the value of the 

urban influence varies substantially across space. 

I previously described the potential for omitted variable bias arising from spatial 

dependence, as the land parcels in my data are spatially ordered. I tested for spatial 

autocorrelation using Moran’s I test, where a positively significant I would indicate that  

                                                 
15

 Another robustness check using 2001 to 2004 as the pre period and 2006 to 2008 as the post 

period reveal that the average urban premium between 2006 and 2008 is $1584. 
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Figure 4. Spatial Distribution of the Urban Premium Before 2007 and After 2008  
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Model (a) (b) (c) (d) 

Dist_City*within 10 miles -0.0096*** -0.0092*** -0.0094*** -0.1300*** 

 

(0.0015) (0.0012) (0.0013) (0.0229) 

Dist_City*within 10 miles*Post 

2008 dummy 0.0038 0.0051** 0.0050*** 0.0991** 

 

(0.0027) (0.0026) (0.0016) (0.0492) 

Dist_City*beyond 10 miles -0.0102*** -0.0081*** -0.0087*** -0.1370*** 

 

(0.0013) (0.0011) (0.0011) (0.0218) 

Dist_City*beyond 10 miles*Post 

2008 dummy 0.0049* 0.0051** 0.0070*** 0.1111** 

 

(0.0026) (0.0026) (0.0011) (0.0472) 

Incre Dist_2nd City -0.0037*** -0.0038*** -0.0053*** -0.0252*** 

 

(0.0008) (0.0007) (0.0007) (0.0068) 

Incre Dist_2nd City*Post 2008 

dummy 0.0016 0.0038** 0.0082*** 0.0123 

 

(0.0017) (0.0017) (0.0012) (0.0159) 

Urban population within 25 miles 0.0002*** 0.0003*** 0.0002*** 0.0003*** 

 

(5.13E-05) (4.4E-05) (4.51E-05) (4.44E-05) 

Urban popul within 25 miles 7.99E-05 0.0001 0.0002** 9.82E-05 

*Post 2008 dummy (0.0001) (0.0001) (8.41E-05) (0.0001) 

Gravity index 1.85E-05*** 2.62E-05*** 2.2E-05*** 1.15E-05* 

 

(5.68E-06) (5.65E-06) (5.63E-06) (6.46E-06) 

Gravity index*Post 2008 dummy -1.90E-05*** -2.70E-05*** -2.3E-05*** -1.20E-05* 

 

(5.86E-06) (5.68E-06) (5.66E-06) (6.47E-06) 

Building area % of parcel 0.0793 0.0961* 0.1112** 0.0592 

 

(0.0534) (0.0518) (0.0511) (0.0523) 

Distance to highway ramp -0.0021 -0.0045 -0.0019 -0.0129*** 

 

(0.0034) (0.0033) (0.0032) (0.0050) 

Distance to railway station -0.0008 -0.0045 -0.0045 0.0006 

 

(0.0038) (0.0036) (0.0036) (0.0086) 

     Year fixed effects  yes yes 

 

yes 

Price deflator using quarterly 

Housing Price Index 

  

yes 

 Functional form Log-linear Log-linear Log-linear Log-log 

Spatial fixed effects Block group Township Census tract Census tract 

Root mean squared error 0.6170 0.6301 0.6200 0.6244 

Adjusted R-square 0.2505 0.2216 0.2432 0.2324 

Number of observations 10604 10604 10817 10604 

                                                                                                                               Continued 

Table 6. Additional Robustness Checks of Hedonic Regressions                         
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Table 6 continued 

Note: the dependent variable in this model is the log of per-acre agricultural land prices without 

structures. *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. 505 census tract fixed effects are included in the model. Column (a) uses 1303 block 

group fixed effects instead of 505 census tract fixed effects, while column (b) uses 315 township fixed 

effects. Column (c) uses quarterly Housing Price Index from Federal Housing Finance Agency, while 

the other specifications just use year fixed effects without a price deflator. In column (d), a log-log 

specification is adopted where all proximity variables on the right hand side enter the regression in a 

logarithm form.  

 

 

the variable value at each parcel tends to be similar to nearby neighbor parcels (Anselin 

and Hudak 1992). The global and local spatial autocorrelation by Moran’s I test and the 

Geary’s C test both indicated that although some explanatory variables are spatially 

correlated, the residuals from the hedonic regressions exhibit no patterns of spatial 

autocorrelation. The various measures of urban influences and agricultural productivity 

appear to adequately control for any inherent spatial correlation. Additional robustness 

checks using block group fixed effects shown in Tables 6 and 7 column (a) yield similar 

results as model 0, indicating that census tract fixed effects in my main specification 

could adequately control for omitted variables at the subcounty level.  

The standard hedonic price method assumes linear parameterization and fixed functional 

form, which may introduce bias when the functional form for certain explanatory 

variables is not correct. To address this potential misspecfication bias, I ran two 

additional robustness checks. The first one adopts a log-log specification rather than the 

log-linear form used in all previous regressions, and the results are shown in Tables 6 and 

7 column (d). The second one involves propensity score matching (PSM), which does not 
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assume a particular functional form for the price function (Heckman and Navarro-Lozano 

2004).  

To implement matching, I constructed treatment and control groups based on distances to 

nearest city center, and ran several difference-in-difference regressions and regular 

regressions on the matched sample using different matching algorithms and different 

definitions of proximity to urban centers. Although the magnitude of urban premium is 

not the same, these two robustness checks both yield qualitatively similar conclusion as 

the main specification that the value of being close to urban areas significantly declined 

due to the recent housing market bust.  

 

Conclusion 

Because farm real estate values are such significant components of the farm sector 

balance sheets and farm household investment portfolios, understanding the key 

determinants of changes in U.S. farmland prices are of perennial interest to policymakers. 

Yet, little is known about how significant changes in competing land markets affect 

farmland values. With more than one-third of farmland estimated to be subject to urban 

influences, the effects of changes in demand for residential housing markets are of special 

interest. In particular, quantifying the effects of the housing market ‘bust’ offers unique 

insights into the dynamics of the relative importance of different determinants of 

farmland values, and helps inform on the linkages between urban and rural land markets. 

By controlling for spatial heterogeneity using localized fixed effects and developing a 

parcel level measure of “urban premium” (the value attributable to urban demands for
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Table 7. Predicted Urban Premium Across Additional Robustness Checks in Table 6 

Note: standard deviations in parenthesis 

 

(a) (b) (c) (d) 

  Boom Bust Boom Bust Boom Bust Boom Bust 

Total Urban Premium 

 

$1927 $1363 $1985 $906 $1931 $680 $1261 $718 

($1177) ($743) ($1089) ($637) ($1073) ($698) ($948) ($539) 

1) miles to nearest city 

center 

$1404 $874 $1355 $489 $1301 $492 $689 $139 

($849) ($471) ($721) ($330) ($720) ($360) ($516) ($100) 

2) incremental distance to 

second nearest city center 

$292 $216 $304 -$5 $376 -$324 $158 $96 

($217) ($148) ($206) ($3) ($264) ($200) ($156) ($88) 

3) surrounding urban 

population 

$182 $275 $256 $424 $203 $515 $374 $487 

($189) ($250) ($239) ($353) ($198) ($402) ($377) ($427) 

4) gravity index 
$50 -$1 $70 -$2 $52 -$3 $40 -$3 

($81) ($21) ($107) ($30) ($82) ($41) ($64) ($51) 

       

  

Number of observations 9071 1517 8902 1476 9190 1621 9082 1517 

 

3
7
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developable land), this study provides the first concrete evidence of a decline in the effect 

of urban influences on surrounding farmland values shortly after the housing market bust.  

Using a hedonic modeling approach and farmland parcel sales data in Western Ohio, this 

study estimates the magnitude of the urban premium at $1,974 per acre on average before 

2007 and $1,021 per acre on average in 2009 and 2010, a reduction in the value of 

proximity to urban areas from more than 40 percent to about 20 percent of farmland 

values as a result of the residential housing market bust. In other words, farmland was not 

immune to the residential housing bust; the portion of farmland value attributable to 

urban demands for developable land was almost cut in half shortly after the housing 

market bust in 2009-2010. My results also demonstrated that not accounting for multiple 

urban centers using variables such as proximity to the second nearest city center can 

underestimate the contribution of the urban premium by as much as 17 percent, at least in 

periods of strong residential housing market growth. In addition, compared to models 

with fine-scale, local spatial fixed effects, models with county fixed effects tend to lead to 

a less conservative estimate of the urban premium. By removing the effects of time-

invariant omitted variables at the census tract level to achieve unbiasedness, my main 

specification relies on the variation within census tracts, which could lead to an 

underestimate of the total effect as pointed out by (Abbott and Klaiber 2011). In other 

words, the urban premium shown in my paper could be just a partial effect. Furthermore,  

my  analysis  shows  that  matching,  although  free  from  the  functional form 

specification bias, doesn’t add much to my analysis. 
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Despite the decline in the significance and magnitude of the urban premium after 2008, 

farmland prices remained relatively steady over my study period - a trend that is 

comparable to previous studies that suggest rural housing values have declined more than 

farm real estate (land with structures) in most U.S. states as a result of the urban 

residential housing market bust (Nickerson, et al. 2012).
16

 Increased commodity demands 

over this period appear to have contributed to the trend; the significant effect of proximity 

to ethanol plant after 2008, for example, indicates that proximity to new commodity 

buyers may have substantially obscured the impact on farmland values of the downturn in 

the urban residential housing market. my findings of a significant decline in the impacts 

of urban influences in 2009 and 2010 are short-run effects, and do not necessarily suggest 

urban influences no longer matter for surrounding farmland parcel values in the long run. 

An analysis of the long-term impacts of the housing market bust on surrounding farmland 

values would require many additional years of data and thus is beyond the scope of this 

study. 

 

 

  

                                                 
16

 The number of sales of farmland parcels in Western Ohio dropped by 40% as a result of the 

housing market bust from an average of 1502 annually between 2001-2006 to 904 on average 

over 2008-2010. 
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Chapter 2: The Expanding Ethanol Market and Farmland Values: Identifying the 

Changing Influence of Proximity to Agricultural Market Channels 

 

Introduction 

Farmland values represent over 80 percent of the value of the farm sector assets, and 

farmland represents the largest asset in the typical farm household investment portfolio 

(Nickerson, et al. 2012). As a result, U.S. farmland values and the factors influencing 

these values have long been of the subject of a great deal of economic research 

(Nickerson, et al. 2012). With the strong federal support represented by the Energy Policy 

Act of 2005 and the Energy Independence and Security Act of 2007, the number of 

ethanol plants saw a four-fold increase along with a dramatic increase in U.S. ethanol 

production, making U.S. the largest ethanol producer in the world. These macroeconomic 

trends in the ethanol market are speculated to have elevated agricultural commodity 

prices, farmers’ expectations about future profits, and farmland values (Low and 

Isserman 2009; Wallander, et al. 2011). The growing biofuels market, along with other 

factors such as historically low interest rates (Schnitkey and Sherrick 2011) and rising 

demand for U.S. grain exports (Gloy, et al. 2011), helped fuel the recent remarkable rise 

in farmland values in Corn Belt states. The steady increase in rural farmland values in the 

Corn Belt states indicates that these macroeconomic shifts in agricultural markets seem 

significant enough to offset the downward pressure resulting from the recent residential 
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housing market bust (Zhang and Nickerson forthcoming). Understanding how farmland 

values respond to these agricultural market changes, and in particular to expanding 

ethanol production, is of critical policy interest given the importance of farmland values 

for the farm sector and farm household wellbeing. 

Numerous studies have analyzed the farm and non-farm determinants of farmland values, 

including soil quality measures (Huang, et al. 2006; Palmquist and Danielson 1989), 

urban proximity (Livanis, et al. 2006; Shi, et al. 1997), environmental amenities (Bastian, 

et al. 2002), wildlife recreational opportunities (Henderson and Moore 2006), zoning 

(Chicoine 1981), and farmland protection easements (Nickerson and Lynch 2001). In 

contrast, evidence of the potential impact of access to agricultural market channels, such 

as proximity to ethanol plants or grain elevators, is limited. Despite some recent research 

on the impacts of the ethanol industry on crop prices (Gallagher 2006; McNew and 

Griffith 2005), most previous studies of farmland markets have not considered the 

influence of agricultural market variables such as proximity to ethanol plants. Of the 

several studies (Blomendahl, et al. 2011; Henderson and Gloy 2009; Nehring, et al. 2006) 

that have considered the capitalization effect of proximity to ethanol plants on farmland 

values, all employ the standard hedonic price model, which, despite its popularity, suffers 

from a number of limitations in terms of identification (Bajari, et al. 2012). In particular, 

the location of an ethanol plant is a non-random process affected by surrounding 

locational features such as the availability of feedstock nearby and the access to road 

networks (Lambert, et al. 2008). As a result, the estimates from a simple hedonic model 

may suffer from sample selection bias due to systematic differences between those 
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parcels that are located nearer versus farther away from an ethanol plant (Imbens and 

Wooldridge 2009). The measure of proximity to nearest ethanol plant that is commonly 

used in previous studies may also be endogenous due to the non-random site selection 

process of ethanol plants. 

The study closest in spirit to this study is Towe and Tra (2012), which used a difference-

in-difference propensity score matching estimator to quantify the effect of the 2005 

ethanol mandate into farmland values. They find that new ethanol facilities had no effect 

on nearby farmland values prior to the mandate (2002-2004) but had significant effects 

after the policy (2004-2006). However, there are a number of important differences that 

distinguishes my work. First, Towe and Tra (2012) aim to examine average effect of the 

2005 federal ethanol mandate with a focus on its creation of exuberant confidence in the 

expected farmland returns beyond market fundamentals, while this study seeks to 

quantify the spatial-explicit capitalization of new ethanol plants in surrounding farmland 

values due to reduced . Second, Towe and Tra (2012) used farmer-reported survey data 

on land values while I use actual arms-length sales records of farmland parcels. Finally, 

the longer span from 2001 to 2010 in my dataset, as opposed to 2002-2006 in Towe and 

Tra (2012), allows me to empirically investigate the role of ethanol sector during the 

recessionary time due to the recent housing market bust. 

The objective of this study is to identify the marginal value of proximity to ethanol plants 

and other agricultural market channels and to test for structural change in these effects 

before and after the ethanol market expansion in Ohio in late 2006-early 2007. I 

hypothesize that changes in agricultural output markets, including increased demand for 
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biofuels and grain exports, were capitalized into agricultural land values and thus a 

greater influence of proximity to ethanol plants after their developments is expected. This 

study uses parcel-level data on agricultural land sales from 2001 to 2010, a period which 

encompasses the expansion of ethanol facilities in Ohio, for a 50-county region of Ohio 

that encompasses the great majority of grain production in Ohio.  

I address the aforementioned sample selection bias and potential endogeneity of 

proximity to ethanol plants using both matching and instrumental variables (IV) 

approaches. Specifically, for each of the three types of agricultural market channels, I use 

propensity score matching (PSM) to construct a matched sample that controls for 

systematic differences in observable characteristics between parcels that are within close 

proximity to these destinations and those located farther away. For grain elevators and 

agricultural output terminals, standard hedonic regressions on the matched sample are 

used to test for the relative effect of proximity to these destinations has changed due to 

the constructions of ethanol plants. Matching alone, however, does not address the 

potential endogeneity of the location of ethanol plants. Instead, I use instrumental 

variables regression on the matched sample for ethanol plants to test for the effects of 

proximity to newly constructed ethanol plants To control for this endogenous proximity 

measure, I construct two instruments that are based on the idea of spatial competition 

among agricultural market channels. Specifically, given the significance of transportation 

costs in the value of agricultural commodities (Fackler and Goodwin 2001), a new 

ethanol plant should find it optimal to locate a certain distance away from other 

agricultural markets in order to minimize competitive pressure and maximize their 
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market area. With this in mind, I construct two instruments: capacity weighted average 

distances to other, non-nearest ethanol plants and capacity-weighted distances to other 

agricultural output terminals. These instruments, which capture the competitive pressure 

faced by a particular ethanol plant, would affect the site selection of this plant and thus 

the distances from it to farmland parcels, but would not directly impact the value of 

farmland parcels closer to this plant since effects of proximity to ethanol plants are 

relatively local (Gallagher 2006).  

The main result provides evidence for positive and significant marginal value of being 

within close proximity to an ethanol plant following construction of seven ethanol plants 

in or near western Ohio in late 2006-early 2007. Specifically, results from the 

instrumental variables estimation with the matched sample suggest that the marginal 

value of farmland increases by $46 per mile per acre within proximity to the nearest 

ethanol plant following construction of these plants. By comparison, the effect of 

proximity to nearest city center and second nearest city is $30-66 and $30-40 per mile per 

acre, respectively. Results also reveal a stronger influence of proximity to grain elevators 

as well as a reduction in the magnitude and significance of the effect of proximity to 

agricultural terminals after early 2007 due to competition from the newly constructed 

ethanol plants. Specifically, I find that the marginal value of being close to an agricultural 

terminal reduces from $48 to $30 per mile per acre after early 2007. These results 

demonstrate the growing importance of the biofuels market for farmland values. A 

comparison between the standard hedonic estimates and the instrumental variables 

estimates confirms the endogeneity of proximity to ethanol plants, which, if left 
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uncontrolled for, would result in a downward bias in the standard hedonic estimates due 

to unobserved characteristics. 

This study makes an important contribution to the literature on farmland valuation and 

the policy debate about the welfare effects of ethanol market expansion. While the 

ethanol market expansion results in elevated commodity prices, farmer income, and 

farmland values as shown in this study, it has been criticized for its high dependency on 

government subsidies and potential negative impacts on environmental quality through its 

incentives for corn expansion (Cappiello and Apuzzo 2013; Tiffany 2009). To the best of 

my knowledge, this study is the first to provide formal evidence of the effects of ethanol 

market expansion on farmland values during a strong recessionary time that exerted 

substantial downward pressure – the common wisdom that the rise of ethanol industry 

has helped the farm sector withstand the downturn (Nickerson, et al. 2012). Second, by 

combining matching and instrumental variables approaches, this study directly addresses 

the potential endogeneity of the proximity of farmland parcels to ethanol plants and is 

thus subject to less bias than the commonly used hedonic estimates, which typically 

yields a much lower capitalization effect (Blomendahl, et al. 2011; Henderson and Gloy 

2009). 

 

Theoretical Framework 

Among the most influential theories that help explain the value of land is Ricardo’s 

economic theory of rent (Ricardo 1996). Ricardo’s key insight was that land which 

differs in quality and which is limited in supply generates rents that arise from the 
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productive differences in land quality or in differences in location. Farmland value is 

comprised of the net present value of economic returns to land. The capitalization 

formula is written as 

𝑉𝑖𝑡 =  𝐸𝑡 ∑
𝑅𝑖𝑠

(1+ 𝛿𝑡)𝑠−𝑡𝑠 ,       𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑡, 𝑡 + 1, …               (9) 

In this formulation, the value of agricultural land parcel i at time t 𝑉𝑖𝑡 is defined as the 

expected future annual returns to farmland R discounted at rate t. Any factor affecting the 

farmland returns R, either in terms of agricultural productivity, recreational opportunities 

or potential profitability of development for urban uses, would impact the farmland 

values. Formally, the farmland returns 𝑅𝑖𝑡 can be approximated by a linear combination 

of parcel attributes and location characteristics 𝑿𝒊𝒕 using Taylor expansion; a common 

linear specification is defined as 

𝑅𝑖𝑡 =  𝛽′𝑿𝒊𝒕 + τt + ηit                           (10) 

where τt is time fixed effects and ηit is the remaining normally distributed error term. 

The vector of parcel attributes and location characteristics 𝑿𝒊𝒕 can be further 

decomposed into four categories: (1) the parcel-specific agronomic variables 𝑨𝒊𝒕 such as 

soil quality and slope of the parcel; (2) the natural amenities variables 𝑵𝒊𝒕 such as varied 

topography and proximity to surface water; (3) the urban influence variables 𝑼𝒊𝒕 such as 

surrounding urban population and access to highway; and (4) the newly emerging set of 

agricultural market influence variables 𝑴𝒊𝒕 such as proximity to ethanol plants, grain 

elevators, and agricultural product terminal ports, so that 

𝑿𝒊𝒕 =  𝑨𝒊𝒕 +  𝑵𝒊𝒕 +  𝑼𝒊𝒕 +  𝑴𝒊𝒕                    (11) 

Therefore I get the following model specification: 
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𝑉𝑖𝑡 =  𝐸𝑡 ∑ 𝑓(𝑨𝒊𝒔, 𝑵𝒊𝒔, 𝑼𝒊𝒔, 𝑴𝒊𝒔; 𝑠 𝛿𝑡) , 𝑤ℎ𝑒𝑟𝑒 𝑠 = 𝑡, 𝑡 + 1, …        (12) 

The study region - western Ohio - is fairly homogenous in soil type, slope of the land, 

climatic conditions and surrounding land uses. As a result little variation in generating 

recreational income is expected among all the parcels. Hence the urban influence 

variables 𝑼𝒊𝒕 and the agricultural market influence variables 𝑴𝒊𝒕 are of particular interest. 

Agricultural land closer to urban fringe could sell for a premium, an option value that 

equals to the expected returns from the conversion into urban development at a future 

date (Capozza and Helsley 1989). The recent Great Recession may greatly diminish the 

urban option conversion value of the agricultural land, and as a result, a declining relative 

significance of the urban influence variables 𝑼𝒊𝒕 in determining the farmland values is 

expected. 

At the same time, much has changed in terms of agricultural market influence variables. 

Most notably, ethanol has been embraced enthusiastically as a promising alternative 

renewable energy (Low and Isserman 2009). Federal energy policies supporting the 

production of biofuels have increased demand for corn, which elevated corn and other 

agricultural commodity prices (Nickerson, et al. 2012). Previous studies have identified 

increased corn basis prices in the vicinity of an ethanol plant (McNew and Griffith 2005), 

which could translate into higher farmland values through capitalization. This increased 

demand, in part met by the supplies from local grain elevators, could also enhance the 

positive impact of the proximity to the grain elevators on farmland values. By attracting 

corn supplies from surrounding land parcels or nearby grain elevators, the new ethanol 

plants may constitute a competing source of demand for grains for traditional terminal 
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markets (Nickerson, et al. 2012). However, whether the competition from ethanol plants 

is strong enough to offset the benefits of increased grain exports to China for the 

agricultural terminal markets is an empirical question. 

 

Econometric Challenges and Empirical Strategy 

The Identification Problem in the Hedonic Price Estimation 

With Rosen's (1974) seminal work as a backdrop, the hedonic price method has become 

the workhorse model for valuing local public goods and environmental amenities (Bishop 

and Timmins 2011). Specifically, hedonic regression is the most commonly used 

approach for estimating the impact of environmental amenities and disamenities on real 

estate or land values (see Hite, et al. (2001); Kohlhase (1991); Palmquist (1989) for 

applications and Palmquist (2005) for a comprehensive review). Almost all of 

aforementioned literature on farmland valuation has employed the land value hedonics 

model. A common specification is the linear form defined as 

𝑉𝑖𝑡 =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕+  𝛽𝑅
′𝑹𝒊𝒕 +  𝛽𝑀

′𝑴𝒊𝒕 + 𝜏𝑡 +  휀𝑖𝑡,     (13) 

where the agricultural land values 𝑉𝑖𝑡 are approximated by the nominal sale prices of the 

agri-cultural land without structures 𝑃𝑖𝑡. In this setting, agricultural land is regarded as a 

differentiated product with a bundle of agricultural-quality and location characteristics, 

and each characteristic is valued by its implicit price (Nehring, et al. 2006; Rosen 1974). 

Despite its popularity, the hedonic pricing method suffers from a number of well-known 

econometric problems (Bajari, et al. 2012; De Vor and De Groot 2011). In my settings, 

on one hand, the location selection of an ethanol plant is a non-random process affected 
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by the availability of feedstock nearby, the access to navigable rivers, highways, or 

railroads, the access to sewer service and natural gas pipeline, and the extent of the 

product markets (Lambert, et al. 2008), which could lead to a upward bias for the hedonic 

estimates. Arguably, agricultural parcels closer to the ethanol plants could have better soil 

quality and easier access to the transportation network than that of those parcels further 

away. On the other hand, areas with low corn basis levels or low competitive pressure 

may also be chosen as sites for ethanol plants to minimize the land purchase costs (Towe 

and Tra 2012) or to minimize spatial competition with other agricultural markets, which 

would lead to a downward bias in the hedonic estimates. As a result, the estimates from a 

simple hedonic model have two interrelated econometric problems: first, with no control 

for systematic differences between those parcels that are located nearer versus farther 

away from an ethanol plant may be biased due to the unequal distribution of the 

covariates across the treatment and control subsamples (Imbens and Wooldridge 2009). 

Second, due to the non-random site-selection process of ethanol plants, the distance from 

farmland parcels to nearest ethanol plant may also be endogeneous.  

 

Quasi-Experimental Design 

I address the potential sample selection bias and endogeneity of distance to ethanol plant 

by employing a two-tiered quasi-experimental design which combines matching and 

instrumental variables (IV) approaches. Specifically, I use matching to address the 

sample selection on observables, and then use two instruments based on the idea of 

spatial competition to address the residual endogeneity of the proximity to ethanol plants, 
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recognizing the potential limitations of matching in dealing with bias resulting from 

unobservables.  

Matching is an increasingly popular procedure to control for sample selection bias due to 

observables (Imbens and Wooldridge 2009; Zhao 2004), which selects treated 

observations and control observations with similar characteristics, by covariates (Rubin 

1980), or by propensity score (Rosenbaum and Rubin 1983). Zhao (2004) finds that 

propensity score matching (PSM) has smallest bias and performs well for a relatively 

large sample given his specific design. With a sample size of over 10,000, this study, as a 

result, uses PSM as the main matching technique. For each of the three types of 

agricultural market channels, I use PSM to construct treatment and control subsamples 

based on their proximity to these agricultural markets and then use regressions on the 

matched sample to test for the hypothesis that the relative effect of proximity to these 

destinations has changed since the construction of all seven ethanol plants in late 2006-

early 2007. For grain elevators and agricultural output terminals, standard hedonic 

regressions on the matched sample are used, which, however, would yield biased 

estimates for ethanol plants due to their non-random site-selection problem. To address 

the residual endogeneity of proximity to ethanol plants, I construct two instruments that 

are based on the idea of spatial competition among agricultural market channels and 

estimate instrumental variables regressions on the matched sample instead.  
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Propensity Score Matching 

The propensity score matching (PSM) estimator, as a way to identify average treatment 

effect, has gained popularity in land use and agricultural economics literature in recent 

years (Bento, et al. 2007; Lynch, et al. 2007). This study's application involves a two-step 

matching strategy. First, it trims the pre-construction sample to remove extremely 

dissimilar parcels with those sold after the month of construction of the nearest ethanol 

plant using one to four (oversampling) nearest neighbor matching technique suggested by 

Caliendo and Kopeinig (2008). Specifically, the propensity score (the probability of 

being sold after the month of construction of the nearest ethanol plant given observed 

parcel attributes 𝐗𝐢𝐭) is calculated using a logit model in which treatment is modeled as a 

function of parcel attributes and other location characteristics, including parcel size, soil 

suitability, proximity to nearest employment center, proximity to nearest highway, 

surrounding land uses, and neighborhood population density. I further dropped parcels 

with propensity scores not on common support and those with propensity scores greater 

than 0.9 or lower than 0.05, as recommended by Crump, et al. (2009). Similar sample 

trimming technique has been used by Busso, et al. (2013). 

With the trimmed sample, I then construct the treatment and control subsamples based on 

the proximity to a given type of market channels. Specifically, with a priori defined 

cutoff value for distance which defines proximity, parcels that are located within this 

cutoff distance to agricultural markets are assumed to be in the treatment group. These 

parcels are then matched with those parcels located farther away than the cutoff distance 
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following the one to four nearest neighbor PSM technique illustrated above. The cutoff 

distances used to define proximity to ethanol plants, grain elevators, and agricultural 

output terminals are 10 miles, 5 miles, and 15 miles, respectively. These cutoff values are 

determined using semiparametric regressions and the covariate imbalance tests.
1
 

The validity of the PSM approach hinges on the assumption that the model specification 

is correct and all relevant conditioning variables have been included in the PSM model 

(Diamond and Sekhon 2013). As a result, to ensure the main results do not depend 

crucially the particular matching methodology, I conduct multiple robustness checks by 

changing the matching algorithms (e.g., using covariate matching using Mahalanobis 

metric (Rubin 1980)), altering the parameters of PSM (use one or two nearest neighbors 

instead of four), or employing longer or shorter cutoff distances used to define proximity 

to agricultural market channels. 

 

Instrumental Variables Regressions on the Matched Sample 

Following Imbens and Wooldridge (2009) and for each of the three matched samples, 

regressions on the matched samples are used to test for a structural change in the 

influence of proximity to a given type of market channel before and after construction of 

the ethanol plant. Through matching, this study constructed the counterfactual control 

subsample for each type of agricultural market channel, which differs from the treatment 

subsamples only in the proximity to this type of market channel. For grain elevators and 

agricultural output terminals, standard hedonic regressions on the matched samples are 
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used to test for the relative effect of proximity to these destinations has changed due to 

constructions of ethanol plants. In particular, I use the following specification: 

𝑃𝑖𝑡 =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕+  𝛽𝑅
′𝑹𝒊𝒕 +  𝛽𝑀

′𝑴𝒊𝒕 + 𝛽𝑀_𝑃𝑂𝑆𝑇
′𝑴𝒊𝒕 ∗ 𝐷_𝑃𝑂𝑆𝑇 + 𝜏𝑡 +  휀𝑖𝑡,     

(14) 

where 𝐷_𝑃𝑂𝑆𝑇 is a binary time dummy indicating that the parcel is sold after the month 

of construction of nearest ethanol plants. The coefficient,  𝛽𝑀, on variables like distances 

to nearest grain elevators or agricultural terminals captures the capitalization effects of 

proximity to these destinations before late 2006-2007, while 𝛽𝑀_𝑃𝑂𝑆𝑇, the coefficient on 

the interaction term between these proximity variables and the time dummy, represents 

the significance and magnitude of the structural change in their effect. 

For the matched sample constructed based on proximity to ethanol plants, standard 

hedonic estimates could be biased due to the potential endogeneity of the location of 

ethanol plants. The endogeneity mainly results from the fact that the location of ethanol 

plants are more likely to be in areas with abundant corn supply or better soil quality, 

which would also affect the value of these neighboring farmland parcels. However, 

personal communications with managers of all seven ethanol plants in or near western 

Ohio reveal that abundant corn supply is only one factor in the site-selection process; 

other equally important factors include the access to highway and railway, and access to 

sewer service and natural gas pipeline. An ideal location of an ethanol plant would 

require that all these factors are satisfied, which rules out remotely rural area without 

sewer system and leaves me towns and villages as candidate sites. Figure 10 in the 

Appendix A plots the percentage of corn acreage within 50 miles for all towns with 
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access to both railways and natural gas pipelines. It reveals that after controlling for these 

factors and beyond a threshold on county-level corn production, there is no systematic 

correlation between corn supply and the location of ethanol plants, which suggests that 

the endogeneity problem of the proximity to ethanol plants may not be serious. 

Nonetheless, this anecdote evidence does not clear the endogeneity concern. To control 

for the potential residual endogeneity of the proximity to the nearest ethanol plant, I 

construct two instruments based on the idea of spatial competition among agricultural 

market channels. Previous studies have shown that transportation costs account for a 

significant fraction of the value of the agricultural commodities (Fackler and Goodwin 

2001). Due to existence of transportation costs, a standard result from the models of 

spatial competition is the principle of maximum differentiation: each firm has an 

incentive to locate farther away from its rivals to avoid price competition (d'Aspremont, 

et al. 1979). Specifically, transportation costs imply a new ethanol plant should find it 

optimal to locate a certain distance away from other agricultural market channels in order 

to maximize their market area. With this in mind, I construct two instruments: capacity 

weighted average distances to other, non-nearest ethanol plants and capacity-weighted 

distances to other agricultural output terminals. A negative correlation between these two 

instruments and the endogenous distance to nearest ethanol plant variable is expected due 

to the spatial competition. Similar instruments are used in the urban economics literature: 

for example, in a location sorting model, Bayer and Timmins (2007) used the fixed 

attributes of other locations as instruments for the share of individuals who choose a 

particular location as the exogenous attributes of other locations influence the demand for 



55 

 

the specific location via the sorting equilibrium. These instruments, which capture the 

competitive pressure faced by a particular ethanol plant, would affect the site selection of 

this plant and thus the distances from it to farmland parcels, but would not directly impact 

the value of farmland parcels closer to this plant since effects of proximity to ethanol 

plants are relatively local (Gallagher 2006). In other words, an instrumental variables 

regression on the matched sample rather than a standard hedonic regression is estimated 

to test for the effects of proximity to newly constructed ethanol plants. Specifically, I 

employ a two stage least squares approach and estimate the following equations: 

𝑴𝒊𝒕 =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕+  𝛽𝑅
′𝑹𝒊𝒕 +  𝜋𝑍

′𝒁𝒊𝒕 + 𝜏𝑡 +  𝑒𝑖𝑡,    (15a) 

𝑴𝒊𝒕 ∗ 𝐷_𝑃𝑂𝑆𝑇 =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 + 𝛽𝑈

′𝑼𝒊𝒕+  𝛽𝑅
′𝑹𝒊𝒕 +  𝜋𝑍

′𝒁𝒊𝒕 + 𝜏𝑡 +  𝜖𝑖𝑡,    (15b) 

𝑃𝑖𝑡 =  𝛽0 + 𝛽𝐴
′𝑨𝒊𝒕 +  𝛽𝑈

′𝑼𝒊𝒕+  𝛽𝑅
′𝑹𝒊𝒕 +  𝛽𝑀

′𝑴𝒊�̂� + 𝛽𝑀_𝑃𝑂𝑆𝑇
′𝑴𝒊𝒕 ∗ 𝐷_𝑃𝑂𝑆𝑇̂ + 𝜏𝑡 +  휀𝑖𝑡,     

(15c) 

where 𝒁𝒊𝒕 are these two instruments, and 𝑴𝒊�̂�, 𝑴𝒊𝒕 ∗ 𝐷_𝑃𝑂𝑆𝑇̂  are the predicted values 

from the first-stage regressions. 

Unlike the grain elevators and agricultural terminals which existed throughout the 2000s 

decade, the ethanol plants in or near western Ohio all started construction in late 2006 – 

early 2007. As a result, the coefficient on the distance to ethanol plants variable 𝛽𝑀 has 

no intuitive interpretation, while 𝛽𝑀_𝑃𝑂𝑆𝑇 captures the significance and magnitude of the 

spatial effects of proximity to ethanol plants following construction of these plants. To 

address the potential capitalization effects of proximity to an ethanol facility before its 

construction due to expectations, I run multiple robustness checks which include parcels 

sold six months or one year before the construction of their nearest ethanol plant in the 
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post period. By controlling for sample selection bias and potential endogeneity of ethanol 

plant locations, my estimator is subject to less bias than the standard hedonic estimates 

(Imbens and Wooldridge 2009). 

 

Data 

Western Ohio hosts a vast majority of the state's agricultural land and provides an 

excellent laboratory to study the structural change in the proximity to agricultural market 

channels on farmland values in the context of ethanol market expansion. The biofuels 

industry in Ohio is gaining momentum over the last decade, with seven ethanol plants 

started construction in or near western Ohio in late 2006 – early 2007. I assembled a 

detailed database of 21,342 arm’s length agricultural land sale records for 50 counties in 

or near western Ohio from 2001 to 2010 obtained from the U.S. Department of 

Agricultural Economic Research Service and merged with purchased sales data from a 

private firm, CoreLogic. I now briefly describe the key elements of the data in additional 

detail. 

To form the dataset of agricultural land transactions, this study combines the dataset (29 

counties) purchased from CoreLogic, with the data from USDA ERS data (14 counties) 

and the data collected from county auditor office for counties like Seneca, Hardin, Allen, 

Lucas, Auglaize, Henry and Hamilton in Ohio and Randolph County, Indiana.
2
 Only 

those agricultural parcels sold between 2001 and 2010 and with a valid arms-length 

indicator
3
 are kept. Those valid agricultural sale records are merged with GIS parcel 
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boundaries or are geocoded based on property addresses using Google Maps API. The 

sales prices are adjusted for the value of the structures on the farmland. Specifically, the  

 

Figure 5. Agricultural Land Sales 2001-2010 and Agricultural Market Channels in 

Western Ohio 

 

 

 

new sales prices are calculated as a fraction of the original prices, with the ratio being the 

percentage of assessed values of land only over assessed values of land and buildings 

altogether. Parcels with sales prices above $20,000/acre or below $1,000/acre are  
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                                                                                                                             Continued 

Table 8. Summary Statistics of Agricultural Land Sales 2001-2010 in Western Ohio                                                                          

 

Unit Mean Std. Dev. Min. Max. 

General Parcel Attributes 

Sale price Dollars 143175 244364 303.7112 1.17E+07 

Sale price per acre Dollars 4362.70 3644.27 1000.161 19988.09 

Assessed land value Dollars 74190.62 162980 0 5878840 

Assessed improvement value Dollars 32269.28 68910 0 3937580 

Assessed land value % of total assessed % 0.7224 0.312 0.0035  1 

Total acres Acres 44.204 61.289 0.14 2380.66 

Sale year Year 2004.838 2.761 2001 2010 

Agricultural Productivity Variables 

NCCPI Number 5778.153 1518 0 8800.8 

Cropland % of parcel % 0.5502 0.3715 0 1 

Soil class 1 area % of parcel % 0.2810 0.3235 0 1 

Soil class 2 area % of parcel % 0.0778 0.1824 0 1 

Soil class 3 area % of parcel % 0.4406 0.4175 0 1 

Steep slope (>15 degrees) Binary 0.1888 0.3913 0 1 

Urban Influence Variables 

Building area % of parcel % 0.0364 0.1314 0 1 

Distance to urban area of over 25k people km 19.12 12.76 0 56.82 

Total urban population within 25 miles Thousand 290.04 231.94 64.7721 1187.38 

Distance to highway ramp Km 5.2218 3.29 0 19.10 

Distance to nearest city Km 40.9684 20.34 0.1983 105.66 

Distance to nearest railway access point Miles 3.1390 1.8080 0.005 11.254 

Gravity index using three nearest cities Number 1072.77 34101 52.76 4255332 
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Table 8 continued 

 

 

dropped along with parcels sold in the year 2007. Figure 5 shows a plot of the filtered 

sample consisting of 13,865 valid transactions. As is evident from the figure, these data 

are widely distributed over virtually the entire region. The locations of three sets of 

Agricultural Market Influence Variables 

Distance to nearest ethanol plant Km 45.99 22.57 0.68 111.75 

Production capacity of nearest ethanol plant Mgal 88.56 25.02 54.00 120.00 

Number of ethanol plants within 25 miles Number 1.13 0.91 0.00 4.00 

Total production capacity of ethanol plants 

within 25 miles 

Mgal 96.14 76.48 0.00 304.00 

Distance to nearest grain elevator Km 13.45 11.35 0.04 88.43 

Distance to nearest agricultural terminal Km 52.50 22.74 0.20 119.40 

Capacity-weighted distance to other ethanol 

plants 

Km 71.64 15.92 38.76 111.23 

Capacity-weighted distance to other AG 

terminals 

Km 101.49 45.70 7.21 204.54 

Environmental Amenities Influence Variables 

Forest area % of parcel % 0.153 0.259 0 1 

Wetland area % of parcel % 0.003 0.029 0 1 

Pasture area % of parcel % 0.120 0.241 0 1 

Open water % of parcel % 0.003 0.024 0 0.746  

Observations 16434 
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agricultural market channels - ethanol plants, grain elevators and agricultural terminal 

ports - are also shown in Figure 5.  

Data on parcel attributes and location characteristics were obtained largely from the U.S. 

Department of Agriculture Natural Resources Conservation Services GeoSpatial Data 

Gateway, including the Census TIGER/Line Streets, National Elevation Dataset, National 

Land Cover Dataset, Soil Survey Spatial Data (SSURGO). Additional data on locations 

of cities and towns in Ohio was obtained from Ohio Department of Transportation 

(2012). I also used Census Block Shapefiles with 2010 Census Population and Housing 

Unit Counts (U.S. Census TIGER/Line 2012) to calculate the surrounding urban 

population. Data on ethanol plants, grain elevators and agricultural terminal ports were 

obtained from the Ohio Ethanol Council (2012), Farm Net Services (2012) and Ohio 

Department of Agriculture (2012). Using these data and ArcGIS software, I was able to 

create the parcel attributes and location characteristics vector 𝑿𝒊𝒕. See Table 8 for 

summary statistics. 

Most of variables in Table 8 are self-explanatory; however, three remarks need to be 

made. First, the variable National Commodity Crops Productivity Index is an 

interpretation in the National Soil Information System (NASIS). Specifically, the 

interpretation uses natural relationships of soil, landscape, and climate factors to model 

the response of commodity crops (see Dobos, et al. (2008) for details). Secondly, soil 

class 1 is defined as "All areas prime farmland", class 2 as "Prime farmland if drained", 

class 3 as "Farmland of local importance" and class 4 as "not prime farmland". Finally, 

this study highlights the set of the urban influence variables 𝑼𝒊𝒕 and the agricultural 
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market influence variables 𝑴𝒊𝒕 in particular. Three aspects of urban influences are 

considered: distance to nearest city captures the importance of urbanized areas as 

commuting hub or sources of non-farm income, proximity to urbanized areas and road 

network and surrounding urban population represent the option value of future land 

conversion to urban uses. Surrounding urban population also captures the consumer 

demand for agricultural products, which will drive up the agricultural returns. Proximity 

variable for each of the three agricultural market channels is calculated as driving 

distance from farmland parcels to nearest market. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Number of Agricultural Land Sales 2001-2010 in Western Ohio 
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Results and Discussion 

The recent Great Recession have led to a dramatic decline in urban land and housing 

values across the U.S. The same is not true, however, of agricultural land values. Figure 6 

and 2 plot the number of agricultural land sales and the average farmland values in 

western Ohio since 2001, respectively. Although the number of farmland sales dropped 

precipitously after the housing market bust, there was no corresponding dip in the 

average sales price of agricultural land. Instead, figure 2 suggests that the average 

farmland sale prices stayed fairly constant at around $5000/acre over the 2000s decade, 

which was in part due to the growing significance of agricultural markets, exemplified by 

the surging biofuels market (Wallander, et al. 2011) and rising demand for U.S. grain 

exports (Gloy, et al. 2011).  

To further explore these issues especially the change in the effect of proximity to ethanol 

plants, I first estimate two hedonic models as the benchmark model shown in table 9, 

which can be viewed as the reduced-form estimations for the instrumental variables 

approach. Specifically, model (I) uses all observations without matching while model (II) 

uses a matched sample based on proximity to ethanol plants but does not control for the 

potential endogeneity of plant location using instrumental variables. The hedonic 

estimate on the variable Dist_Ethanol * Post construction dummy shows that proximity to  

 

 

 



63 

 

                                                                                                                        Continued 

Table 9. Hedonic Regressions with Structural Changes of Proximity to Ethanol Plants 

 

Nominal farmland values ($/acre) 

(I) (II) 

Coef. Robust SE Coef. Robust SE 

Distance to nearest ethanol plant -0.87 5.77 4.07 13.08  

Dist_Ethanol * Post construction dummy -5.86 3.93 -13.35 9.79  

Assessed land value % of total assessed -3771.54*** 145.03 -3354.51*** 374.90  

Total acres -26.07*** 1.04 -40.15*** 3.07  

Total acres squared 0.013*** 0.0017 0.08*** 0.01  

NCCPI 0.0028 0.026 0.037 0.05  

Prime farmland -71.25 116.24 -258.21 266.94  

Steep slope (>15 degrees) -100.49* 58.51 309.05 255.31  

Building area % of parcel 52.97 268.36 -550.92 394.57  

Forest area % of parcel 14.17 159.23 -403.03 521.55  

Wetland area % of parcel -112.28 876.67 845.14 3332.38  

Distance to highway ramp -37.23** 15.18 -30.05 27.94  

Distance to nearest city -62.54*** 8.01 -25.52 15.68  

Incremental distance to 2nd nearest city -36.40*** 5.99 -31.04** 13.68  

Surrounding population within 25 miles 0.62** 0.31 -0.36 0.80  

Gravity index of three nearest cities 2.87E-04* 0.0002 0.77 0.56  

Distance to railways -3.69 17.35 -0.28 32.24  

Distance to nearest grain elevator 2.63 9.89 -35.76 26.54  

Distance to nearest agricultural terminal -33.15*** 5.41 -4.50 11.77  

Intercept 14456.89*** 848.59 15742.13*** 3340.06  

County FE Yes Yes 

Year FE Yes Yes 

Adjusted R2 0.2616 0.2409 

Number of observations 16434 3443 
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Table 9 continued 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, respectively. 50 

county fixed effects are included in the model. 

 

 

ethanol plants became a positive influence after construction of these plants; however, 

this positive capitalization effect is not statistically significant. Most of the estimates of 

other variables were intuitive: bad soil quality or presence of steep slope decreased 

farmland values, while proximity to urban areas or highway ramps led to an increase. The 

significant coefficient on acres squared implied a nonlinear relationship between the per-

acre farmland values and total acreage. Model (II) uses the matched sample which 

controls for the differences in observable characteristics between parcels closer to ethanol 

plants and those farther away, and this leads to the insignificance of some variables such 

as proximity to cities and agricultural terminals. These results are preliminary since they 

did not control for the potential endogeneity of the location of ethanol plants. 

Nonetheless, the results are suggestive and provide ample motivation to further 

investigate potential structural change in these effects using instrumental variables 

estimation with matched samples. 

Table 10 shows the comparison of the difference-in-means of the covariates between 

treatment and control groups for the raw sample before matching and the matched sample 

after PSM. The naive control group for the raw sample was constructed as if they were 

matched using the same cutoff values in timing or distance. To make the second step 

matching work, the 50 county fixed effects were replaced by six crop reporting district 
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dummies because of too few observations within each county. The distance cutoffs used 

to construct matched samples based on proximity to agricultural market channels are 10 

miles, 5 miles, and 15 miles for ethanol plants, grain elevators, and agricultural terminals, 

respectively. Table 10 reveals that without matching, there were systematic distributional 

differences between the naive control group and the treatment group, which, as a result, 

led to biased estimates in the standard hedonic approach. In contrast, at the cost of 

reduced sample size, these differences were successfully removed through PSM, which 

assures that conditioning on estimated propensity score, there is no remaining 

distributional differences left for the covariates between the treatment and control groups 

(Lynch, et al. 2007). In a word, table 10 illustrates the necessity and advantages of 

propensity score matching in addressing the sample selection bias inherent in the standard 

hedonic method. Figure 11 in the Appendix A shows that the estimated propensity score 

for the treatment and control groups overlap with each other. 

Table 11 presents the main results of regressions on matched samples for each of the 

three types of agricultural market channels. In particular, instrumental variables 

regression is used to estimate the effects of proximity to ethanol plants, while hedonic 

regression is used for grain elevators and agricultural output terminals. The main result 

provides evidence for positive and significant marginal value of being within close 

proximity to an ethanol plant following construction of seven ethanol plants in or near 

western Ohio in late 2006-early 2007. 
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                                                                                                                                                                                            Continued 

Table 10. Difference in Means of the Covariates between Treatment and Control Groups for the Raw and Matched Samples 

 

Covariates 

Matching on timing: month of 

ethanol plant construction 

Matching on distance 

Ethanol plant Grain elevator Agricultural terminal 

Unmatched Matched Unmatched Matched Unmatched Matched Unmatched Matched 

Sale year 

  

-0.7*** -0.1 2005.4 0 2005.4 0 

Assessed land value %  -0.0426*** -0.0042 -0.156*** -0.0100 0.7631 0.0066 0.7243 -0.0115 

Total acres -5.8770*** 0.9380 -4.953*** -1.7080 46.8740 1.0190 50.0400 1.0580 

Total acres squared 662.30*** 490.9000 534.30 -406.70 4745.40 120.10 6790.00 1484.60 

Agricultural Productivity Variables 

 

      

NCCPI -121.60*** -5.6000 369.40*** -52.50 5870.70 -47.60 5717.80 -3.70 

Soil class 2 area % of parcel 0.0110* -0.0039 

      

Soil class 4 area % of parcel -0.0058 0.0043 0.0422*** -0.0417*** 0.1283 0.0059 0.1702 0.0056 

Steep slope (>15 degrees) 0.0483*** 0.0025 0.1688*** 0.0005 0.0824 -0.0019 0.1361 0.0313** 

Urban Influence Variables 

        

Total urban popu within 25 miles 20.9200*** -3.1600 97.7900*** -2.6 246.47 8.9700** 242.27 -6.69 

Distance to highway ramp -0.2573*** 0.0063 0.0630 0.0440 4.9915 0.0535 6.2736 -0.1780 

Distance to nearest city -4.495*** 0.0900 -13.885*** -0.3900 44.6890 -0.5520 48.2500 -0.2860 

6
6
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Table 10 continued 

Note: *, **, and *** indicates the difference in means of the covariates between treatment and control groups is significant at 10%, 5% and 1% level, 

respectively. In the first step of matching on timing, a parcel is considered to be in the treatment group if it is sold after the construction of nearest ethanol 

plant. The matched sample forms the full sample for the second step of matching on proximity to agricultural markets. A parcel is considered to be in the 

treatment group if it is located within 10 miles, 5 miles, and 15 miles for ethanol plants, grain elevators, and agricultural terminals, respectively. 

Agricultural Market Influence Variables 

  

      

Distance to nearest ethanol plant 5.9380*** -0.0160 

  

35.8380 -0.1260 38.5880 1.2040* 

Distance to nearest grain elevator 0.2630*** -0.1070 6.0960*** -0.3842* 

  

11.2920 0.6140** 

Distance to nearest agricultural terminal -1.4780*** -0.0380 2.8640*** -1.2120* 51.9860 0.3640 

  

Environmental Influence Variables 

  

      

Forest area % of parcel 0.0434*** -0.0002 0.0890*** -0.0033 0.0770 -0.0009 0.0851 0.0069 

Wetland area % of parcel 0.0010* -0.0001 0.0014*** 0.0001 0.0039 -0.0009 0.0023 -0.0003 

Location Fixed Effects 

  

      

County FE Yes Yes 

  

    

Northwest crop reporting district FE 

  

0.0886*** 0.0154 0.3336 0.0023 0.2781 -0.0228 

Central crop reporting district FE 

  

0.0615*** -0.0144 0.2158 -0.0170* 0.3851 0.0160 

West central crop reporting district FE 

  

-0.3096*** -0.0011 0.4017 0.0124 0.3369 0.0068 

Observation 12969 9880 9880 2082 9880 8055 6702 4174 

 

6
7
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Specifically, results from the IV estimation with the matched sample suggest that the 

marginal value of farmland increases by $46 per mile per acre within proximity to the 

nearest ethanol plant following construction of these plants. By comparison, the effect of 

proximity to nearest city center and second nearest city is $30-66 and $30-40 per mile per 

acre, respectively. In contrast, there is no declining farmland price gradient over distance 

to ethanol plants. Since there are no ethanol plants before late 2006, this coefficient on 

the interaction term can be interpreted as the positive effects of proximity to newly 

constructed ethanol plants.  

To test the validity and relevance of my instruments, I run a series of tests and robustness 

checks. Table 23 in the Appendix A presents results of the first stage regressions of the 

potentially endogenous variables. The significant and negative coefficient of the 

proposed instrument capacity-weighted distance to other ethanol plants in table 23 

column (II) confirms my conjecture of spatial competition among ethanol plants. Table 

25 shows the test statistics for the weak identification of the instruments as well as the 

test of overidentifying restrictions. I cannot reject the overidentification test based on the 

Hansen J statistic (Hansen 1982) , acknowledging the strong assumption of at least one 

valid instrument. Table 24 further shows an example of a regression of instruments on 

other exogenous covariates, which reveals that the instrument is not correlated with most 

covariates and serves as an indirect test for the validity of instrument variables. In 

addition, the Kleibergen-Paap Wald F statistic reveals that these instruments are relevant 

and not weak (Kleibergen and Paap 2006; Stock and Yogo 2005). A comparison between 

table 2 and table 11 column (a) reveals that, regardless of the significance, the standard  
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                                                                                                                              Continued 

Table 11. Structural Change in the Effects of Proximity to Agricultural Markets Channels 

– Regressions on the Matched Sample 

 

Nominal farmland values ($/acre) 

(a) Ethanol Plant (b) Grain Elevator (c) AG Terminal 

Coef. SE Coef. SE Coef. SE 

Distance to nearest ethanol plant 16.53 49.59  5.34 7.95 -2.49 10.75 

Dist_Ethanol * Post construction -46.39** 19.57  
    

Assessed land value % of total assessed -3331*** 418.53  -3654 *** 221.23 -3142*** 259.13 

Total acres -36.8*** 2.92  -35.17*** 1.81 -50.44*** 2.40 

Total acres squared 0.06*** 0.01  0.038*** 0.005 0.093*** 0.0159 

NCCPI -4.76E-05 0.05  0.011 0.034 -0.0153 0.0488 

Prime farmland -358.02 289.08  -212.71 181.27 -336.86 237.51 

Steep slope (>15 degrees) 276.95 333.64  -123.26 92.75 -10.12 116.38 

Building area % of parcel -345.72 408.32  -541.92 400.67 -543.18 461.43 

Forest area % of parcel -35.50 646.12  94.29 275.95 -315.08 348.59 

Wetland area % of parcel -997.00 3621.69  -265.83 879.32 1092.43 1913.35 

Distance to highway ramp -24.40 30.66  -28.75 21.53 -74.25*** 26.31 

Distance to nearest city -30.86** 15.66  -28.91*** 11.28 -66.17*** 16.89 

Incremental distance to 2nd nearest city -39.59*** 14.34  -12.02 8.17 -33.83*** 11.99 

Surrounding population within 25 miles -0.74 0.77  0.73 0.46 1.307** 0.556 

Gravity index of three nearest cities 1.24* 0.67  -0.05 0.06 0.0214 0.076 

Distance to railways 20.34 35.29  -15.35 23.6 -13.77 57.56 

Distance to nearest grain elevator -27.70 31.91  5.36 20.93 33.35* 18.95 

Dist_Grain * Post construction dummy 
  

-57.50** 29.47 
  

Distance to nearest agricultural terminal 6.52 16.19  -15.72* 8.22 -48.48*** 20.09 

Dist_Terminal * Post construction 
    

18.12** 7.86 

Intercept 10261.9*** 1858.68  9721.26*** 744.78 23762*** 1966.72 

Year FE yes 

Adjusted R2 0.2473 0.2619 0.2885 

Number of observations 3443 8123 4864 
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Table 11 continued 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. 50 county fixed effects are included in the model. I use an instrumental variables 

regressions for ethanol plants and hedonic regressions for grain elevator and agricultural output 

terminals. 

 

 

hedonic estimates yield similar signs with the instrumental variables approach. This is 

because the suspected endogenous variable distance to nearest ethanol plant is only 

slightly endogenous (with a p-value of 0.064), according to the endogeneity test shown in 

table 25 panel (III) (Baum, et al. 2003). However, this comparison between the standard 

hedonic estimates and the instrumental variables estimates confirms the endogeneity of 

proximity to ethanol plants, which, if left uncontrolled for, would result in a downward 

bias in the standard hedonic estimates due to unobserved characteristics. This 

underestimation might result from unobserved characteristics that capture rural 

remoteness or other undesirable traits.  

Table 26 in the Appendix A presents another set of robustness checks for the validity of 

the instruments by regressing farmland values directly on instruments and other 

exogenous covariates as opposed to endogenous variables. Table 26 panel (I) uses all 

observations before matching while panel (II) and (III) use the matched sample. The 

results show that capacity-weighted distance to other agricultural terminals after 

construction could be slightly endogeneous in the raw sample before matching, but this 

problem is eliminated after matching. Table 26 panels (II) and (III) show that capacity-  
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                                                                                                                                                                                          Continued 

Table 12. Robustness Checks of Alternative Matching Algorithms

    
(a) Ethanol Plant (b) Grain Elevator (c) AG Terminal 

    Coef. SE Coef. SE Coef. SE 

Panel I: 1 to 2 nearest 

neighbor matching 

Dist_Ag Market 48.77 68.52 32.00 27.26 -52.16*** 12.75 

Dist_Ag Mkt * Post_Dummy -62.15*** 20.57 -121.82** 37.66 20.63** 9.22 

Number of observations 2721 5264 3658 

Adjusted R
2
 0.2505 0.2675 0.2955 

Panel II: 1 to 1 nearest 

neighbor matching 

Dist_Ag Market 173.43 120.91 5.36 20.93 -44.56*** 16.14 

Dist_Ag Mkt * Post_Dummy -66.85*** 25.12 -57.50* 29.47 21.32** 10.85 

Number of observations 2151 8123 2828 

Adjusted R
2
 0.2023 0.2619 0.3058 

Panel III: Mahalanobis metric 

covariate matching 

Dist_Ag Market 77.25 110.33 32.96 25.55 -20.20* 12.75 

Dist_Ag Mkt * Post_Dummy -84.34* 45.12 -74.41** 31.90 16.74 14.25 

Number of observations 2175 7338 2597 

Adjusted R
2
 0.2238 0.2762 0.3025 

Panel IV: Kernel matching 

Dist_Ag Market 49.13 38.03 3.49 14.35 -43.05*** 8.21 

Dist_Ag Mkt * Post_Dummy -53.84*** 15.92 -30.24* 17.10 21.27*** 6.08 

Number of observations 11440 15398 7759 

Adjusted R
2
 0.2654 0.2715 0.2943 

 

7
1
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Table 12 continued 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. 50 county fixed effects are included in the model. The distance cutoffs used 

to construct matched samples based on proximity to agricultural market channels are 10 

miles, 5 miles, and 15 miles for ethanol plants, grain elevators, and agricultural terminals, 

respectively. 

 

 

weighted distance to other ethanol plants could still be endogenous after the construction 

of ethanol plants, and it may present as a better alternative to just use capacity-weighted 

distance to other agricultural terminals as the instruments for the matched sample. 

Columns (b) and (c) in table 11 also reveal a stronger influence of proximity to grain 

elevators as well as a reduction in the magnitude and significance of the effect of 

proximity to agricultural terminals after early 2007 due to competition from the newly 

constructed ethanol plants. Specifically, proximity to grain elevators did not exert 

significant influence in surrounding farmland values before 2006, but became a positive 

and significant determinant after the ethanol market expansion in Ohio. This result is 

intuitive because local grain elevators meet part of the increased demand for corn due to 

construction of ethanol plants. In addition, I find that the marginal value of being close to 

an agricultural terminal reduces from $48 to $30 per mile per acre after early 2007, which 

suggests that the newly constructed ethanol plants constitute a significant competing 

source of demand for grains for traditional agricultural output terminals (Nickerson, et al. 

2012). This also lends support for my instrumental variables approach which relies on the 

spatial competition among ethanol plants and agricultural terminals. 
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                                                                                                                               Continued 

Table 13. Robustness Checks using Alternative Distance and Timing Cutoffs   

    (a) Ethanol Plant 
(b) Grain 

Elevator 
(c) AG Terminal 

    Coef. SE Coef. SE Coef. SE 

Panel I: Reduced 

distance cutoff for 

proximity 

Dist_Ag Market 402.67 317.67 4.82 22.53 -68.19*** 22.42 

Dist_Ag Mkt * Post_Dummy -64.85* 36.50 -63.58** 30.83 45.10*** 13.73 

Number of observations 1409 6940 1917 

Adjusted R2 0.2551 0.2659 0.2886 

 
Panel II: 

Alternative reduced 

distance cutoff for 

proximity 

Dist_Ag Market 57.81 51.02 22.39 17.91 -53.04*** 15.52 

Dist_Ag Mkt * Post_Dummy -60.08*** 20.59 -60.99** 24.30 24.82** 10.26 

Number of observations 2505 9455 3104 

Adjusted R2 0.2169 0.2694 0.2867 

 

Panel III: Increased 

distance cutoff for 

proximity 

Dist_Ag Market 47.20 39.92 4.13 14.96 -40.14*** 8.83 

Dist_Ag Mkt * Post_Dummy -59.89*** 16.74 -37.87** 19.24 14.10** 6.62 

Number of observations 4390 11698 6492 

Adjusted R2 0.2303 0.2714 0.2843 

 

Panel IV: Change 

timing 6 months 

earlier 

Dist_Ag Market 22.68 44.07 21.21 18.69 -42.84*** 8.87 

Dist_Ag Mkt * Post_Dummy -39.92** 16.20 -49.43** 23.19 18.07*** 6.27 

Number of observations 3443 9455 6492 

Adjusted R2 0.2395 0.2693 0.2847 

  

Panel V: Change 

timing 1 year 

earlier 

Dist_Ag Market -4.69 44.17 9.89 18.90 -43.51*** 8.93 

Dist_Ag Mkt * Post_Dummy -8.91 14.60 -23.11 23.03 17.43*** 6.09 

Number of observations 3443 9445 6492 

Adjusted R2 0.2403 0.2403 0.2847 
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Table 13 continued 

Panel VI: Change 

timing from 

construction to 

plant opening 

Dist_Ag Market 14.26 24.35 4.33 14.66 -36.85*** 8.60 

Dist_Ag Mkt * Post_Dummy -28.94* 15.87 -67.21** 22.15 9.20* 4.86 

Number of observations 3443 10880 6492 

Adjusted R2 0.2502 0.2704 0.2847 

 

Panel VII: Log-

linear 

specification 

Dist_Ag Market 0.0014 0.0088 0.0006 0.0030 0.0099*** 0.0020 

Dist_Ag Mkt * Post_Dummy -0.0062* 0.0035 -0.0088** 0.0040 -0.0042*** 0.0015 

Number of observations 3443 10879 4864 

Adjusted R2 0.2276 0.325 0.4005 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. 50 county fixed effects are included in the model. The distance cutoffs used 

to construct matched samples based on proximity to agricultural market channels in panel 

I are 6 miles, 3 miles, and 10 miles for ethanol plants, grain elevators, and agricultural 

terminals, respectively. In panel II the distance cutoffs are 8 miles, 4 miles, and 12 miles 

for ethanol plants, grain elevators, and agricultural terminals, respectively. In panel III the 

distance cutoffs are 12 miles, 6 miles, and 18 miles for ethanol plants, grain elevators, 

and agricultural terminals, respectively. 

 

 

newly constructed ethanol plants. Table 13, on the other hand, tests the robustness of the 

results by altering the cutoff distances used to define the spatial proximity and the timing 

used to define when the effect of ethanol plants start to kick in. Results reveal that there is 

evidence of expectations before the construction of ethanol plants; however, the 

expectations argument is only relevant 6 months before the plant construction. The log-

linear model specification also reveals a similar conclusion. These robustness checks  
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Table 14. Robustness Checks using Alternative Definitions of Instruments 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. 

      Coef.  Std. Err.  

Panel I: Exclude 2 nearest ethanol 

plants and agricultural terminals 

Dist_Ag Market  44.14 35.48 

Dist_Ag Mkt * Post_Dummy  -48.68***  17.46 

Number of observations  3541 

Adjusted R
2
  0.243 

Panel II: Exclude 3 nearest ethanol 

plants and agricultural terminals 

Dist_Ag Market  43.81 36.93 

Dist_Ag Mkt * Post_Dummy  -53.08***  19.52 

Number of observations  3541 

Adjusted R
2
  0.2426 

Panel III: Just include agricultural 

terminals 

Dist_Ag Market  34.59 30.11 

Dist_Ag Mkt * Post_Dummy  -32.47*  17.09 

Number of observations  3541 

Adjusted R
2
  0.2377 

Panel IV: Only use parcels within 

the Corn Belt boundary 

Dist_Ag Market  23.61 51.68 

Dist_Ag Mkt * Post_Dummy  -49.23*** 22.7 

Number of observations  3253 

Adjusted R
2
  0.2465 

Panel V: No other covariates except 

the instruments 

Dist_Ag Market  27.61 40.54 

Dist_Ag Mkt * Post_Dummy  -40.25** 20.54 

Number of observations  3430 

Adjusted R
2
  0.0996 
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I test the stableness of the results by employing alternative ways to construct the matched 

sample and alternative model specifications. Table 12 presents results using alternative 

matching algorithms, including propensity score matching using one or two nearest  

neighbors instead of four, as well as completely different matching estimators which 

includes covariate matching (Rubin 1980) and kernel-based matching (Heckman, et al. 

1998). Despite greater magnitude, the robustness checks show a similar conclusion as the 

main specification – a significant and positive effect of proximity to newly constructed 

ethanol plants after their construction. Results also confirm that finding regarding the 

reduced impact of proximity to agricultural output terminal due to strong competition of 

newly constructed ethanol plants. Table 13, on the other hand, tests the robustness of the 

results by altering the cutoff distances used to define the spatial proximity and the timing 

used to define when the effect of ethanol plants start to kick in. Results reveal that there is 

evidence of expectations before the construction of ethanol plants; however, the 

expectations argument is only relevant 6 months before the plant construction. The log-

linear model specification also reveals a similar conclusion. These robustness checks 

indicate that my results are stable across different model specifications and matching 

algorithms.  

Table 14 further tests for the validity of instruments and the assumption of the hedonic 

market. The instruments relying on the distances to other plants would not be valid if 

more than one agricultural market could affect surrounding farmland values. I test that by 

excluding two or three nearest ethanol plants and agricultural output terminals in the 

construction of instruments, which suggests that only other agricultural markets used in 
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the instruments are farther away to affect the farmland values for parcels closer to a 

particular ethanol plant. These rests on the assumption that agricultural markets 

sufficiently far away from the farmland parcel would not have a direct impact on its sale 

price. Table 14 panels I, II and III reveal similar results as in table 10, suggesting that my 

instruments are valid and unlikely to be endogenous. In particular, panel III just uses 

agricultural terminals when constructing the instruments, and the similarity with the main 

specification echoes with the robustness check shown in table 26 panel (III) in the 

Appendix A, suggesting that overall the instrumental variables regressions yield robust 

and reliable estimates. Using estimates from semiparametric regressions, Figure 12 in the 

Appendix A shows that the effect of proximity to ethanol plants is likely localized within 

15-20 miles, further validating the validity of the instruments. Table 14 panel IV uses 

only parcels from counties with at least 5 million bushels of corn production in 2010 or 

within the Corn Belt boundary to ensure the farmland sales data used in this study could 

be considered as part of one single farmland market. Table 14 panel V only keeps 

instruments in the regressors and drops other covariates. Both panels IV and V yield 

qualitatively similar results as the main specification. 

 

Conclusion 

The first decade of the 2000’s saw dramatic changes in the forces that influence farmland 

values. On one hand, rapid expansion of biofuels markets supported by federal energy 

policies has dramatically increased demand for corn, which elevated agricultural 

commodity prices and farmland values (Wallander, et al. 2011). On the other hand, the 
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residential housing market bust in 2006 that precipitated the Great Recession had a 

substantial negative effect on the value of exurban farmland proximate to urban areas. 

Using a dataset of parcel-level farmland sales in western Ohio from 2001 to 2010 and a 

quasi-experimental design, this study tests the common wisdom that the rise of ethanol 

industry helped the farm sector withstand this downturn (Nickerson, et al. 2012). The 

identification strategy relies on the observed opening of seven ethanol plants in or near 

western Ohio and the competitive pressures they face in the spatial competition with 

other ethanol plants and agricultural output terminals. Two instruments are constructed 

based on this idea of spatial competition among agricultural markets to control for the 

potentially endogeneous proximity of farmland parcels to nearest ethanol plants. 

Propensity score matching is also used to control for potential sample selection bias 

resulting from systematic differences in observable parcel characteristics between parcels 

closer to agricultural market channels versus those farther away.  

The main results from the instrumental variables estimation with the matched sample 

suggest that the marginal value of farmland increases by $46 per mile per acre with close 

proximity to the nearest ethanol plant following construction of these plants. Despite a 

short-term effect with data only for the 2000s, these results demonstrate the growing 

importance of the biofuels market for farmland values and show that proximity to ethanol 

plants is becoming a more significant determinant of agricultural land values. This study 

suggests the need to explicitly incorporate agricultural market influence variables such as 

proximity to ethanol plants and other agricultural market channels in modeling the 

determinants of U.S. farmland values. This study also confirms the endogeneity concerns 
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of the proximity to ethanol plants and reveals systematic differences in observable 

characteristics between parcels closer to an agricultural market channel and those farther 

away, which could lead to biased estimates if left uncontrolled for as in the standard 

hedonic price method. The quasi-experimental design that combines matching and 

instrumental variables approach employed here presents a superior alternative.  

Ethanol is now a critical part in the corn industry supply chain and the year of 2010 

marks the first time that corn usage for ethanol production exceeds usage for feed stock 

(Wallander, et al. 2011). However, until recently, ethanol development and utilization 

have been largely dependent upon government subsidies and other policy support. There 

is ongoing debate regarding the welfare impacts of ethanol policy and resulting ethanol 

market expansion, including its impacts on farmer income, commodity prices, farmland 

values, greenhouse gases, and energy portfolio (Cappiello and Apuzzo 2013; Rajagopal, 

et al. 2011; Tiffany 2009). In addition to many criticisms of various subsidies offered to 

ethanol producers, rising concerns are raised regarding the environmental quality impacts 

of ethanol policy through its incentives for corn expansion (Cappiello and Apuzzo 2013). 

This study engages in this debate by providing a piece of evidence on the capitalization 

effect of proximity to ethanol plants. With many subsidies already or slated to be 

terminated, it poses an intriguing policy question that how these downward pressure on 

ethanol development would affect the welfare effects of the ethanol market expansion, 

and in particular its capitalization in commodity prices and farmland values.  
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Chapter 3: Alternative Nutrient Management Policies and the Trade-offs between 

Agricultural Profits and Water Quality Improvements 

 

Introduction 

Excessive nutrient runoff from agricultural production contributes to freshwater 

eutrophication and coastal hypoxia across the United States and globally. In 2011, a 

harmful algal bloom of unprecedented size and severity occurred in the western basin of 

Lake Erie (Michalak, et al. 2013). The Lake Erie watershed is the most populous of all 

the Great Lakes and such events pose significant risks to ecosystem services provided by 

this vital lake, including recreation opportunities, public health and safe drinking water. 

To address the agricultural nutrient loss problem, substantial efforts have been made at 

the federal level to promote adoption of best management practices through voluntary 

payments for conservation programs. In 2010, the national total payments for 

conservation program amounted to $3.5 billion, or around $10 per acre of farmland. 

Despite these efforts, no measurable improvements in downstream water quality has been 

found, as evidenced by the record-setting HAB in Lake Erie in 2011 and the a two-day 

shutdown of the City of Toledo’s public water system last summer. The stark contrast 

suggests that the current voluntary-based policy may not be sufficient to improve water 

quality. This naturally leads to the question of whether more stringent agri-environmental 
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policies can improve the cost-effectiveness of agricultural pollution control, and what are 

the trade-off between agricultural profits and ecosystem benefits. 

Evaluation of agri-environmental policies is complicated by multiple sources of 

heterogeneity: farmers’ responses to market-based incentives or regulation will vary 

depending on their own behavioral motivations, characteristics of their land, and 

locational factors, all of which are heterogeneous. Many studies have shown that farmers’ 

socioeconomic and demographic characteristics are important in driving the adoption of 

conservation practices (Featherstone and Goodwin 1993; Norris and Batie 1987), and 

behavioral preference heterogeneity, including environmental stewardship and perceived 

efficacy of the policy, are important factors in explaining the diversity of responses of 

farmers to incentive-based programs (Howard and Roe 2013; Wilson, et al. 2014). 

However, mainly due to lack of data, individual field-level operator characteristics have 

been largely ignored in aggregate structural models on agricultural crop and input 

demand choices (Denbaly and Vroomen 1993; Griliches 1958; Moschini 1988; Shumway 

and Alexander 1988), in fertilizer demand models that examine heterogeneity in demand 

elasticity(Hansen 2004; Hansen and Hansen 2014), in economic models of conservation 

practices and nutrient management decisions (Kurkalova, et al. 2006; Laukkanen and 

Nauges 2014; Wu, et al. 2004), in economic models of land conservation and spatial 

targeting (Ando and Mallory 2012; Babcock, et al. 1997), and in recent integrated 

ecological-economic models (Hendricks, et al. 2014; Rabotyagov, et al. 2014).  

Williamson (2011) is one recent study on nitrogen fertilizer demand that incorporates 

farm-level land and farmer characteristics using USDA’s Agricultural Resource 



82 

 

Management Survey in 2001 and 2005; however, it is reduced form in nature and thus not 

well-suited for policy analysis. Timmins and Schlenker (2009) and others have argued 

that a structural model is needed for the welfare analysis of non-marginal policy changes. 

A structural model of fertilizer demand is thus needed when there are yield setbacks from 

fertilizer reduction or substitution among different nutrient inputs, or when analyzing a 

non-marginal policy change like a 100% fertilizer tax. In addition, modeling policy 

scenarios and quantifying its welfare effects and trade-offs, which often requires a 

structural model, provide useful information for policymakers and the public. In sum, as 

far as I know, there lacks an empirically-based ecological-economic model of farmer 

decision making with a structural foundation, and one that explicitly accounts for both 

spatial land heterogeneity as well as farmers’ behavioral heterogeneity.  

The objective of this study is to quantify the social welfare impacts of alternative nutrient 

management policies in terms of both farmer profits and ecosystem damages, and 

examine whether and how heterogeneity in fertilizer demand elasticities impact the 

welfare analysis. I hypothesize that the optimal nutrient management policy varies 

depending on how farmer heterogeneity and spatial heterogeneity interact with each other 

in influencing farmers’ land use land management decisions. For example, if the derived 

elasticity of fertilizer demand decreases with land quality, then a fertilizer tax that targets 

fields with top soil quality and leads to a higher proportion of reduction in fertilizer 

application may be optimal. On the other hand, farmers with similar preferences for 

environmental stewardship or other behavioral attributes may be spatially correlated—for 

example, due to common media coverage of local agri-environmental problems. In this 



83 

 

case, a zonal tax based on proximity of certain sub-watersheds to the downstream 

distressed ecosystem might be warranted.  

To quantify the social welfare impacts of alternative agri-environmental policies, I 

develop a field-level structural econometric model that, in a profit-maximizing 

framework, simultaneously models crop choice, fertilization frequency choice and 

nutrient management decisions. In a simultaneous equations framework, my model 

improves on the previous reduced-form models by explicitly accounting for the 

selectivity of crop and nutrient management choices and the joint nature of all input 

demand decisions. Moreover, following the suggestion of Timmins and Schlenker 

(2009), I first estimate the key parameter of mean derived elasticity of phosphorus 

fertilizer demand using a reduced form panel data model and then combine it with the 

structural estimation. This structural approach allows us to quantify the social welfare 

impacts of different agri-environmental policies by quantifying the changes in farmer 

profits and ecological damages resulting from a change in phosphorus application rates. 

In particular, I evaluate the environmental and economic trade-offs from alternative 

policies like uniform fertilizer tax, spatially targeted tax based on land characteristics or 

location of the parcel, as well as an educational campaign to raise awareness about 

nutrient stewardship and a limit on fertilizer rate. 

I apply this model to the Maumee River Watershed, which is the largest in the Great 

Lakes watersheds and contributing by far the largest volume of sediment and nutrient 

loadings into Lake Erie, which contributes to excessive, harmful algal blooms (HABs) 

and other water quality problems in Lake Erie (Reutter, et al. 2011). Data on farmers’ 
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economic, behavioral and land characteristics come from a comprehensive survey of 

7,500 farmers in this watershed with extensive questions on farmers’ field level choices 

of multiple land management practices in 2013, demographics and risk attitudes of 

farmers, and farm and field level spatial characteristics. Scientific studies have suggested 

that at least 40% reduction in phosphorus runoff from Maumee is likely needed to 

significantly reduce the incidence and intensity of HABs in Lake Erie (Ohio 

Environmental Protection Agency 2013). 

The main results reveal that farmers respond differently to a phosphorus fertilizer price 

change depending on their environmental attitudes, quality of land, and their crop and 

fertilization frequency choices. The estimated price elasticity of farmers’ phosphorus 

fertilizer demand is relatively inelastic, ranging from -0.26 to -0.60. Results show that 

neither a phosphorus fertilizer tax across the watershed nor an educational campaign on 

environmental stewardship would be sufficient to achieve the policy goal of 40% 

reduction in phosphorus runoff from Maumee. I also find that spatial targeting, such as 

phosphorus tax targeted towards ecologically sensitive subbasins, improves the cost-

effectiveness of agri-environmental policies when only costs to farmers are considered; 

while a simpler policy such as a 50% uniform phosphorus tax would outperform other 

alternatives when the cost-effectiveness is measured as phosphorus reduction given net 

policy costs from an overall social welfare perspective. 

This study makes several contributions to the literature on the modeling of agro-

ecosystems and agri-environmental policies. First, I empirically estimate a structural 

econometric model of crop and nutrient management choices that is better suited for the 
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welfare analysis of policies, especially for non-marginal policies such as a 100% 

phosphorus tax, than previous numerical simulation or reduced-form models. Second, the 

structural model accounts for farmers’ heterogeneity in phosphorus fertilizer demand 

using a unique and rich dataset on field, farm, and farmer characteristics from a survey of 

1,551 farmer respondents from western Lake Erie basin. Third, the estimation makes use 

of two additional hypothetical questions on phosphorus applications and shows that the 

identification of a key parameter - mean elasticity of phosphorus fertilizer demand - using 

a reduced-form panel data analysis complements the structural model estimation. Finally, 

the analysis has strong policy implications for the sustainability of Lake Erie agri-

ecosystem and regions alike, and the key results show that neither an education campaign 

on nutrient stewardship nor a 100% fertilizer tax would achieve the policy goal of 40% 

reduction in phosphorus loadings needed to alleviate the harmful algal blooms in Lake 

Erie. 

 

Literature Review on Fertilizer Demand and Agri-Environmental Policies 

There has been a vast literature on the analysis of agricultural input demand and fertilizer 

demand in particular. Most of the studies dating back to Griliches (1958), however, focus 

on the aggregate fertilizer demand functions and their dynamics over time using 

aggregate, annual time-series data at the national or regional level (Binswanger 1974; 

Carman 1979; Denbaly and Vroomen 1993; Gunjal, et al. 1980; Heady and Yeh 1959; 

Penm and Vincent 1987). Most of these studies find that the price elasticity of nitrogen 

and phosphorus fertilizer demand to be inelastic, ranging from -0.20 to -0.95. For 
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example, Denbaly and Vroomen (1993) use co-integrated and error-corrected models 

with U.S. time series data from 1964 to 1989 and report a short-run Marshallian elasticity 

of -0.25 and a long-run elasticity of -0.37 for corn producers’ phosphorus fertilizer 

demand. Of the early studies of fertilizer demand, Pitt (1983) is a rare application that 

uses data at individual farm level, but no variables that capture the land heterogeneity or 

farmers’ demographic and socioeconomic characteristics are used in the estimation. In a 

simultaneous equations framework, Laukkanen and Nauges (2014) use a national sample 

of Finnish grain farms from 1996 to 2005, and quantify the effects of European Union’s 

agri-environmental payments on farmers’ decisions and on fertilizer use. While their 

study focuses on the elasticities of land and fertilizer use with respect to grain or 

environmental subsidies, they also report the price elasticity of fertilizer demand to be -

0.91.  

More recently, Williamson (2011) and Ricker-Gilbert, et al. (2011) are two examples that 

incorporate the increasingly available farm-level data on land and farmer characteristics 

into the model of fertilizer demand. Williamson (2011) finds that the estimated price 

elasticity of nitrogen demand ranges from -1.67 to -1.87 using farm-level microdata from 

USDA’s Agricultural Resource Management Survey (ARMS) in 2001 and 2005; while 

Ricker-Gilbert, et al. (2011) focus on the crowding out effect of fertilizer subsidy on 

commercial fertilizer use in Malawi. However, neither study focuses on the heterogeneity 

in the price responsiveness of fertilizer demand. Hansen (2004) uses a micro panel data 

of 1350 Danish crop farms from 1983 to 1991, and finds that the mean nitrogen fertilizer 

demand elasticity is -0.45. More importantly, Hansen (2004) introduces heterogeneity in 



87 

 

demand elasticities by letting the price coefficient to be a quadratic function of profit 

shares of nitrogen fertilizer, and he finds a significant standard deviation in the estimated 

elasticity of 0.24. However, due to lack of data on land and farmer characteristics, 

Hansen (2004) just reveals or shows heterogeneity among farms but does not explain the 

sources of heterogeneity. 

While heterogeneity in demand is not the focus of most empirical studies of fertilizer 

demand, it is a frequent topic in related literature such as demand for food, alcohol, 

cigarette or gasoline. For example, Ayyagari, et al. (2013) employ a latent class model to 

model heterogeneity in price elasticities in demand for alcohol; Jacobsen (2013) allows 

the parameters in demand elasticity for gasoline to vary by income, education, city size 

and race. Meier, et al. (2010) account for heterogeneity in price sensitivity in demand for 

alcohol by estimating the model separately by population subgroups by age, gender, or 

level of drinking. Harding and Lovenheim (2014) incorporate the demographic 

characteristics in estimating heterogeneous demand for nutrition in a quadratic Almost 

Ideal Demand System model. Both Gillingham (2014) and Liu (2014) introduce 

heterogeneity in demand elasticity of gasoline by interacting demographic or state-level 

socioeconomic covariates with gasoline prices, and Gillingham (2014) also employs a 

quantile regression and k-means cluster analysis to uncover the heterogeneity. 

The strand of literature that does examine the heterogeneity in fertilizer demand, which 

often results from spatial differences in land quality, or spatially differentiated 

agricultural pollution control policies, is mostly theoretical models with numerical 

simulations (Claassen and Horan 2001; Goetz and Zilberman 2000; Iho and Laukkanen 
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2012; Lankoski, et al. 2010; Lankoski and Ollikainen 2003; Xabadia, et al. 2008). For 

example, Goetz and Zilberman (2000) develop a theoretical model for the socially 

optimal management of phosphorus runoff taking into account of dynamics over time and 

spatial heterogeneity represented by land quality. In a parametric analytical model, 

Lankoski, et al. (2010) represent both the agricultural profits and ecosystem damages as 

function of fertilizer application rates, and quantify numerically the impacts of agri-

environmental policies, including spatially-differentiated fertilizer tax, on farm income, 

nitrogen runoff damage as well as the enforcement costs. Another related literature on 

land and biodiversity conservation also illustrates the potential efficiency gains from 

spatially-targeted policy instruments as opposed to uniform policies (Ando and Mallory 

2012; Babcock, et al. 1997; Newburn, et al. 2006). Most of these recommendations stem 

from the recognition of heterogeneous environmental impacts or benefits resulting from 

spatially-differentiated landscapes, as opposed to heterogeneous preferences or decision-

making process among landowners. 

On the other hand, the literature on the adoption of best management practices (BMP) 

have always focused on the importance of field-level land and operator characteristics by 

making use of farmer survey data (Featherstone and Goodwin 1993; Norris and Batie 

1987). Some recent studies have suggested that important sources of preference 

heterogeneity, including environmental stewardship and perceived efficacy of the policy, 

are important factors in explaining the diversity of responses of farmers to incentive-

based programs (Howard and Roe 2013; Wilson, et al. 2014). However, typically these 
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models are not spatially articulated and thus cannot be used to assess the environmental 

and welfare implications of policies encouraging BMP adoptions.  

There is also a growing literature on integrated ecological-economic models that link 

models of agricultural land use land management with analytical or biophysical models 

of agricultural nutrient flows such as Soil and Water Assessment Tool (SWAT). These 

studies typically make use of rich parcel-level data on land heterogeneity and have 

examined the economic decisions and environmental implications of tillage (Kurkalova, 

et al. 2006; Wu, et al. 2004), crop rotation (Wu and Babcock 1998), crop choice 

(Hendricks, et al. 2014), land allocation (Laukkanen and Nauges 2014), as well as 

conservation investments for BMP (Rabotyagov, et al. 2010; Rabotyagov, et al. 2014).  

For example, using sampled points from National Resource Inventory 1982-1997, Wu, et 

al. (2004) develop a random utility model of crop and tillage choices, and examine the 

impacts of conservation payments for conservation tillage and crop rotation on 

agricultural runoffs by linking the economic model with parametric environmental 

production functions. Rabotyagov, et al. (2014) develop an integrated assessment model, 

which couples a biophysical SWAT model with optimization algorithm, and identify the 

most cost-effective subwatersheds to target for cropland conservation investments in 

order to reduce the extent of hypoxic zone in Gulf of Mexico. While these integrated 

ecological-economic models provide useful insights regarding the design of agri-

environmental policies, they often lack data on farmers’ socioeconomic, demographic 

and behavioral characteristics that are important in farmer decision-making. In addition, 

to my knowledge, these integrated models do not focus on the heterogeneity in farmers’ 
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land management decisions such as fertilizer demand resulting from differentiated land 

and operator characteristics. 

 

Descriptive Evidence on Heterogeneity in Phosphorus Price Responsiveness 

Before I outline the structural model, it is useful to investigate the effects of field-level 

land and farmer characteristics on phosphorus fertilizer demand, and to examine whether 

there is descriptive evidence on heterogeneity in the price responsiveness of phosphorus 

fertilizer demand. Following Gillingham (2014), I run two reduced-form models that aim 

to quantify the potential heterogeneity in fertilizer demand elasticities, and the results are 

shown in tables 28 and 29 in the Appendix B. In particular, table 28 presents an ordinary 

least squares (OLS) regression in which the heterogeneity is introduced by interacting 

phosphorus fertilizer prices with variables that account for farmers’ environmental 

attitudes and field-level land quality. The results reveal the significance of field-level 

land and operator characteristics: farmers that are more risk-averse would apply a higher 

fertilizer rate to avoid potential yield loss, and farmers would apply at a higher rate for 

fields with good soil quality to maximize the yield potential. While there are no 

distinctive differences in phosphorus application rates due to crop choices, farmers do 

over-apply if they follow a multi-year fertilization schedule as opposed to single-year 

application, which is consistent with observations from agronomists. The results also 

illustrate the heterogeneity in phosphorus fertilizer demand. The negative and significant 

coefficient for the variable Normalized P price * good soil suggest that farmers have a 

higher price elasticity when managing a field with high soil quality. This may indicate 
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that good soil quality could serve as a substitute for phosphorus fertilizer, but it may also 

arise from the fact that the farmers have been applying fertilizers at much higher rates on 

fields with good soil quality in the first place. Similarly, farmers more familiar with 4R 

nutrient stewardship have a more inelastic fertilizer demand; however, maybe this is 

because they are already applying at a lower rate. 

Table 29, on the other hand, investigates the heterogeneity in fertilizer demand elasticities 

by estimating a quantile regression. While linear regression estimates the conditional 

mean of the fertilizer demand given values of covariates, quantile regressions estimate 

the conditional median or other quantiles of the dependent variable. Table 29 presents the 

25
th

, median and 75
th

 quantile regression results. The coefficient and implied elasticity on 

the normalized phosphorus price indicate that at the 25
th

 quantile, of response, the 

elasticity is -3.003, considerably higher than the estimate for the median quantile 

regression result of -0.8477 and the 75
th

 quantile regression of -0.5364. The declining 

magnitude of the price elasticity given the rise of fertilizer prices is intuitive: one farmer 

cannot always cut back phosphorus applications at high prices because phosphorus 

fertilizer is an essential nutrient input to the crop production. While the quantile 

regressions only reveal the heterogeneity in responsiveness, they do not explain the 

sources of the heterogeneity, unlike the interactions approach shown in table 28. 

Finally, while the estimated elasticities at the median and 75
th

 quantile regressions fall 

within the range of previous estimates, the implied elasticities from the 25
th

 quantile 

regression and OLS estimation seem a bit high, suggesting possible measurement errors 

in the reported phosphorus prices in the single-year cross-sectional data, and more careful 
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analysis is needed to identify the elasticity of fertilizer demand. Nonetheless, they 

provide descriptive evidence on heterogeneity in phosphorus price responsiveness. 

 

Conceptual Framework 

In this section I present the microeconomic behavioral model of farmers’ profit-

maximizing behavior. In this modeling framework, I assume each farmer has only one 

field
17

. Within the modeling framework and at the field level, a farmer is assumed to 

make the optimal crop choices as well as the optimal input demand levels that yield the 

highest expected profit. These choices are made simultaneously, the decisions of input 

demand and output supply may depend on the crop choices and vice versa. Suppose that 

for each field, the farmer can choose among 𝐶 crops and 𝐽 inputs to maximize the profit. 

Assume further that farmers consider input and output prices to be exogenous
18

 and they 

could only choose one crop for each field. As a result, the field-level expected profit 𝜋𝑖|𝑐 

for field 𝑖 given crop choice 𝑐 is given by 

𝜋𝑖|𝑐 = [𝑝𝑖𝑐𝑦𝑖𝑐 −  ∑ 𝑟𝑖𝑗𝑐 ∗ 𝑥𝑖𝑗𝑐𝑗 |𝑐𝑟𝑜𝑝 = 𝑐]         (16), 

in which 𝑝𝑖𝑐 is the crop choice farmer 𝑖 receives, 𝑦𝑖𝑐 is the expected yield for field 𝑖 given 

crop choice 𝑐, while 𝑟𝑖𝑗𝑐 and 𝑥𝑖𝑗𝑐 denotes the corresponding input price and input 

quantity for input 𝑗. Note that the expected profit 𝜋𝑖|𝑐 is conditional on choice 𝑐. The 

                                                 
17

 This assumption is due to the nature of our farmer survey data, in which we ask the farmer to randomly 

pick one field and answer questions on land use land management for that particular field. 
18

 This assumption is reasonable since we focus on farmers in the western Lake Erie basin while the input 

and output prices for agricultural commodities are commonly driven by national-level or even 

international-level macroeconomic trends. 
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unconditional profit function can be written as a weighted average of the conditional 

profit function: 

𝜋𝑖 = 𝜋𝑖|𝑐 ∗ 𝜑𝑖𝑐               (17), 

where 𝜑𝑖𝑐 denotes the probability of farmer 𝑖 growing crop 𝑐 in field 𝑖 and it is a binary 

variable taking on the value of 0 or 1. Furthermore, I assume each farmer could only 

choose one crop for one field so that ∑ 𝜑𝑖𝑐 = 1𝑐∈𝐶 . Equation (17) implies that the profit-

maximizing decisions of farmers could be modeled as a two-stage problem: in the first 

stage, the farmers choose the optimal crop that yields the highest expected utility, and 

then in the second stage, conditional on the crop choice, the farmers choose the output 

and input levels to maximize the profit.  

Note that this modeling framework only captures the farmers’ extensive (crop choice) 

and intensive margin responses (nutrient input demand) to policies on a single field, and 

thus ignores the extensive margin changes at the farm level in terms of changes in mix of 

crop production among different fields in a farm
19

. For example, this model might 

underestimate the impacts of nutrient management policies if these policies lead to 

changes in crop mix at the farm level in addition to changes in crop and nutrient 

applications in the chosen field. 

                                                 
19

 Table 27 in the Appendix B presents results on the effects of changes in input/output prices on mix of 

crop production at the farm level, in which the crop mix is measured as percentage of corn planted for the 

farm. I find no statistical evidence that changes in phosphorus fertilizer prices, which could result from 

alternative nutrient management policies such as fertilizer taxes, would lead to significant changes in crop 

mix at farm level. This may reflects the fact that changes in crop mix does not occur in the short run and 

thus may not be captured in our cross-sectional farm survey data. However, this may also suggest my 

model that focuses on field-level changes in crop choice and input demand and ignores farm-level crop-mix 

changes could provide a reasonable approximation of the impacts on farm welfare. 



94 

 

Before I discuss the two-stage decision problem in detail, there is one more complication 

in this model. The phosphorus fertilizer application rates are substantially higher for 

fields with multi-year application than fields with single-year application, in addition to 

differences due to crop choices. This is intuitive because farmers may apply a rate that 

could last for more than a year in multi-year applications. As a result, in the first stage, it 

is critical to model both the crop choices and the phosphorus application frequency 

choices. In particular, we model the choices in the first stage as a combination of crop 

and phosphorus application frequency choices, which include five distinct choices 

denoted by 𝐿: corn and single year application (corn-single, cs), corn and multi-year 

application (corn-multi, cm), soybean and single year application (soybean-single, ss), 

soybean and multi-year application (soybean-multi, sm) and other crop choices (other, o).  

Let 𝑢𝑖𝑙(𝑝𝑖𝑙, 𝑟𝑖𝑙, 𝑰𝒊, 𝑳𝒊) denotes the utility the farmer gets from choosing the specific crop 

and fertilizer frequency choice 𝑙 (𝑙 could be 𝑐𝑠, 𝑐𝑚, 𝑠𝑠, 𝑠𝑚 𝑎𝑛𝑑 𝑜). Because the farmers’ 

preferences are unknown to the researcher, the utility is assumed to be a random variable 

and written as 

𝑢𝑖𝑙(𝒁𝒊𝒍) =  𝑣𝑖𝑙(𝒁𝒊𝒍) +  휀𝑖𝑙   (18), 

where 𝑣𝑖𝑙(𝒁𝒊𝒍) is the observed mean of 𝑢𝑖𝑙(𝒁𝒊𝒍), 휀𝑖𝑙 is the random error term. 𝒁𝒊𝒍 

represent a set of socioeconomic and land characteristics for the farm, field and operators, 

as well as output and input prices. 𝑣𝑖𝑙(𝒁𝒊𝒍) is commonly specified as a linear combination 

of these characteristics, that is 𝑣𝑖𝑙(𝒁𝒊𝒍) =  𝒁𝒊𝒍 ∗  𝜸𝒍. Maddala (1983) shows that if the 

residuals 휀𝑖𝑙 are assumed to be independently and identically distributed with the extreme 

value distribution, then the probability that the farmer will choose a crop and fertilizer 
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application frequency choice 𝑙∗ that yields the highest expected utility among the five 

choices, which can be modeled as a multinomial logit model: 

𝑃𝑖𝑙∗ = 𝑝𝑟𝑜𝑏(𝑙 = 𝑙∗) =  
𝑒

𝒁𝒊𝒍∗∗ 𝜸𝒍∗

∑ 𝑒𝒁𝒊𝒍∗ 𝜸𝒍𝑙∈𝐿
            𝑙 = 𝑐𝑠, 𝑐𝑚, 𝑠𝑠, 𝑠𝑚, 𝑜  (19). 

Given the first stage crop and phosphorus fertilization frequency choice 𝑙∗, the equation 

(16) now could be rewritten as  

𝜋𝑖|𝑙∗ = [𝑝𝑖𝑙∗𝑦𝑖𝑙∗ −  ∑ 𝑟𝑖𝑗𝑙∗ ∗ 𝑥𝑖𝑗𝑙∗𝑗 |𝑙 = 𝑙∗]         (20) 

Maximizing the profit function yields the optimal input and output supply functions. I use 

the dual representation of farm profit maximizing behavior. While a primal approach 

would require specifying a production function for grains, the dual approach provides a 

convenient alternative that is based on the specification of a flexible indirect profit 

function for the second stage, 𝜋𝑖|𝑙∗. The input demand and output supply functions can be 

derived from the indirect profit function using Hotelling’s lemma and will be functions of 

exogenous output/input prices and quasi-fixed inputs (Chambers 1988).  

 

Estimation Strategy 

The Quadratic Profit Function 

Any well-behaved profit function must satisfy the following regularity conditions: 

convexity in prices, homogeneity of degree one in prices, symmetry and monotonicity. I 

specify a quadratic profit function to flexibly approximate the true profit function. This 

quadratic profit functional form is chosen over other popular specifications (e.g., 

generalized Leotief or translog) because it yields directly a set of output supply and input 

demand equations that make it easier to model farmers’ nutrient application decisions and 
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are linear in input and output prices (Arnade and Kelch 2007; Laukkanen and Nauges 

2014; Moschini 1988; Shumway and Alexander 1988; Shumway, et al. 1988), and it 

allows for negative profits 
20

 (Moschini 1988; Villezca-Becerra and Shumway 1992). The 

profit and all output and input prices in the profit function are normalized by the labor 

price, yielding a normalized profit function. I impose the common regularity conditions 

in this specification and the normalized profit function can be specified as 

𝜋𝑖|𝑙∗̅̅ ̅̅ ̅ =  𝛽𝑙 +  𝛼𝑙 ∗ 𝑝𝑖𝑙̅̅ ̅ + ∑ 𝛽𝑗𝑙 ∗ 𝑟𝑖𝑗𝑙̅̅ ̅̅𝑗 + ∑ 𝜉𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑 + ∑ ∑ 𝜎𝑗𝑘𝑙 ∗ (𝑟𝑖𝑗𝑙̅̅ ̅̅ ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑗𝑗 ) +

1

2
∑ 𝛾𝑗𝑙 ∗𝑗 𝑟𝑖𝑗𝑙̅̅ ̅̅ 2 +

1

2
∑ 𝜛𝑙 ∗𝑗 𝑝𝑖𝑙̅̅ ̅2 +  ∑ ∑ 𝜌𝑗𝑑𝑙 ∗ (𝑟𝑖𝑗𝑙̅̅ ̅̅ ∗ 𝑧𝑖𝑑𝑙)𝑑𝑗 + ∑ 𝜔𝑗𝑙 ∗ (𝑟𝑖𝑗𝑙̅̅ ̅̅ ∗ 𝑝𝑖𝑙̅̅ ̅)𝑗 +

 ∑ 휁𝑑𝑙 ∗ (𝑧𝑖𝑑𝑙 ∗ 𝑝𝑖𝑙̅̅ ̅)𝑑 +
1

2
∑ 𝜍𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙

2
𝑑     (21), 

where 𝑝𝑖𝑙̅̅ ̅ and 𝑟𝑖𝑗𝑙̅̅ ̅̅  denotes the prices for output 𝑙 such as corn or soybean and variable 

input 𝑗 such as phosphorus, nitrogen fertilizer prices the farmer received, and 𝑧𝑖𝑚𝑙 denote 

the quasi-fixed input 𝑑 which in my case are land and machinery. There are two things 

worth noting in equation (21): first, the upper bar in the equation denotes the normalized 

profit 𝜋𝑖|𝑙∗̅̅ ̅̅ ̅, output price 𝑝𝑖𝑙̅̅ ̅ and input price 𝑟𝑖𝑗𝑙̅̅ ̅̅  for variable input 𝑗. Second, I assume the 

farmers take input and output prices as exogenous and thus the normalized profit function 

is a function of exogenous prices for output and variable inputs – phosphorus (𝑗 = 𝑃), 

nitrogen (𝑗 = 𝑁), or manure (𝑗 = 𝑀), and quantities for quasi-fixed inputs and their 

interaction terms. 𝛽𝑙 , 𝛼𝑙, 𝛽𝑗𝑙 , 𝜉𝑚𝑙 , 𝜎𝑗𝑘𝑙 , 𝛾𝑗𝑙 , 𝜛𝑙, 𝜌𝑗𝑑𝑙 , 𝜔𝑗𝑙 , 휁𝑑𝑙 , 𝜍𝑑𝑙 are the parameters needs to 

be estimated.  

                                                 
20

 The translog specification requires logarithmic transformation of profit and thus does not allow restricted 

profit to be negative.  
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Following Hotelling’s lemma, the output supply function for crop 𝑙 can be obtained by 

differentiating the normalized profit function with the output price 𝑝𝑖𝑙̅̅ ̅ . As a result, 

differentiating both equations (20) and (21) by 𝑝𝑖𝑙̅̅ ̅ yields: 

𝑦𝑖𝑙 =   𝛼𝑙 +  𝜛𝑙 ∗ 𝑝𝑖𝑙̅̅ ̅ + ∑ 𝜔𝑗𝑙 ∗ 𝑟𝑖𝑗𝑙̅̅ ̅̅𝑗 +  ∑ 휁𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑      (22). 

Similar, the variable input demand equation for input 𝑗 (𝑗 = 𝑃, 𝑁, 𝑀) can be obtained by 

differentiating the profit function with respect to the input price 𝑟𝑖𝑗𝑙̅̅ ̅̅ : 

−𝑥𝑖𝑗𝑙 =  𝛽𝑗𝑙 +  𝛾𝑗𝑙 ∗ 𝑟𝑖𝑗𝑙̅̅ ̅̅ + ∑ 𝜎𝑗𝑘𝑙 ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑗 + 𝜔𝑗𝑙 ∗  𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑗𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑     (23),  

The derivation so far follows the standard quadratic profit function and the resulting 

output supply and input demand equations (22)-(23) are functions of only exogenous 

prices and quasi-fixed inputs. However, previous economic and agronomic studies have 

shown that crop and nutrient management choices depend critically on heterogeneous 

field-level operator and land characteristics. As a result, I make some modifications in the 

profit function to allow for the heterogeneous effects due to the field-specific land and 

operator characteristics. Mathematically, this is equivalent to explicitly expressing the 

intercepts in the output supply 𝛼𝑙 and the input demand 𝛽𝑗𝑙 as functions of these 

heterogeneous attributes: 

 𝛼𝑙 =   𝛼𝑙0 +  𝛼𝑙1 ∗ 𝑰𝒊 +   𝛼𝑙2 ∗ 𝑳𝒊             (24) 

 𝛽𝑗𝑙 =   𝛽𝑗𝑙0 +  𝛽𝑗𝑙1 ∗ 𝑰𝒊 +  𝛽𝑗𝑙2 ∗  𝑳𝒊            (25) 

In equations (24) and (25), 𝑰𝒊 and 𝑳𝒊 represents the individual-level operator and field 

characteristics respectively, and 𝛼𝑙0 and 𝛽𝑗𝑙0 are the new intercepts.  

In addition and as I discussed earlier in the introduction, farmers may respond to fertilizer 

price changes differently in fields whose land characteristics may serve as substitutes for 
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fertilizer than otherwise, while farmers with different levels of information sets such as 

nutrient stewardship are expected to behave differently as well. As a result, I use four 

variables, which represent land quality and familiarity with nutrient stewardship, to 

account for the heterogeneity in price elasticity of fertilizer demand. In particular, these 

four variables are denoted as 𝑺𝒊, which include three soil quality variables (dummy for 

top soil, dummy for poor soil, dummy for steep slope) and one variable that account for 

the familiarity with nutrient stewardship (familiar_4R). For simplicity, I only introduce 

these four variables in the phosphorus demand equation, so the coefficient for the 

phosphorus fertilizer prices can be rewritten as 

𝛾𝑃𝑙 =  𝛾𝑃𝑙0 +  ∑ 휂𝑃𝑙𝑛𝑛 ∗  𝑆𝑖𝑛         (26). 

In sum, we can obtain the phosphorus, nitrogen fertilizer and manure input demand 

equation in the following by plugging in equations (25) (26) into equation (23). 

−𝑥𝑖𝑃𝑙 = ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑃𝑙2 ∗  𝑳𝒊) + (𝛾𝑃𝑙0 +  ∑ 휂𝑃𝑙𝑛𝑛 ∗  𝑆𝑖𝑛) ∗ 𝑟𝑖𝑃𝑙̅̅ ̅̅ + ∑ 𝜎𝑃𝑘𝑙 ∗𝑘≠𝑃

𝑟𝑖𝑘𝑙̅̅ ̅̅ +  𝜔𝑃𝑙 ∗  𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑃𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑     (27), 

−𝑥𝑖𝑁𝑙 =  ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑖𝑃𝑙2 ∗  𝑳𝒊) + 𝛾𝑖𝑁𝑙 ∗ 𝑟𝑖𝑁𝑙̅̅ ̅̅̅ +  ∑ 𝜎𝑖𝑁𝑘𝑙 ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑁 +  𝜔𝑁𝑙 ∗

 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑖𝑁𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑     (28), 

−𝑥𝑖𝑀𝑙 =  ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑃𝑙2 ∗  𝑳𝒊) +  𝛾𝑀𝑙 ∗ 𝑟𝑖𝑀𝑙̅̅ ̅̅ ̅ +  ∑ 𝜎𝑀𝑘𝑙 ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑀 +  𝜔𝑀𝑙 ∗

 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑀𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑     (29). 

Similarly, I could re-write the output supply equation (22) as  

𝑦𝑖𝑙 = ( 𝛼𝑙0 +  𝛼𝑙1 ∗ 𝑰𝒊 +   𝛼𝑙2 ∗ 𝑳𝒊) +  𝜛𝑙 ∗ 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜔𝑗𝑙 ∗ 𝑟𝑖𝑗𝑙̅̅ ̅̅𝑗 +  ∑ 휁𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑      (30). 
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The four above equations (27)-(30) thus form a system of input demand and output 

supply equations
21

 that need to be estimated, and these parameters further restricts the 

parameters in the normalized profit function. 

 

Reduced-form Panel Regression 

To quantify the impacts of nutrient management policies on farmer welfare through their 

effects on phosphorus application, it is critical to accurately estimate how farmers 

respond to changes in fertilizer price changes induced by alternative policies. In other 

words, it is important to identify the price elasticity of phosphorus fertilizer demand. 

Timmins and Schlenker (2009) and Chetty (2008) argues that reduced-form studies can 

be used to identify key parameters of interest and then use it in structural models to 

simulate policy responses by economic agents. Although I did not explicitly represents 

changes in welfare as a function of the “sufficient statistic” as in Chetty (2008), I estimate 

a reduced-form panel data model using phosphorus application rates under actual and two 

hypothetical price scenarios, and identify the mean elasticity of phosphorus fertilizer 

demand, which is then constrained in the estimation of the structural model.   

The data I use in this study comes from a farmer survey in the western Lake Erie basin 

soliciting farmers’ crop and nutrient management choices in 2013, so it is based on data 

from a single year and a relatively small region. There is some variation in the fertilizer 

prices paid among the farmers; however, it may not provide enough variation to reveal 

                                                 
21

 The normalized profit function is omitted from the estimation system because first, the parameters in the 

normalized profit function shown in equation (21) are already estimated in these four input demand and 

output supply equations, and second, the full covariance matrix of the estimation system containing the 

restricted normalized profit function tends to be singular due to collinearity (Shumway and Alexander 

1988). 
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the farmers’ true demand elasticity of phosphorous fertilizers: over the past decade, the 

average U.S. phosphorus price index ranges from $300/ton to $900/ton.  

As a result, in addition to one question about the farmers’ actual fertilizer application rate 

and fertilizer price paid, I ask two hypothetical questions to induce farmers’ responses 

under alternative phosphorus fertilizer price scenarios. Specifically I ask “if commercial 

phosphorus fertilizer prices had been $𝑋/ton, what rate of P would you have applied on 

this field for this most recent crop?       ______ lbs/acre”, in which 𝑋 could be 200, 250, 

300, 350, 450, 500, 550, 750, 800, 850, and 900.  With these two hypothetical questions 

on P rate and prices in addition to the question on the observed levels, I now have a short 

panel of three choices and thus could formulate a panel data fixed effects model: 

−𝑥𝑖𝑃𝑙𝑡 = 𝜅𝑃𝑙0 +  𝛾𝑃𝑙0 ∗ 𝑟𝑖𝑃𝑙𝑡̅̅ ̅̅ ̅ +  휃𝑖𝑙           𝑡 = 1,2,3     (31), 

where 휃𝑖𝑙 is individual fixed effects.  

Following equation (31) and for each crop and fertilization frequency choice 𝑙, I could 

estimate the key parameter of interest 𝛾𝑃𝑙0̂ – the mean coefficient for phosphorus 

fertilizer prices without heterogeneity
22

, and this estimated parameter implies a mean 

elasticity of phosphorus fertilizer demand.  

The reduced-form panel data regression shown in equation (31) is similar in spirit, in 

which the key parameter of interest – mean coefficient for phosphorus fertilizer prices 

                                                 
22

 I account for the uncertainty in this estimate by conducting a series of robustness checks, including a 

quadratic specification as opposed to a linear phosphorus price, constraining the coefficient to be 𝛾𝑃𝑙0̂ plus 

or minus the estimated standard error in the structural model estimation.  The implied mean elasticity are 

similar to the main specification. Currently I am also working on examining the stableness of the 

coefficients in the structural model by running boostrapping regressions with the constrained coefficient 

randomly drawn from the distribution of  𝛾𝑃𝑙0̂. 
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𝛾𝑃𝑙0̂ – is estimated using reduced form regressions and then become constrained in the 

structural estimation of the four-equation system of output supply and input demand. 

 

Selectivity and Iterative SUR 

As shown previously in equation (17), the second stage nutrient management decisions 

are heavily influenced by the first-stage crop and fertilization frequency choices. For 

example, the phosphorus fertilizer rates are much higher for corn fields with multi-year 

applications compared to other fields. As a result, a direct estimation of second-stage 

input demand and output supply equations while ignoring the first-stage choices would be 

biased because of sample selection bias. Lee (1983) suggests a two-stage method for 

estimating equation (18) to correct the sample section bias: first, the multinomial logit 

model like equation (19) is estimated, and then the estimated probability 𝑃𝑖�̂� from 

equation (20) could be used to calculate a Heckman-style inverse Mills ratio: 

𝜆𝑖�̂� =  
𝜙[Φ−1(𝑃𝑖�̂�)]

𝑃𝑖�̂�
             𝑙 = 𝑐𝑠, 𝑐𝑚, 𝑠𝑠, 𝑠𝑚, 𝑜     (32). 

In the second stage, these inverse Mills ratios are added to the equations (27)-(30). For 

the two-stage selectivity model to work, we need variables that satisfy the exclusion 

restriction, that is, variables that only enter the first stage crop and fertilization frequency 

choices but not the second stage field-level nutrient management decisions. Specifically, 

five variables are used: farm acres, precipitation, percentage of corn grown at the farm 

level
23

, and two dummies for previous year crop choice. The percentage of corn grown at 

                                                 
23

 More exogenous variable such as the percentage of high quality soil at the farm level is also used 

alternatively as robustness check. 
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the farm level represents the extensive-margin crop-mix at the farm level and controls for 

the impacts of farm size on operators’ ability to apply fertilizers or choose a crop that 

requires intensive care in a timely fashion; and previous crop dummies represents the 

effects of crop rotation.  Combining equation (32) that accounts for the selectivity and 

equation (31) that provides a reduced-form estimate for 𝛾𝑃𝑙0̂, we can re-write the 

estimating system of four input demand and output supply equations as follows: 

−𝑥𝑖𝑃𝑙 = ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑃𝑙2 ∗  𝑳𝒊) + (𝛾𝑃𝑙0̂ +  ∑ 휂𝑃𝑙𝑛𝑛 ∗  𝑆𝑖𝑛) ∗ 𝑟𝑖𝑃𝑙̅̅ ̅̅ + ∑ 𝜎𝑃𝑘𝑙 ∗𝑘≠𝑃

𝑟𝑖𝑘𝑙̅̅ ̅̅ +  𝜔𝑃𝑙 ∗  𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑃𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑 +  𝜇𝑃𝑙 ∗ 𝜆𝑖�̂� +  𝜖𝑖𝑃𝑙    (33a), 

−𝑥𝑖𝑁𝑙 =  ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑖𝑃𝑙2 ∗  𝑳𝒊) + 𝛾𝑖𝑁𝑙 ∗ 𝑟𝑖𝑁𝑙̅̅ ̅̅̅ +  ∑ 𝜎𝑖𝑁𝑘𝑙 ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑁 +  𝜔𝑁𝑙 ∗

 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑖𝑁𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑 +  𝜇𝑁𝑙 ∗ 𝜆𝑖�̂�  +  𝜖𝑖𝑁𝑙   (33b), 

−𝑥𝑖𝑀𝑙 =  ( 𝛽𝑃𝑙0 +  𝛽𝑃𝑙1 ∗ 𝑰𝒊 +  𝛽𝑃𝑙2 ∗  𝑳𝒊) +  𝛾𝑀𝑙 ∗ 𝑟𝑖𝑀𝑙̅̅ ̅̅ ̅ +  ∑ 𝜎𝑀𝑘𝑙 ∗ 𝑟𝑖𝑘𝑙̅̅ ̅̅𝑘≠𝑀 +  𝜔𝑀𝑙 ∗

 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜌𝑀𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙𝑑 +  𝜇𝑀𝑙 ∗ 𝜆𝑖�̂�  +  𝜖𝑖𝑀𝑙   (33c). 

𝑦𝑖𝑙 = ( 𝛼𝑙0 +  𝛼𝑙1 ∗ 𝑰𝒊 +   𝛼𝑙2 ∗ 𝑳𝒊) +  𝜛𝑙 ∗ 𝑝𝑖𝑙̅̅ ̅ +  ∑ 𝜔𝑗𝑙 ∗ 𝑟𝑖𝑗𝑙̅̅ ̅̅𝑗 +  ∑ 휁𝑑𝑙 ∗ 𝑧𝑖𝑑𝑙 +  𝜇𝑦𝑙 ∗𝑑

𝜆𝑖�̂� +  𝜖𝑖𝑦𝑙     (33d). 

The above four equations form the final estimating system, and the terms 𝜖𝑖𝑃𝑙 to 𝜖𝑖𝑦𝑙 are 

idiosyncratic error terms, which are possibly correlated across equations and by 

assumption of mean zero. There are three estimation issues that need to be addressed. 

First, the joint nature in nutrient management decisions with regard to multiple variable 

inputs, as evidenced by the correlation among 𝜖𝑖𝑃𝑙 and 𝜖𝑖𝑦𝑙, need to be accounted for. As 

a result, I use iterative Seemingly Uncorrelated Regression (SUR) to estimate the  

equations (33a) – (33d) as a whole. Second, the sample selection bias can be tested by 

investigating whether  𝜇𝑃𝑙, 𝜇𝑁𝑙, 𝜇𝑀𝑙, and 𝜇𝑦𝑙 equals zero. If they are statistically 
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significantly different from zero, then the estimates without accounting for the sample 

selection bias would be biased. Finally, the two-stage method proposed by Lee (1983) 

only provide unbiased estimates but not the variances (Wu and Babcock 1998). In other 

words, the estimated standard errors from iterative SUR are biased and thus I report the 

consistent standard errors estimated from bootstrapping method instead. 

 

 Data 

 

Table 15. Fertilizer Application Rates and Fertilizer Prices Across Different Alternatives 

Note: standard deviations in the parenthesis
24

. 

 

 

Figure 7 shows our study region – the western Lake Erie basin and the Maumee River 

watershed in particular, which is the largest tributary in Lake Erie and the largest 

drainage basin in the Great Lakes region. More importantly, the Maumee River 

                                                 
24

 The group t-tests reveal that there is no statistical difference in phosphorus application rates for corn, 

soybean or other crops when they are applying phosphorus in a single-year fashion. However, the 

phosphorus application rates are statistically lower for corn or soybean fields with single-year application 

than fields that apply phosphorus fertilizers in a multi-year frequency.  

 
Corn-

single 
Corn-multi 

Soybean-

single 

Soybean-

multi 
Other crop 

P application rate 64.969 81.038 67.410 83.093 64.292 

 
(74.747) (101.348) (81.864) (87.515) (98.408) 

N application rate 148.745 149.321 28.039 51.732 93.583 

 
(109.218) (114.306) (66.475) (109.316) (125.654) 

P fertilizer price 576.931 576.033 574.646 583.803 578.563 

 
(104.120) (112.498) (98.387) (101.703) (105.481) 

N fertilizer price 235.054 287.384 44.989 77.910 152.990 

 
(310.014) (332.681) (147.549) (208.695) (260.525) 

# obs 708 368 248 135 96 
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watershed has been implicated as the largest source of phosphorus flows into Lake Erie: 

the dissolved reactive phosphorus loadings have increased by over 200 percent from 1995 

to 2011, which has been a major cause of harmful algal blooms and other water quality 

problems in Lake Erie (Michalak, et al. 2013). As part of a NSF-funded project, my 

collaborators and I conducted a mail survey of 7,500 farmers in the Maumee River 

watershed on their field, farm and operator characteristics in February - April 2014. We 

also solicited field-specific responses on crop choices, fertilizer application, and other 

nutrient management practices in 2013. The addresses of all farmers in the Maumee 

River watershed were provided by a private vendor, and were pulled from lists of farmers 

receiving government payments and from farming magazine rolls. The two-round survey 

was conducted following Dillman’s Tailored Design method (Dillman 2011). The total 

set of mailings included an announcement letter, a survey packet, a reminder letter and a 

replacement packet for non-responders. The respondents receive a $1 bill in the mailings 

as an incentive to increase the response rate. Several months before the initial mailings of 

the survey it was pilot tested using farmers recruited by local extension professionals.  

A total of 3,234 surveys were initially returned, of these 438 were no longer farming and 

32 surveys did not answer sufficient number of questions. In total, we obtained 2,764 

valid survey responses, yielding a response rate of 36.9%. Of these, 1,213 respondents 

did not provide answers to either fertilizer rate or price questions or certain field or 

operator characteristics. As a result, a total of 1,551 surveys are used in this analysis and 

the majority of them are from corn or soybean growers.  
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Figure 7. The Maumee River Watershed in the Western Lake Erie Basin 

 

 

 

 

 

Table 15 shows the phosphorus and nitrogen fertilizer application rates and the prices 

farmers paid in 2013 by different crop and fertilization frequency choices. Corn requires 

much higher rates of nitrogen fertilizer than soybean, while fields with multi-year   
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Variable Obs Mean Std. Dev. Min Max 

Output Supply and Input Demand 
    

Expected yield in 2013 1551 125.2449 63.89199 0 250 

Phosphorus application rate 1551 70.65575 85.76222 0 1250 

Nitrogen application rate 1549 117.6531 116.358 0 1250 

Manure quantity 1545 703.3537 6168.947 0 200000 

Crop in 2012 is corn 1551 0.315925 0.465033 0 1 

Crop in 2012 is soybean 1551 0.524178 0.499576 0 1 

Output and Input Prices 
     

Corn price in 2012 1410 511.0346 104.1846 0 553.2105 

Soybean price in 2012 1410 1184.047 152.6893 0 1229.5 

Normalized P fertilizer price 1551 57.70151 10.52109 0.02 120 

Normalized N fertilizer price 1547 38.52827 58.67502 0 433.3333 

Manure price 1545 0.001053 0.006346 0 0.08 

P price norm * familiar_4R 1542 92.59627 75.77997 0 360 

P price norm * slope 1551 21.35525 28.41432 0 90 

P price norm * top soil 1551 20.7746 28.49471 0 120 

P price norm * poor soil 1551 18.15941 27.38308 0 110 

Farmer Characteristics 
     

Familiar with 4R 1542 1.597925 1.254897 0 4 

Risk attitudes (10 = risk loving) 1537 5.592713 2.347849 0 10 

Age 1520 58.51908 17.29406 5 548 

Education 1527 3.027505 1.311019 1 6 

Years of farming experience 1525 38.3082 17.17624 3 400 

Female operator 1527 0.008513 0.091905 0 1 

Farm income 1414 3.204385 1.305965 1 5 

Field Characteristics 
     

Field acres 1551 50.864 65.46771 0 1100 

The field is rented 1538 0.363459 0.481152 0 1 

Distance (meter) to Lake Erie 1366 96855.32 43155.65 3685 191613 

Soil texture is clay 1551 0.221148 0.415154 0 1 

Soil texture is sand 1551 0.021277 0.144351 0 1 

Field is Highly Erodible Land 1534 0.249022 0.577279 0 2 

Field has a slope > 2% 1551 0.372663 0.483669 0 1 

Field has good soil 1551 0.359768 0.480087 0 1 

Field has poor soil 1551 0.317215 0.465542 0 1 

                                                                                                                    Continued 

Table 16. Summary Statistics of Field, Farm, and Farmer Characteristics   
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Table 16 continued 

Farm Characteristics 
     

Farm acres 1548 573.0949 771.5575 0 7050 

% corn in all planted acres 1376 0.406479 0.490897 0 10.53333 

Farm has livestock 1505 0.304319 0.460271 0 1 

Enrolled in crop insurance 1530 0.701961 0.457546 0 1 

 

 

application frequency have a much higher phosphorus fertilizer rates than fields that 

apply fertilizers each year. The differences in the nitrogen prices resulting from different 

forms of nitrogen fertilizer used for corn and soybean: urea was more commonly used for 

soybean while corn used more ammonia and they have different nitrogen content
25

. Table 

16 shows the summary statistics for the farmer survey, including crop and nutrient 

application rates, output and input prices, field characteristics, farm characteristics, and 

operator characteristics. A comparison between our data and the Census of Agriculture 

data for counties in the Maumee River watershed reveals that our sample is skewed 

toward large farms with high gross sales and farmers who additionally earn off-farm 

income. Most of the variables in table 16 are intuitive; I just want to highlight one group 

of variables – the interaction terms between the normalized phosphorus fertilizer prices 

and the four variables that control for heterogeneous responses due to different soil 

quality and familiarity with 4R Nutrient Stewardship
26

.  

 

 

                                                 
25

 The nitrogen fertilizer prices are adjusted for the percentage of nitrogen content.  
26

 4R refers to using the Right Source of nutrients at the Right Rate and Right Time in the Right Place. 
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Results and Discussion 

Table 17 shows the results for the first-stage crop and fertilization frequency choices. 

Relative to other crop choices, fields with a larger size and better soil quality have a 

higher probability of choosing corn or soybean. Farmers currently enrolled in crop 

insurance program
27

 or with higher farm income are more likely to grow corn, while 

farmers who rent a field have a higher probability to choose soybean. Many other 

characteristics do not have statistically significant effects, suggesting that farmers in our 

study region may follow a historic crop rotation pattern as evidenced by the significance 

for previous crop dummy. I still model crop choice in the first stage because according to 

agronomists phosphorus applications depend more on crop choice on a particular year
28

 

and the effect of crop rotation is at least in part accounted for by modeling the 

fertilization frequency in the first stage as well. 

Table 18 reports the results for the reduced-form panel data analysis shown in equation 

(31). This model is estimated separately for each crop and fertilization frequency choices. 

The mean phosphorus application rates are copied from table 15, and the coefficient for 

p_price _norm is the estimated 𝛾𝑃𝑙0̂ in equation (31) and become the constrained 

coefficient in the structural estimation for the phosphorus input demand equation. Then 

the mean estimated elasticity is derived from this estimate while holding all other 

variables constant at means. On average, the derived elasticity of phosphorus fertilizer  

                                                 
27

 The contemporary crop insurance participation might be endogenous, and thus I ran two robustness 

checks using county-level yield protection insurance rates in 2012 or historical farmers’ loss ratios as 

instruments and the results are qualitatively similar. 
28

 For example, phosphorus application rates for soybean fields and corn fields both in corn-soybean 

rotation could have different phosphorus application rates. 
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                                                                                                                        Continued 

Table 17. First Stage Multinomial Logit Model of Crop and Fertilizer Application 

Frequency Choices   

 

  
corn single corn multi 

soybean 

single 
soybean multi 

 Previous Crop Choices         

2012 crop is corn 2.2336** 1.7330** 4.0188*** 4.0946*** 

 (0.7992) (0.8173) (0.8241) (0.8624) 

2012 crop is soybean  0.0079 -0.0990 -0.3574 -0.6500 

 

(0.3576) (0.3777) (0.4245) (0.5250) 

Input and Output Prices 
   

P fertilizer price -4.05E-05 0.0001 -0.0011 0.0022 

 

(0.0012) (0.0013) (0.0014) (0.0018) 

N fertilizer price 0.0011* 0.0015*** -0.0026*** -0.0009 

 

(0.0005) (0.0005) (0.0007) (0.0007) 

Corn price 2012 -0.0015 0.0002 -0.0025 -0.0010 

 

(0.0020) (0.0021) (0.0021) (0.0024) 

Soybean price 2012 0.0016 0.0007 0.0030** 0.0011 

 

(0.0011) (0.0012) (0.0015) (0.0014) 

Field Characteristics 
    

Poor soil -0.9097** -1.1490 -0.6979* -0.8304* 

 

(0.3629) (0.3815) (0.4029) (0.4446) 

Top soil 0.5194 0.4437 -0.1799 0.1756 

 

(0.4229) (0.4352) (0.4694) (0.5036) 

Precipitation 0.0012 -0.0806 0.0006 0.0428 

 

(0.0770) (0.0892) (0.0977) (0.0892) 

Field acres 0.0208*** 0.0200*** 0.0167** 0.0182** 

 

(0.0070) (0.0070) (0.0074) (0.0074) 

Distance to Lake Erie 2.56E-06 6.58E-06 3.95E-06 2.84E-06 

 

(0.0000) (0.0000) (0.0000) (0.0000) 

Slope 0.0863 -0.0131 0.0061 -0.0306 

 

(0.1173) (0.1255) (0.1300) (0.1459) 

Soil texture is clay -0.5975* -0.1392 0.2179 0.5949 

 

(0.3402) (0.3528) (0.3764) (0.4126) 

Soil texture is sand 0.2450 1.0549 0.3793 -0.5422 

 

(1.1616) (1.1666) (1.3038) (1.5717) 

Field is rented 0.1359 0.3494 0.8272** 0.8047** 

 

(0.3401) (0.3527) (0.3784) (0.4105) 
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Table 17 continued 

Farmer Characteristics 
   

Age -0.0003 0.0057 -0.0012 -0.0045 

 

(0.0137) (0.0154) (0.0157) (0.0175) 

Familiar with 4R Nutrient -0.1302 -0.1719 -0.2491* -0.3317** 

Stewardship (0.1251) (0.1301) (0.1419) (0.1545) 

More risk loving -0.0858 -0.0046 -0.0070 -0.1384* 

 

(0.0645) (0.0679) (0.0730) (0.0793) 

Education -0.1017 0.0996 0.0107 -0.0316 

 

(0.1076) (0.1115) (0.1212) (0.1360) 

Years of farming experience -0.0003 -0.0050 -0.0075 -0.0065 

 

(0.0069) (0.0094) (0.0082) (0.0093) 

Female operator 10.618 11.111 10.87 12.147 

 

(412.83) (412.83) (412.83) (412.83) 

Farm income 0.3632** 0.3884** 0.2139 0.3322* 

 

(0.1609) (0.1676) (0.1809) (0.1926) 

Farm Characteristics 
    

Has crop insurance 0.7918** 0.8517** 0.5870 0.4722 

 

(0.3154) (0.3354) (0.3576) (0.4034) 

Farm acres -0.0002 -0.0001 -0.0002 3.38E-06 

 

(0.0002) (0.0002) (0.0003) (0.0003) 

% corn in farm acres 0.1374 0.1579 -3.481*** -0.4756 

 (0.3073) (0.3162) (0.7182) (0.4962) 

Intercept -0.8430 -0.7509 -0.9311 -3.6794 

 

(2.5433) (2.8446) (3.2373) (3.1296) 

 
    

# Observations 707 368 248 135 

Log-likelihood -1194.24 

Pseudo R2 0.1917 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. The four choices are classified based on a combination of crop choices in 

2013 and phosphorus fertilizer application frequencies: for example, corn-single 

represents that corn was grown in 2013 and phosphorus was applied on single year basis. 

The baseline reference group is other all crop choices including wheat and hay. 
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demand ranges from -0.264 to -0.488. For example, there is a 2.64% reduction in 

phosphorus fertilizer rate given a 10% fertilizer price increase for corn fields with single-

year fertilization. These estimates are similar to previous estimates of elasticity of 

fertilizer demand (Griliches 1959; Pitt 1983), which ranges from -0.20 to -0.95. A 

comparison of the elasticity across different fertilization frequency choices reveals that 

fields with multi-year fertilization application have a significantly higher elasticity of 

phosphorus demand than fields with single-year application. This makes sense because 

farmers are more likely to over-apply nutrients under multi-year applications and could 

make flexible changes facing input price shocks. With this elasticity and mean 

application rate, I also report number of pounds of phosphorus reduction for a 50% 

phosphorus price increase, which ranges from 8.8 lbs/acre to 21.25 lbs/acre.  

The quadratic normalized profit function leads to a system of output supply and input 

demand equations that are linear in input prices, which results in the linear specification 

in the reduced-form panel data model. To account for the uncertainty resulting from the 

linear specification assumption, I present two robustness checks for the reduced-form 

panel data model in panels (II) and (III) of table 18. In particular, panel (II) only uses 

responses from these two hypothetical fertilizer application rates questions and assess the 

effects of potential “hypothetical bias” on the estimated coefficient in phosphorus 

fertilizer prices. The implied elasticities are very similar with the main specification 

except for the corn with multi-year applications, which is also within the range of 

previous estimates from the literature. In addition, I estimate a quadratic fertilizer demand 

model and present it in the panel (III) of table 18. Although the estimated regression  
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Table 18. Estimated Elasticity of Phosphorus Fertilizer Demand from Reduced-form 

Panel Data Estimation 

  corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Linear panel fixed effects model 

Actual and hypothetical  -0.4376* -0.5634*** -0.4104*** -0.8462*** 

phosphorus price (0.2259) (0.1689) (0.1111) (0.2325) 

Intercept 115.89*** 112.47*** 109.52*** 148.71*** 

 (12.77) (9.43) (6.186) (13.39) 

Number of observations 1752 1097 603 405 

Implied mean elasticity -0.2714* -0.388*** -0.2638*** -0.4876*** 

Implied average P reduction  -2.474* -3.146*** -2.286*** -4.874* 

(lbs/ac) for a 10% price increase     

     

Linear panel fixed effects model – Hypothetical questions only 

Hypothetical -0.4682*** -0.3616*** -0.3561*** -0.8307*** 

phosphorus price (0.1554) (0.1063) (0.1012) (0.2620) 

Intercept 124.65*** 100.82*** 112.63*** 155.93 

 (8.71) (5.84) (5.559) (14.990) 

Number of observations 1168 731 402 270 

Implied mean elasticity -0.2665*** -0.2456*** -0.2101*** -0.4383*** 

Implied average P reduction  -2.623*** -1.988*** -1.956*** -4.752*** 

(lbs/ac) for a 10% price increase     

     

Quadratic panel fixed effects model 

Actual and hypothetical  -2.9534* -1.5802 -2.0950** -2.3991** 

phosphorus price (1.720) (1.204) (0.8268) (0.9850) 

Phosphorus price squared 0.0230 0.0093 0.0155** 0.0140* 

 (0.0142) (0.0097) (0.0074) (0.0077) 

Intercept 174.2*** 136.04*** 148.57*** 185.91*** 

 (45.68) (32.79) (20.15) (29.36) 

Number of observations 1752 1097 603 405 

Implied mean elasticity -0.249* -0.395*** -0.256*** -0.4809*** 

Implied average P reduction  -2.010* -3.03*** -2.051*** -4.529* 

(lbs/ac) for a 10% price increase     

     

Average actual phosphorus 

application rate (lbs/ac) 

64.97 81.04 67.41 87.09 
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coefficients are different, the implied mean elasticity of fertilizer demand is almost 

identical with the main specification. These two robustness checks lend support to the 

stability of my results shown in the main specification in panel (I). 

Table 19 presents the results for the structural model of output supply and input demand 

equations. Only results on the phosphorus fertilizer demand are shown in table 19, while 

the results on yield, nitrogen demand and manure demand are shown in the Appendix B 

Table 30. These models are estimated following equations (33) and separately for each 

first-stage crop and fertilization frequency choices. First note that the inverse Mills ratio 

is statistically significant for corn and multi-year application as well as soybean with 

single year application, suggesting that it is critical to control for selectivity of crop and 

fertilization frequency choices at least for these two choices. Second, the coefficient for 

normalized phosphorus fertilizer price is constrained from the estimated 𝛾𝑃𝑙0̂ shown in 

table 18 panel (I).  

The variables of interest are the four interaction terms between fertilizer prices and soil 

quality and environmental attitudes variables. A comparison between corn and soybean 

shows that corn growers would apply phosphorus fertilizers differently according to land 

and behavioral characteristics, while soybean growers tend to apply fertilizers in a more 

similar manner in all fields. This is because that soybean typically requires less fertilizers 

compared to corn so less costs are incurred, and the yield gains for soybeans due to 

phosphorus fertilizer applications are smaller compared to corn. In addition, 

heterogeneity in fertilizer demand is more evident for multi-year applications.   
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                                                                                                                           Continued 

Table 19. SUREG Regression Results for Phosphorus Fertilizer Rate Equation with 

Bootstrapped Standard Errors   

  
corn single corn multi 

soybean 

single 

soybean 

multi   

Constrained P Fertilizer Prices Estimated from Reduced-form Panel Data Model 

Actual and hypothetical  -0.4376* -0.5634*** -0.4104*** -0.8462*** 

phosphorus price (0.2259) (0.1689) (0.1111) (0.2325) 

Phosphorus Fertilizer Prices with Interactions - Targeting 

  Normalized P price * familiar 4R 0.4911** 0.7447** -0.1678 -0.0778 

 

(0.2588) (0.3279) (0.5537) (1.1047) 

Normalized P price * slope -1.0938* -2.2810 0.8596 -7.9736 

 

(0.6278) (1.4685) (1.6485) (7.0200) 

Normalized P price * top soil 0.2375 -3.8295*** -1.6521 5.5019** 

 

(0.6959) (0.8599) (2.0007) (2.5978) 

Normalized P price * poor soil -1.0487 -0.1748 -1.1463 1.6373 

 

(0.6595) (1.5634) (0.8441) (1.8262) 

Input and Output Prices 

    Normalized N price 0.1492** 0.1344 0.1259 -0.0626 

 

(0.0587) (0.1090) (0.2169) (0.2094) 

Normalized expected corn price 0.3813 -1.0552* 0.2257 -2.123*** 

 

(0.3054) (0.5675) (0.5836) (0.7496) 

Normalized manure price -3207.8 8100.99 -34990 24033 

 

(5403.8) (6454.0) (63886) (27804) 

Farmer Characteristics 

    Familiar with 4R Nutrient 

Stewardship -31.093** -51.581*** 1.2687 -5.245 

 

(15.444) (19.746) (32.340) (64.905) 

More risk loving -3.648** -9.737*** -1.4801 5.065 

 

(1.5678) (2.8193) (2.5446) (3.8733) 

Age -0.268 -1.1536 -0.2003 1.5212 

 

(0.3591) (0.8452) (0.8768) (1.2030) 

Education -0.9712 -6.2659 -2.9087 -24.328*** 

 

(2.9465) (5.4643) (4.6654) (6.9833) 

Years of farming experience 0.2903 0.2568 -0.3569 -2.4311** 

 

(0.1938) (0.7366) (0.7292) (1.1953) 

Female operator -77.096 -69.208 445.63*** 11.745 

 

(52.748) (93.813) (74.779) (55.686) 
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Table 19 continued 

Note: *, **, and *** indicates the coefficient is significant at 10%, 5% and 1% level, 

respectively. Standard errors are included in the parentheses. 

  

 Corn single Corn-multi 

Soybean-

single 

Soybean-

multi 

Farm Characteristics 

    Farm income -6.737** 6.1030 3.3666 13.469* 

 (3.1446) (5.7922) (5.3278) (7.4660) 

Farm has livestock -14.879** -13.975 -16.841 13.042 

 

(7.4146) (12.755) (13.089) (21.358) 

Farm has crop insurance 2.152 13.785 -14.890 42.576** 

 

(8.2328) (14.359) (12.528) (18.849) 

Field Characteristics 

    Field acres -0.0218 -0.0997 0.0690 -0.5525** 

 

(0.0471) (0.1022) (0.2174) (0.2509) 

Field is rented 1.799 -4.8941 -5.4209 -1.409 

 

(7.7259) (12.783) (12.849) (17.944) 

Soil texture is clay 21.006** -9.9542 3.6203 2.3869 

 

(10.665) (14.619) (12.156) (17.852) 

Soil texture is sand 34.987 -23.637 24.238 -156.89** 

 

(28.740) (37.490) (42.519) (76.702) 

Distance (meter) to Lake Erie -0.0001 -0.0004*** 8.23E-05 -3.78E-04* 

 

(0.0000) (0.0001) (0.0001) (0.0002) 

Slope is great than 2% 71.697** 130.62 -58.929 462.936 

 

(36.515) (87.470) (97.175) (420.30) 

Field has good soil 2.7308 225.48*** 112.22 -343.31** 

 

(41.349) (50.811) (119.51) (152.87) 

Field has poor soil 72.66* 19.229 74.621 -124.64 

 

(38.376) (93.656) (49.289) (111.11) 

Inverse Mills ratio for 1st stage -24.147 -52.483* 23.748* 1.5125 

crop and P frequency choices (18.896) (28.081) (13.598) (20.626) 

Intercept 141.15*** 389.71*** 92.206* 314.122*** 

  (32.600) (87.104) (53.310) (84.130) 
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Table 30 in the Appendix B shows no statistical evidence of negative yield impacts for an 

increase in phosphorus fertilizer prices for the range of prices that we analyze. The 

regression coefficients for phosphorus fertilizer price in the yield equation are negative 

for corn or soybean fields with multi-year application, however, they are not statistically 

significant. The nitrogen and manure demand equations reveal some evidence of input 

substitutability: for example, an increase in phosphorus fertilizer prices would 

significantly increase the demand for nitrogen, suggesting that phosphorus and nitrogen 

fertilizers are substitutes, at least for corn fields on a multi-year application schedule. The 

manure demand equation, on the other hand, shows a counter-intuitive result that manure 

serve as a supplement for phosphrus application for corn fields with single-year 

application.  

Tables 31 and 32 in the Appendix B show results on two additional robustness checks. In 

particular, in table 31 I present structural model estimation results directly estimated 

without constraining the coefficient on phosphorus fertilizer price to be the estimated 

coefficient from the reduced-form panel data model. Table 32, on the other hand, presents 

the results that omit the manure demand equation and manure prices due to concerns 

about the measurement errors in manure quantity demanded and the manure price 

reported, as evidenced by the abnormally large coefficient for manure prices in table 19. 

The results omitting manure demand and manure prices yield almost identical price 

elasticity of phosphorus fertilizer demand, however, directly estimating the model 

without constraining the coefficients leads to a much higher estimate of phosphorus 

demand elasticity, except for corn fields with single-year application. For example, the 
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estimated elasticity for corn fields with multi-year application is as high as -2.62, which 

is aligned with the estimates from the OLS regression and quantile regressions of 

phosphorus fertilizer demand equations shown in tables 28 and 29 in the Appendix B. As 

discussed earlier, this estimate is beyond the range of estimated elasticties reported from 

most previous studies, suggesting that it might be inaccurate and insufficient to quantify 

the elasticity of fertilizer demand using just cross-sectional data on fertilizer applications 

in one year. As a result, the results that combine the identification of elasticity using 

reduced-form panel data model seem more reliable, although more work is needed to 

reconcile the differences. 

To better interpret the heterogeneity in the elasticity, I translate the significant 

coefficients for the interaction terms in table 19 into semi-elasticities presented in table 

20. Specifically, table 20 reveals that the reduction in phosphorus application rate is 

slightly higher for farmers more familiar with 4R nutrient stewardship, however, the 

differences may be too small for an education campaign to make a difference in 

environmental outcome. However, to fully examine the impacts of the education 

campaign policy, a model is needed to quantify how an education campaign would affect 

the environmental awareness with 4R nutrient stewardship, and thus results for this 

policy presented here are descriptive and exploratory in nature. In addition, a comparison 

between phosphorus reduction on average soil fields and high quality soil fields also 

suggest that soil quality does serve as substitutes for fertilizer input: farmers would cut 

more phosphorus on fields with better soil quality when employing multi-year  
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  Corn-single Corn-multi 

Soybean-

single 

Soybean-

multi 

Mean P application rate 64.97 81.04 67.41 87.09 

lbs/acre P application reduction for a 50% P price increase 

Mean -8.8 -15.72 -8.9 -21.25 

4R - slightly familiar -11.15 -16.5   
4R- very familiar -12.15 -17.95   

Flat land -12.15    
Steep slope -11.2    
Average soil  -15.9  -22.5 

High quality soil   -16.2   -25.8 

Table 20. Heterogeneity in Semi-elasticity of Fertilizer Demand Across Behavioral and 

Land Characteristics 

Note: The lbs/acre reduction in phosphorus application rate for a 50% phosphorus 

fertilizer price increase is calcualted based on the semi-elascticity implied from the 

estimated coefficients on Normalized P price and its interactions with four behavioral and 

land characteristics from Table 19. Blank cell is due to the insignificant regression 

coefficient on these four interaction terms.  

 

 

 

# Scenario Scenario Description 

1 Baseline 

2 Education campaign to increase familiarity with 4R 

3 P application limit to 100 lbs/acre 

4 25% uniform P tax 

5 50% uniform P tax 

6 50% targeted P tax on steeped sloped land only 

7 50% targeted P tax on land in high runoff potential subbasin only 

8 50% targeted P tax on land with good soil quality only 

9 100% uniform P tax 

Table 21. Alternative Nutrient Management Policy Scenarios 
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fertilization schedules. For example, a 50% increase in phosphorus fertilizer prices would 

lead to a 25.8 lbs/acre and 22.5 lbs/acre reduction in phosphorus application rates for top 

soil fields and average soil fields growing soybean, respectively. The differences between 

the reductions on flat land and steep sloped fields also reveal the substitutability between 

soil quality and nutrient inputs like fertilizers. These results confirm my conjecture that 

farmers think that better soil quality could mitigate the potential negative impacts of 

reduced phosphorus fertilizer. 

As discussed earlier, the International Joint Commission has determined that at least 40% 

reduction in agricultural phosphorus nutrient runoff is needed to restore Lake Erie from a 

eutrophic state to a lake free from HAB (Reutter, et al. 2011). Table 21 presents eight 

alternative nutrient management policy scenarios that aim to reduce phosphorus runoff, 

which include uniform tax, spatially targeted tax based on land characteristics or location 

of the parcels, education campaign to enhance familiarity with 4R, and a limit on 

phosphorus application rates. The spatially targeted tax are either only applied to parcels 

with steep slope or located in the high runoff potential, ecologically sensitive subbasins, 

which are determined based on subbasin-level phosphorus loading coefficients from a 

previously calibrated SWAT model (Gebremariam, et al. 2014). By attempting to link the 

taxes with potential environmental damages at the field level, these spatially-targeted 

policies are designed to improve the cost-effectiveness of the policies. The familiarity 

with 4R nutrient stewardship has five levels: not at all (0), slightly (1), moderately (2), 

very (3) and extremely (4) familiar. I assume the education campaign policy would move 

the familiarity with 4R up a level for each farmer and induce the farmer to be a little 
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Figure 8. Impacts of Alternative Nutrient Management Policies on Predicted Phosphorus 

Application Rates at Field Level 
Note: The numbers in the x-axis represents different nutrient management policies as shown in 

Table 21, and they represent: (1) baseline, (2) education campaign, (3) phosphorus limit, (4) 25% 

uniform P tax, (5) 50% uniform P tax, (6) 50% targeted P tax on steeped slope land only, (7) 50% 

targeted P tax on fields in high runoff pollution subbasin only, (8) 50% targeted P tax on fields 

with good soil quality only, and (9) 100% uniform P tax, respectively. 

 

 

more familiar with 4R. The fertilizer application limit is applied by finding an equivalent 

farmer-specific fertilizer tax for farmers who apply above the limit following Hansen 

(2004).  

Figure 8 shows the impacts of these eight alternative nutrient management policies on 

predicted fertilizer application rates at individual field level compared to the baseline 

0
5
0

1
0

0
1
5

0
2
0

0

P
re

d
ic

te
d

 P
 i
n

p
u

t 
ra

te
 (

lb
/a

c
re

)

1 2 3 4 5 6 7 8 9

Policy Number 



121 

 

scenario. The middle line shows the median application rate, while the upper and lower 

bar of the blue box denote the 75
th

 and 25
th

 percentile, and the upper and lower bar of the 

whiskers are two adjacent values
29

. The impacts on phosphorus application reduction 

from each of the eight alternative policies can be examined by comparing the distribution 

of phosphorus application rates under that policy and the baseline conditions.  

On average, the education campaign does not reduce phosphorus application rate much, 

and regulatory approaches such as phosphorus fertilizer limit and fertilizer taxes are more 

effective in reducing fertilizer application rates. A comparison among the three uniform 

taxes shows that a higher tax rate leads to a greater reduction in phosphorus application 

rates. However, even a uniform fertilizer tax as high as 100% could only lead to less than 

30% reduction in phosphorus application rates. In addition, biophysical models of 

nutrient flows have also shown that it takes more than one percent reduction in 

phosphorus fertilizer applications to achieve a one percent reduction in phosphorus runoff 

into Lake Erie (Michalak, et al. 2013). These suggest that a fertilizer tax alone, even 

ignoring its political feasibility, could not solve problem of harmful algal blooms in Lake 

Erie. In other words, it is likely that a mix of policy instruments is necessary to achieve 

the policy goal of 40% reduction in agricultural phosphorus loadings. 

A comparison between uniform fertilizer taxes and the targeted tax based on field or 

locational characteristics reveals that the uniform taxes could have a slightly greater 

reduction in phosphorus application rates. This is intuitive because the targeted taxes are 

only applied to a subset of parcels with steep slope or good soil quality or located in the  

                                                 
29

 Upper and lower bar of the whistler is the most extreme values of within Q75 + 1.5*(Q75 – Q25) and 

Q75 – 1.5*(Q75 – Q25), where Q75 and Q25 are the 75
th

 and 25
th

 percentile of the distribution. 
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# scenario 

(a) % P 

reduction 

(b) 

Average 

direct cost 

for farmers 

($/acre) 

(c) Average 

direct 

farmer cost 

+ cost of 

potential 

yield loss 

($/acre) 

(d) 

Average 

net policy 

cost 

($/acre) 

(e) % P 

reduction 

per $ direct 

cost to 

farmers 

(f) % P 

reduction per 

$ direct cost 

to farmers + 

yield loss 

cost 

(g) % P 

reduction 

per $ net 

policy 

cost 

1 baseline 0 0 0 0 0 0 0 

2 4R education 0.69 1 5.5 1 0.69 0.13 0.69 

3 100 lbs/acre P limit 18.55 3.49 45.5 6.51 5.32 0.41 2.85 

4 25% uniform P tax 12.15 4.71 29.71 0.47 2.58 0.41 25.80 

5 50% uniform P tax 23.92 8.98 50.98 0.90 2.66 0.47 26.64 

6 50% target slope P tax 20.41 7.29 37.29 3.28 2.80 0.55 6.22 

7 50% target subbasin P tax 18.61 2.18 32.18 0.76 8.54 0.58 24.49 

8 50% target top soil P tax 9.76 1.75 31.75 0.79 5.58 0.31 12.35 

9 100% uniform P tax 26.8 18.29 86.29 1.83 1.47 0.31 14.65 

Table 22. The Costs and Cost-Effectiveness of Nutrient Management Policies at Field Level 

Note: Column (b) “direct cost to farmers” denotes event registration fees for 4R education policy, and tax payments plus profit 

loss due to P limit or tax policies. Column (c) adds cost of assumed potential yield loss, which is 1% yield loss for 4R education 

policy, 3% for 25% P tax policy, 5% for parcels under 50% P tax and 100 lbs/acre P limit policies, and 10% for 100% P tax 

policy. Column (d) presents the net policy cost from the social welfare viewpoint, in which tax payments themselves are not 

treated as net policy costs but costs for administration, monitoring and enforcements are included. Columns (e)-(g) are ratios of 

percentage reductions in average P application rates per $ of cost, using columns (b)-(d) as costs in the denominator respectively.  
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“hot spot” subbasins. However, the differences in phosphorus application reductions 

between spatially-targeted taxes and uniform taxes are not substantial, suggesting 

possible gains in cost-effectiveness through spatial targeting. 

Figure 8 only examines the potential environmental benefits at field level resulting from 

these alternative policies and ignores the costs associated with these policies. To 

accurately evaluate the cost-effectiveness of alternative nutrient management policies, it 

is important to quantify the costs associated with these policies. From a farmer’s 

perspective, these costs could include the fertilizer taxes they have to pay or registration 

fees to attend educational events, in addition to the possible reduction in profits resulting 

from possible yield losses. From a social planner’s perspective, the tax payments from 

farmers will become revenues for government agencies and thus are just a transfer of 

wealth. In contrast, a policy would incur net policy costs in terms of its design, 

implementation, administration, monitoring, and enforcement, which could be viewed as 

deadweight losses.  

Table 22 presents results on the impacts on farmer welfare, deadweight losses, and 

environmental benefits under these alternative nutrient management scenarios. Given the 

two different perspectives on costs, for farmers and for society as a whole, I represent the 

costs in three different ways in table 22. First, column (b) represents the average direct 

costs for farmers, including which could be registration fees for educational events for the 

educational campaign policy, and average taxes paid by farmers plus potential profit 

losses for the fertilizer taxes or limit policies. As shown in table 30 in the Appendix B, I  
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                                                                                                                        Continued 

Figure 9. The Trade-off between Costs and Phosphorus Reduction at Field Level Under 

Alternative Nutrient Management Policies 

2

3

4

5

6

7

8

9

0
1

0
2

0
3

0
a

0 5 10 15 20
b

2

3

4

5

6

7

8

9

0
1

0
2

0
3

0
a

0 20 40 60 80
c

Direct costs to farmers + costs of assumed yield loss ($/acre) 

Direct costs to farmers ($/acre) 

  
  
  
  
 P

e
rc

e
n

t 
o

f 
P

 a
p

p
lic

a
ti
o

n
 r

a
te

 r
e
d

u
c
ti
o

n
 

0
  

  
  

  
  

  
  
  

  
  
1

0
%

  
  

  
  

  
  

  
  

  
  
 2

0
%

  
  

  
  
  

  
  
  

  
  
3

0
%

 

  
  
  
  
  

  
P

e
rc

e
n

t 
o

f 
P

 a
p

p
lic

a
ti
o

n
 r

a
te

 r
e

d
u

c
ti
o

n
 

0
  

  
  

  
  

  
  
  

  
  
1

0
%

  
  

  
  

  
  

  
  

  
  
  

2
0

%
  

  
  

  
  

  
  
  

  
 3

0
%

 



125 

 

Figure 9 continued 

 

Note: The numbers in the x-axis represents different nutrient management policies as shown in 

Table 21, and they represent: (2) education campaign, (3) phosphorus limit, (4) 25% uniform P 

tax, (5) 50% uniform P tax, (6) 50% targeted P tax on steeped slope land only, (7) 50% targeted P 

tax on fields in high runoff pollution subbasin only, (8) 50% targeted P tax on fields with good 

soil quality only, and (9) 100% uniform P tax, respectively. 

 

 

did not find statistical evidence that there are yield drags due to changes in phosphorus 

demand, which is contingent for the range of the prices we analyzed from a single-year 

cross-sectional data. However, this may stems from the nature of data we use and is 

contingent on the price ranges we analyzed. And conversations with agronomists reveal 

that farmers have long-held belief that there will be negative yield drags due to reduction 
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impacts from these agri-environmental policies, and thus the average costs to farmers 

become the average direct costs shown in column (b) plus average costs of these assumed 

yield loss. In particular, I assume 1% yield loss for the 4R education policy, 3% for 25% 

P tax policy, 5% for parcels subject to 50% uniform or targeted P tax and 100 lbs/acre P 

limit policies, and 10% yield loss for 100% P tax policy. The physical changes in yield 

loss are then turned into costs by using the prevailing crop prices in 2013.  

As discussed earlier, table 22 columns (b) and (c) represent the costs in terms of changes 

in farmer welfare, while column (d) are the average costs in terms of net policy costs or 

deadweight losses from a social planner’s perspective. These net policy costs incurred for 

the implementation, monitoring and enforcement of the policies. For example, spatially-

targeted policies would result in a much higher monitoring and enforcement costs 

compared to other policy instruments like uniform tax policies. In a numerical simulation, 

Lankoski, et al. (2010) find that the enforcement costs for a spatially differentiated 

fertilizer tax with random monitoring would cost 25-30% of the tax revenue collected. 

Previous studies on the fertilizer tax policy implementations in Europe also show that the 

regular implementation would cost 7-10% of the tax revenue collected. As a result, I 

assume a 35-45% of tax revenue collected as net policy costs for spatially-targeted tax 

policies, while only assume a 10% implementation costs for uniform tax policies. The 

phosphorous limit policy is assumed to incur an even greater monitoring and enforcement 

costs as it is even more difficult to observe and enforce the application rate limit in 

practice. The costs shown in columns (b) – (d) are average costs for all farmers even 
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when some of them are not in high-runoff-potential subbasins, are not affected by a 

policy such as targeted taxes based on “hot spot” subbasin. 

In this welfare analysis of alternative nutrient management policies, I represent the 

benefits of the policy as the mean reduction in phosphorus application rates, and they are 

quantified as the average percentage reduction in phosphorus application rates compared 

to the baseline scenario. Using the average costs shown in columns (b) – (d)  

respectively, I compute three ratio-based measures for cost-effectiveness of each policy 

that are percentage reduction in phosphorus application rates per dollar of average cost, 

for farmers or for society as a whole. While each of the three ratios has the same property 

that the higher the ratio is, the more cost-effective the policy, they have different 

implications on farmer welfare vs. societal deadweight loss. In particular, the first two 

ratios shown in columns (e) and (f) are concerned with farmer welfare, while the last ratio 

in column (g) focuses on overall social welfare.  

The three ratios shown in table 22 columns (e) to (g) illustrate the cost-effectiveness of 

these nutrient management policies. A comparison among the three targeting strategies 

reveals that target parcels based on the location, similar as zonal tax, outperforms spatial 

targeting that is based on land characteristics. The superiority of subbasin-based targeting 

is consistent regardless average costs for farmers or average net policy costs are used. 

Based on the ratio of percent of phosphorus reduction per dollar of the average direct 

farmer cost, the spatially-targeted fertilizer tax for parcels located in high runoff potential 

subbasins is most cost-effective policy: a one-dollar increase in the per acre average 

direct policy cost would lead to an 8% reduction in average application rates.  
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By contrast, voluntary approaches such as the education campaign are the lowest in both 

the total reduction in phosphorus and the cost-effectiveness. The 100% uniform tax 

would lead to the most phosphorus reduction, however, this is achieved through higher 

tax payments from farmers, which makes it inferior compared to other policies such as 

50% uniform tax and 50% targeted tax.  Farmers on average have to pay a higher tax for 

the uniform tax policy as opposed to the targeted policy because every farmer has to pay 

under the uniform policy scenario while only farmers with certain field or locational 

characteristics are affected by the spatially targeted policy.  

A comparison between column (e) and column (f) shows that, after accounting for 

potential yield losses into average farmer costs, the advantages of spatially-targeted 

fertilizer tax policies over uniform tax policies are greatly diminished. This is because the 

costs of yield loss become the bulk of the total costs to farmers and the cost-savings from 

spatial-targeting are no longer evident. In addition, the much larger farmer costs reduced 

the cost-effectiveness ratios significantly: assuming the costs of assumed yield loss is 

correct; the 50% subbasin-targeted fertilizer tax would only reduce 0.6% of phosphorus 

application per dollar cost paid by farmers.  

Focusing the net policy costs rather than costs to farmers, table 22 column (g) reveals a 

drastically different picture from the other two ratios shown in columns (e) and (f). The 

uniform fertilizer tax policies outperform the spatially-targeted policies due to lower 

monitoring and enforcement costs. For example, a 50% uniform phosphorus tax could 

lead to a 25.80% reduction in average phosphorus application rate for one dollar net 
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policy cost incurred, but the direct costs to farmers would be 10 times more than the net 

policy costs.  

Figure 9 plots the information shown in table 22, in which the x-axis denotes the costs for 

farmers or net policy costs, and the y-axis denotes the percentage of phosphorus input 

rate reductions. The blue lines show the trade-off frontier, in which the policies under this 

line are dominated by the policies that are on this frontier. These three figures graphically 

illustrate the dominance of certain agri-environmental policies over another alternative 

policy instrument, and they reveal different patterns. For example, the 25% uniform tax 

was dominated by other policies in the first graph when only direct costs to farmers are 

considered; however, it becomes the most cost-effective on the frontier when the net 

policy costs are the focus as shown in the third figure. The difference stems from the 

simplicity of uniform tax policies to monitor, administer and enforce: it takes much more 

efforts and costs to monitor and enforce the spatially-targeted tax policies or phosphorus 

application limit policy at the field scale. Another thing to note is that the 50% uniform 

phosphorus tax and 50% spatially targeted tax based on high-runoff-potential subbasins 

are on the frontiers for all the three graphs, revealing a consistent and robust performance 

that might be of interest to policymakers. 

There is another thing worth considering in the welfare analysis: the revenues from these 

policies. And intuitively the uniform tax policies would generate more net revenues 

compared to spatially-targeted policies due to savings in monitoring and enforcement 

costs. These net revenues could be used to contribute to the conservation investment 

budget, which could then pay farmers located in high-runoff-potential subbasins or 
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plotting steeper-sloped fields to encourage their adoption of appropriate and effective 

best management practices.  This stick-n-carrot approach not only helps meeting the 

policy goal of 40% reduction in phosphorus loadings from Maumee to Lake Erie as table 

22 column (a) also reveals that a 50% uniform phosphorus tax could only lead to a 24% 

reduction in phosphorus application rates, returning the taxes paid by farmers back to the 

agricultural community also enhances the political feasibility of the policy portfolio. 

However, the welfare analysis of this policy mix requires at least a model of BMP 

adoptions and thus is beyond the scope of this chapter. 

All these above policy analysis are based on the 1,551 selected agricultural fields, while 

the Maumee River watershed has over 100,000 agricultural fields that cover at least 3 

million acres of row cropland. As a result, it is informative to contemplate the welfare 

effects of these proposed nutrient management policies at the watershed scale. To do that, 

I compare the distribution of farms and acreage by state and farm acreage groups between 

data from our farmer survey and the microdata from 2007 Census of Agriculture. This 

comparison, shown in table 33 in the Appendix B, reveals that the farmer survey I use is 

disproportionally concentrated in large farms: my data, which represents about 10% of 

farms in the watershed, accounts for more than 20% of the total acreage.  This means that 

there are many small-scale farms in the watershed, which could dramatically increase the 

needs and costs for monitoring and enforcement, especially for a spatially-targeted 

fertilizer tax. In that context, a policy that is easier to implement and monitor, such as a 

50% uniform tax, could present as an attractive policy instrument, as shown in table 22 

column (g).  
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Another caveat of my welfare analysis shown in previous sections is that the 

environmental benefits are represented by the reductions in phosphorus fertilizer 

application rates. From the policymakers’ perspectives, it is more informative to model 

the environmental impacts in terms of changes in the size and likelihood of harmful algal 

blooms in Lake Erie, or at least total and dissolved phosphorus loadings from the entire 

Maumee River watershed. Current collaboration is also ongoing in linking the predictions 

from the structural model of farmer behavior to agricultural nutrient loadings using a 

watershed hydrological model – Soil and Water Assessment Tool (SWAT) that is 

previously calibrated for western Lake Erie region (Gebremariam, et al. 2014). 

 

Conclusion 

Agricultural nutrient pollution has inflicted substantial damages to vital ecosystems both 

in the United States and worldwide, resulting in a reduction of multiple deliverable 

ecosystem services, as evidenced by the unprecedented harmful algal blooms in Lake 

Erie and Gulf of Mexico. Using a farmer survey of 1,551 farmer respondents in western 

Lake Erie basin, this study develops a structural econometric model of crop and input 

demand decisions and evaluate the trade-offs between agricultural profits and water 

quality under alternative nutrient management policy scenarios. By use of a structural 

model, I am able to quantify the social welfare implications, in terms of changes in both 

farmer profits and environmental benefits, of alternative nutrient management policies, 

including non-marginal policies like a 100% fertilizer tax. The model improves on 

previous studies by not only explicitly incorporating both field-level land and farmer 
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characteristics in the structural model estimation, but also by analyzing the heterogeneity 

in farmers’ elasticity of fertilizer demand due to different environmental attitudes or land 

characteristics. The mean price elasticities of phosphorus fertilizer demand varies from -

0.2 to -0.6, which is within the range of most previous estimates.  

The main results also provide evidence on heterogeneity in phosphorus price 

responsiveness – farmers more familiar with environmental stewardship or growing crops 

on high soil quality fields have a higher elasticity of fertilizer demand – and the 

heterogeneity is more evident for corn fields and fields with multi-year fertilization 

schedules. However, despite the statistically significant coefficients, the magnitude of the 

differences due to the heterogeneity in fertilizer demand is not very large, which may 

suggests that the heterogeneous responses among farmers are not as important for the 

design and implementation of optimal nutrient management policies, at least in my 

context. 

Three measures of the cost-effectiveness of policies are developed: two ratios focus on 

the percentage reduction in phosphorus application given costs to farmers, while one ratio 

examine the percentage reduction relative to the net policy costs from the societal welfare 

perspective. These measures from the perspectives of farmer welfare vs. overall social 

welfare yield different policy implications: based on ratios that rely on costs to farmers,   

spatial targeting, especially spatially-targeted phosphorus tax based on location in high-

runoff-potential subbasins, could dramatically improve the cost-effectiveness of agri-

environmental policies. However, uniform phosphorus tax policies outperform their 

spatial-targeted counterparts in the cost-effectiveness measure based on net policy cost 
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due to the simplicity and cost-savings in monitoring and enforcement. In addition, 

regardless of how cost-effectiveness of policy is measured, the 50% uniform phosphorus 

tax and the 50% spatially-targeted phosphorus tax based on ecologically sensitive 

subbasins outperform other agri-environmental policies analyzed here. 

The main results also show that neither a fertilizer tax nor an education campaign could 

alone achieve the policy goal of 40% reduction in phosphorus runoff into Lake Erie, 

although a uniform 50% fertilizer tax could lead to a 24% reduction in mean phosphorus 

application rates. It is highly likely that other measures such as alternative policy 

instrument or technological fixes are necessary. For example, a stick-n-carrot approach of 

combining a uniform fertilizer tax and payments for BMP adoption could be beneficial. 

Other technological measures such as controlling the runoff as it leaves the field using 

filter strips, trapping the runoff using in stream wetlands, or even chemical treatment of 

phosphorus and algal toxins in the lake may all be necessary. And the optimal policy mix 

depends on the farmers’ adoption, their effectiveness in reducing nutrient runoff, political 

feasibility, and the costs of monitoring and enforcement. 

Finally, following the suggestion of Timmins and Schlenker (2009), I complement the 

estimation of the structural model with the identification of one key parameter – the mean 

price elasticity of phosphorus fertilizer demand, using a reduced-form panel data model 

and responses to two hypothetical questions on alternative phosphorus price scenarios. 

Figure 13 in the Appendix B shows the distribution of hypothetical application rates 

given the alternative, hypothetical phosphorus fertilizer prices. The ranges of hypothetical 

prices are based on actual historical prices that farmers have experienced over the last 15 
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years, which helps mitigate the hypothetical bias and induces true responses. The results 

show the reduced-form panel data model based on these two hypothetical questions help 

restrict the estimated elasticity within a more reasonable range. The results suggest that 

incorporating simple hypothetical scenarios into the survey design of cross-sectional data 

could present as a useful and low-cost complement to standard modeling approach and 

help the identification of the key parameters, like the price elasticity of fertilizer demand 

analyzed here.   
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Appendix A: Additional Figures and Tables for Chapter 2 
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Dependent variable 

(I) Dist_Ethanol 
(II) Dist_Ethanol* Post 

construction dummy 

Coef. Std. Err. Coef. Std. Err. 

Assessed land value % of total assessed 0.3959 0.3967 -0.3078 0.5078 

Total acres 0.0006 0.0028 0.0020 0.0034 

Total acres squared 5.13E-06 0.0000 -3.17E-06 0.0000 

NCCPI 0.0004*** 0.0001 0.0002** 0.0001 

Prime farmland 0.7857** 0.3560 0.9595** 0.4387 

Steep slope (>15 degrees) -0.3574 0.3211 0.1460 0.4698 

Building area % of parcel 0.5002 0.4272 0.5067 0.6605 

Forest area % of parcel -0.2076 0.7060 0.0401 0.7424 

Distance to highway ramp 0.0402 0.0420 -0.0077 0.0468 

Distance to nearest city -0.0217 0.0252 -0.0276 0.0266 

Incremental distance to second nearest city 0.0960*** 0.0238 0.0397 0.0249 

Surrounding population within 25 miles 0.0031* 0.0017 -0.0010 0.0017 

Gravity index of three nearest cities 0.0003 0.0010 0.0013 0.0011 

Distance to railways 0.0853* 0.0448 0.2016*** 0.0512 

Distance to nearest grain elevator 0.3628*** 0.0393 0.2061*** 0.0489 

Distance to nearest agricultural terminal 0.1671*** 0.0195 0.0819*** 0.0220 

Capacity-weighted dist to other ethanol plants 0.1701*** 0.0267 -0.0752*** 0.0260 

Capacity-weighted distance to other terminals 0.0002*** 0.0000 0.0001*** 0.0000 

Avg_Dist_Ethanol * Post construction  -7.04E-06* 0.0000 -2.91E-05*** 0.0000 

Avg_Dist_Terminal * Post construction  -0.0056 0.0079 0.3103*** 0.0105 

Intercept -18.5981*** 2.5858 -8.1465*** 2.8081 

Year FE yes yes 

County FE yes yes 

Adjusted R2 0.852 0.7707 

Number of observations 3343 3343 

Table 23. First Stage Regressions of the Instrumental Variables Estimation 
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                                                                                                                  Continued 

Table 24. Indirect Test for the Validity of the Instruments 

 

 

 

 

 

Capacity-weighted distances to other agricultural 

terminals * post_dummy 

 

Coef. Std. Err. 

Assessed land value % of total assessed -0.0534 1.3204 

Total acres -0.0127 0.0093 

Total acres squared 4.18E-05 0.0000 

National Commodity Crops Productivity Index -8.39E-05 0.0002 

Prime farmland 0.4471 1.0687 

Steep slope (>15 degrees) -0.1979 1.1024 

Building area % of parcel 2.3609 1.5945 

Forest area % of parcel 3.8843* 2.1543 

Wetland area % of parcel -9.6017 19.6074 

Distance to highway ramp 0.1440 0.1251 

Distance to nearest city -0.0639 0.0709 

Incremental distance to second nearest city -0.0374 0.0593 

Surrounding population within 25 miles 0.0118*** 0.0040 
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Table 24 continued 

Gravity index of three nearest cities -0.0021 0.0022 

Distance to railways -0.3292** 0.1431 

Distance to nearest grain elevator 0.2861** 0.1164 

Distance to nearest agricultural terminal 0.1603*** 0.0528 

Intercept 80.9746*** 11.6097 

Year FE yes 

County FE yes 

Adjusted R
2
 0.852 

Number of observations 3343 

 

 

 

(I) Weak identification test 

Kleibergen-Paap rk Wald F statistic 41.005 

Cragg-Donald Wald F statistic 68.886 

Stock-Yogo weak ID test critical value for 10% 

maximal IV size 

16.87 

                                                                                                               Continued  

Table 25. Tests of Weak Identification, Overidentification of all Instruments and 

Endogeneity Test of Endogenous Regressors 
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Table 25 continued 

(II) Test of overidentifying restrictions 

Hansen J statistic 0.400 

p-value 0.819 

(III) Endogeneity test of endogenous regressors 

GMM distance test of endogeneity statistic 5.581 

p-value 0.0614 
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  Continued 

Table 26. Regression of Farmland Values on Instruments 

 

Nominal farmland values ($/acre) 

(I) (II) (III) 

Coef. Robust SE Coef. Robust SE Coef. Robust SE 

Capacity-weighted dist to other ethanol plants 10.27 8.02  14.86 16.04    

Avg_Dist_Ethanol * Post construction  -0.1505 2.77 -15.35*** 5.66   

Capacity-weighted distance to other terminals 0.0014 0.0054 -0.0053 0.0102 0.0005 0.0097 

Avg_Dist_Terminal * Post construction  -0.0026* 0.0014 0.0008 0.0028 -2.6521 3.6714 

Assessed land value % of total assessed -3771.32*** 144.92 -3356.72*** 375.05 -3315.51*** 373.21 

Total acres -26.04*** 1.04  -40.14*** 3.07  -40.17*** 3.05 

Total acres squared 0.013*** 0.0017  0.08*** 0.01  0.078*** 0.013  

NCCPI 0.0035 0.026  0.0355 0.048  0.0375 0.047  

Prime farmland -75.02 116.35  -268.38 267.44  -378.34 258.47  

Steep slope (>15 degrees) -112.98* 58.87  319.30 257.55  240.79 247.45  

Building area % of parcel -50.00 268.35  -572.97 394.79  -495.17 396.46  

Forest area % of parcel -4.33 159.63 -398.24 521.17 -326.87 496.90 

 

1
4
8
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Table 26 continued 

 

Nominal farmland values ($/acre) 

(I) (II) (III) 

Coef. Robust SE Coef. Robust SE Coef. Robust SE 

Wetland area % of parcel -194.69 872.00 798.53 3318.81 1783.28 3318.81 

Distance to highway ramp -38.15** 15.19 -32.62 27.90 -32.10 27.39 

Distance to nearest city -63.66*** 8.09 -28.20* 15.84 -24.89* 15.53 

Incremental distance to 2nd nearest city -37.84** 6.09 -32.25** 13.94 -33.54** 13.53 

Surrounding population within 25 miles -0.65** 0.30 -0.80 0.83 -0.04 0.79 

Gravity index of three nearest cities 0.0003* 0.0002 0.60 0.56 0.71 0.54 

Distance to railways -3.77 17.36 -2.04 32.27 -4.45 31.74 

Distance to nearest grain elevator -1.39 9.64 -39.54 26.35 -39.43 25.82 

Distance to nearest agricultural terminal -34.70*** 5.34 -3.06 11.84 -5.41 11.69 

Intercept 14639.57*** 2299.78 9336.27*** 1736.01 8471.05*** 1612.21 

Year and County fixed effects yes yes yes 

Adjusted R2 0.2618 0.2426 0.2358 

Number of observations 16434 3443 3541 
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Figure 10. Alternative Towns as Sites for Ethanol Plants and Percentage of Corn Acreage within 50 Miles from Actual ethanol 

Plant and Candidate Towns 
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Figure 11. The Comparison of Propensity Score between Treatment and Matched Control 

Groups for Matching based on Proximity to Ethanol Plants 
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Figure 12. Nonparametric Estimation of Farmland Values with respect to Proximity to 

Nearest Ethanol Plant 

 

 

  



153 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B: Additional Figures and Tables for Chapter 3 
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Coefficient Std. Err. 

Input and Output Prices 
  

P price -0.00002 0.00015 

N price -9.03E-06 0.00005 

Expected corn price -0.0001 0.0002 

Expected soybean price 0.00006 0.00013 

Farmer Characteristics 
  

Farmilar with 4R -0.0003 0.0132 

More risk loving 0.0071 0.0072 

Age -0.00004 0.00176 

Education 0.0072 0.0123 

Years of farming experience -0.0007 0.0011 

Female operator -0.0848 0.2397 

Farm income 0.0658*** 0.0170 

Farm has livestock 0.0052 0.0350 

Farm has crop insurance -0.0255 0.0377 

Farm Characteristics 
  

Farm acres -0.00008*** 0.00003 

% good soil for a farm -0.0004 0.0005 

% poor soil for a farm -0.0007 0.0007 

Number of fields -0.00001 0.0007 

Intercept 0.2633 0.1918 

 

Table 27. Regressions on Mix of Crop Production at the Farm Level 
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Coefficient Std. Err. 

Phosphorus Fertilizer Prices with Interactions 

Normalized P fertilizer price -1.967*** 0.602 

Normalized P price * familiar 4R 0.880*** 0.214 

Normalized P price * slope -0.348 0.507 

Normalized P price * good soil -1.116* 0.644 

Normalized P price * poor soil 0.331 0.641 

Input and Output Prices 
  

Normalized N price 0.149*** 0.045 

Normalized expected corn price -0.129 0.240 

Normalized manure price 526.655 3866.177 

Farmer Characteristics 
  

Farmilar with 4R -55.886*** 12.580 

More risk loving -3.277*** 1.136 

Age -0.464* 0.282 

Education -2.536 1.965 

Years of farming experience 0.247 0.181 

Female operator 13.317 32.616 

Farm income 1.581 2.304 

Farm has livestock -13.115 5.747 

Farm has crop insurance 3.089 6.006 

Field Characteristics 
  

Field acres -0.006 0.041 

Field is rented -0.234 5.596 

Soil texture is clay 4.294 6.329 

Soil texture is sand 6.145 19.520 

Distance to Lake Erie 0.000 0.000 

Slope is greater than 2% 19.768 29.637 

Field has good soil 71.249** 37.865 

Field has poor soil -15.589 37.650 

Dummies for crop rotation and P frequency choices 

Dummy - corn multi 12.288* 6.545 

Dummy - soybean single 2.462 7.774 

Dummy - soybean multi 20.268** 9.582 

Dummy - other crop -4.026 11.600 

Intercept 233.527*** 40.900 

Implied mean elasticity -1.568*** 

Table 28. Descriptive Evidence on Heterogeneity in Phosphorus Price Responsiveness - 

Ordinary Least Squares Regression 
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25

th
 quantile 50

th
 quantile 75

th
 quantile 

  

Input and Output Prices 

   Normalized P fertilizer price -0.3423** -0.7550*** -1.0397*** 

 (0.1499) (0.2768) (0.3801) 

Normalized N price 0.2253*** 0.4644*** 0.5275*** 

 

(0.0571) (0.1054) (0.1448) 

Normalized expected corn price 0.0408 0.0872 -0.3080 

 

(0.1533) (0.2832) (0.3888) 

Normalized manure price -1797.74 -5489.62 -5155.17 

 

(2440.14) (4506.32) (6187.33) 

Farmer Characteristics 
   

Familiar with 4R Nutrient  -0.0477 -1.7467 -3.9712 

stewardship (1.3614) (2.5142) (3.452) 

More risk loving -0.3524 -3.3623** -3.762** 

 

(0.7237) (1.3365) (1.835) 

Age -0.0021 -0.1910 -1.0943** 

 

(0.1794) (0.3313) (0.4549) 

Education 0.3298 1.3635 -4.3664 

 

(1.2559) (2.3193) (3.1844) 

Years of farming experience 0.0702 0.2188 0.3654 

 

(0.1155) (0.2133) (0.2929) 

Female operator -2.3411 -81.371 -81.371 

 

(20.851) (38.506) (52.870) 

Farm income 0.1523 -2.3012 -2.454 

 

(1.4729) (2.7200) (3.735) 

Farm has livestock -2.3458 -20.916*** -11.038 

 (3.6630) (6.765) (9.288) 

Farm has crop insurance 0.1636 2.8488 4.899 

 (3.6630) (7.0805) (9.721) 

Field Characteristics    

Field acres -0.0077 -0.0098 0.0065 

 (0.0259) (0.0478) (0.0656) 

Field is rented 2.1760 1.5745 -2.9959 

 (3.5704) (6.5936) (9.0532) 

                                                                                                                      Continued 

Table 29. Descriptive Evidence on Heterogeneity in Phosphorus Price Responsiveness - 

Quantile Regressions 
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Table 29 continued 

  
25

th
 quantile 50

th
 quantile 

75
th

 

quantile   

Field Characteristics 

   Soil texture is clay 0.6861 6.698 3.574 

 (4.0415) (7.4637) (10.248) 

Soil texture is sand 8.8723 14.732 18.882 

 

(12.4688) (23.027) (31.617) 

Distance (meter) to Lake Erie -1.57E-05 -0.0001 -0.0001 

 

(4.01E-05) (0.0001) (0.0001) 

Slope is greater than 2% -0.4608 -2.2668 -4.8444 

 

(3.4496) (6.3706) (8.747) 

Field has good soil -0.0828 6.6880 14.826 

 

(4.0146) (7.4139) (10.180) 

Field has poor soil 0.1894 10.3713 11.675 

 

(4.1609) (7.6842) (10.551) 

Crop and P Fertilizer Frequency Choices 

Dummy – corn multi 1.7705 10.925 6.820 

 (4.1833) (7.7256) (10.607) 

Dummy – soybean single -0.4259 -5.2671 0.6612 

 (4.9458) (9.1336) (12.541) 

Dummy – soybean multi -1.7932 22.7628** 52.669*** 

 (6.1043) (11.2731) (15.478) 

Dummy – other crop -1.4384 -7.7552 -18.578 

 (7.3940) (13.655) (18.749) 

Intercept 18.774 99.010*** 272.237*** 

 (17.234) (31.827) (43.700) 

    

Number of observations 1136 

    

Implied mean elasticity -3.0030** -0.8477*** -0.5364*** 

Implied average P reduction  -0.1966** -4.3366*** -5.972*** 

(lbs/ac) for a 10% price increase (0.0861) (1.5900) (2.183) 
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  corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Yield Equation 

    Input and Output Prices 

    Normalized N price 0.0411 -0.063** 0.0436 0.0414 

 

(0.0327) (0.0327) (0.0379) (0.0296) 

Normalized P price 0.306** -0.084 0.1288 -0.0341 

 (0.1756) (0.146) (0.1092) (0.1563) 

Normalized expected corn  -0.1499 -0.1968 -0.045 0.0222 

price (0.1693) (0.1663) (0.1025) (0.1068) 

Normalized manure price 2932.62 371.19 28056*** 1272.1 

 

(3021.4) (1894.3) (7146.6) (3546.8) 

Farmer Characteristics 

    Familiar with 4R  0.6166 1.981 -2.208** 0.6527 

 

(1.622) (1.407) (0.932) (1.026) 

More risk loving 1.9505 2.1753*** -0.219 0.1240 

 

(4.3008) (0.8319) (0.438) (0.5366) 

Age -0.268 -0.291 0.0312 -0.0263 

 

(0.3591) (0.248) (0.1525) (0.1721) 

Education 1.5744 -3.173** 1.0346 2.796*** 

 

(1.6413) (1.612) (0.8138) (0.9967) 

Years of farming experience 0.0123 -0.073 -0.0779 0.1170 

 

(0.1082) (0.217) (0.1253) (0.1711) 

Female operator -41.531 -9.177 0.2241 1.3402 

 

(29.445) (27.725) (12.955) (7.9760) 

Farm income 3.0790* 0.833 0.5852 0.1768 

 

(1.7396) (1.704) (0.9221) (1.0303) 

Farm has livestock -0.9386 -3.167 3.784* 2.7275 

 (4.1414) (3.755) (2.295) (2.9921) 

Farm has crop insurance 1.5569 -2.377 1.891 -3.4003 

 (4.5892) (4.229) (2.192) (2.6616) 

Field Characteristics     

Field acres -0.0159 0.0168 0.0489 0.0461 

 (0.0262) (0.0265) (0.0382) (0.0358) 

                                                                                                                               Continued 

Table 30. SUREG Regression Results for Yield, Nitrogen and Manure Equations with 

Bootstrapped Standard Errors for Table 19 
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Table 30 continued 

  
corn single corn multi 

soybean 

single 

soybean 

multi   

Field is rented 1.9505 -6.737* 0.2030 -2.2713 

 (4.3008) (3.769) (2.2522) (2.5506) 

Soil texture is clay -5.9174 -11.479* -2.792 -3.9099 

 (5.9255) (3.769) (2.134) (2.5492) 

Soil texture is sand 0.5592 -15.110 1.1142 -7.6139 

 (16.026) (10.902) (7.4025) (10.919) 

Distance (meter) to Lake  -0.0001** -4.4E-05 -5.2E-05** 7.35E-05** 

Erie (4.6E-05) (4.6E-05) (2.4E-05) (2.93E-05) 

Slope is great than 2% 2.2490 -7.336** -0.3473 -3.3196 

 (4.7858) (3.609) (2.0355) (2.3380) 

Field has top soil 11.295** 6.556* 5.525** -4.185 

 (4.7858) (3.977) (2.630) (2.981) 

Field has poor soil -3.936 -2.096 -3.850* 2.359 

 (5.134) (4.837) (2.290) (2.935) 

Inverse Mills ratio for  -10.054 -21.29*** -0.430 4.052 

crop and P frequency 

choices (10.541) (8.260) (2.346) (2.946) 

Intercept 148.30*** 231.18*** 45.336*** 27.994* 

  (19.648) (26.890) (11.178) (15.151) 

 

Nitrogen Fertilizer Demand Equation 

Input and Output Prices     

Normalized N price 0.2896*** -1.245** 0.6469*** 0.995*** 

 (0.0835) (0.581) (0.1415) (0.2922) 

Normalized P price -0.526 0.258** 0.1753 0.4319 

 (0.4470) (0.130) (0.4076) (1.5000) 

Normalized expected corn  0.0704 -0.471 0.5071 0.6943 

price (0.4320) (0.6763) (0.3829) (1.0556) 

Normalized manure price -3246.44 7238.88 88752*** 3568.6 

 (7708.5) (7699.7) (26691) (35063) 

Farmer Characteristics     

Familiar with 4R  -4.7008 -4.985 2.926 1.883 

 (4.1383) (5.721) (3.483) (10.141) 

More risk loving 0.0244 -9.239*** -1.300 2.766 

 (2.2364) (3.382) (1.636) (5.305) 

                                                                                                                             Continued 
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Table 30 continued 

  corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Age 0.1360 -0.796 -0.1734 -2.106 

 (0.5075) (1.010) (0.5697) (1.702) 

Education 1.7269 -6.654 -6.296** -15.561 

 (4.1874) (6.554) (3.040) (9.853) 

Years of farming experience -0.1596 -0.842 0.1372 1.988 

 (0.2579) (0.882) (0.4682) (1.692) 

Female operator -58.963 -163.55 -23.106 -37.147 

 

(75.125) (112.73) (48.394) (78.849) 

Farm income 9.6162* 8.9147 -1.541 3.3305 

 

(4.4383) (6.927) (3.444) (10.186) 

Farm has livestock -0.8520 -33.60** -9.322 -24.663 

 (10.566) (15.267) (8.573) (29.579) 

Farm has crop insurance 9.5273 2.7665 9.175 36.644 

 (11.708) (17.194) (8.186) (26.312) 

Field Characteristics     

Field acres -0.0759 -0.176 0.1162 -0.402 

 (0.0668) (0.1075) (0.1427) (0.3541) 

Field is rented -8.8139 7.6407 -9.598 6.8117 

 (10.972) (15.324) (8.413) (25.215) 

Soil texture is clay 16.2418 -21.384 -8.172 -16.746 

 (15.1180) (17.508) (7.970) (25.201) 

Soil texture is sand -13.6574 -81.674* 65.291** -22.541 

 (40.889) (44.328) (27.652) (107.94) 

Distance to Lake Erie 9.53E-05 -0.0002 -3.7E-05 1.42E-04 

 (0.0001) (0.0002) (9.0E-05) (0.0003) 

Slope is great than 2% -27.360*** -30.381** 0.7487 54.480** 

 (10.5202) (14.673) (7.6035) (23.113) 

Field has top soil 3.7291 10.066 2.3065 65.398** 

 (12.2100) (16.170) (9.8228) (29.466) 

Field has poor soil 15.6949 -3.185 6.7582 -43.076 

 (13.097) (19.665) (8.5533) (29.011) 

Inverse Mills ratio for  -74.530 -44.427 2.1581 -11.763 

crop and P frequency choices (10.541) (33.583) (8.5533) (29.127) 

Intercept 193.89*** 460.21*** 6.3878 31.806 

  (50.112) (109.13) (41.743) (149.79) 

                                                                                                                           Continued 
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Table 30 continued 

  corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Manure Demand Equation     

Input and Output Prices     

Normalized N price -2.0205 -3.485 0.3559 -1.3033 

 (7.5040) (7.307) (2.5340) (1.7215) 

Normalized P price -179.23*** -41.124 1.2916 -3.5422 

 (40.201) (33.284) (7.2993) (9.3136) 

Normalized expected corn  21.985 2.315 -38.791*** 0.5106 

price (38.552) (37.824) (6.873) (6.2209) 

Normalized manure price -2.85E07** 0.55E06   

 

(1.3E07) (0.8E06)   

Dummy for zero normalized -14347*** -1327 -5505.7*** -5448.5*** 

manure price (4988) (2767.8) (956.35) (883.11) 

Number of dairy cows  3.713 5.983 4.306* 0.0008 

 (3.534) (16.602) (2.339) (0.0067) 

Number of poultry -0.0007 -0.0095 -0.2187 0.0175 

 (0.0327) (0.0393) (0.4341) (0.0332) 

Farmer Characteristics 

    Familiar with 4R Nutrient 

Stewardship 

184.53 597.16* 49.199 34.129 

(369.60) (325.72) (62.713) (60.606) 

More risk loving 204.41 136.38 -5.699 -63.17** 

 

(199.70) (190.39) (29.606) (31.40) 

Age -110.73** -2.818 -6.802 -17.026* 

 

(45.33) (56.538) (10.206) (10.088) 

Education -69.79 -479.24 -29.999 -12.665 

 

(374.19) (369.52) (54.735) (58.636) 

Years of farming experience -6.155 -9.328 4.528 15.915 

 

(24.631) (49.248) (8.387) (10.037) 

Female operator 1765.98 1213.56 -217.24 -297.63 

 

(6702.9) (6298.4) (865.58) (464.86) 

Farm income -511.26 15.140 -36.996 -149.83** 

 

(403.42) (391.99) (61.668) (61.445) 

Farm has livestock 1831.8* -281.16 348.07** -211.12 

 (966.63) (876.81) (160.06) (185.30) 

Farm has crop insurance -1873.7* 706.82 -121.12 -12.95 

 (1047.04) (960.81) (147.37) (155.07) 

                                                                                                                            Continued 
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Table 30 continued 

  corn  

single 

corn  

multi 

soybean 

single 

soybean 

multi 
  

Field Characteristics     

Field acres 3.1480 -7.306 3.459 0.3278 

 (5.9777) (6.346) (2.555) (2.0917) 

Field is rented 317.06 -973.42 -269.64* -74.312 

 (985.82) (859.52) (151.02) (150.07) 

Soil texture is clay 375.20 816.71 -175.03 -143.58 

 (1357.1) (986.80) (143.10) (149.76) 

Soil texture is sand -1780.2 -1056.3 -48.797 212.42 

 (3648.8) (2494.9) (494.44) (635.98) 

Distance to Lake Erie 0.0221** 0.0045 0.0023 0.0040 

 (0.0106) (0.0107) (0.0016) (0.0017) 

Slope is great than 2% 255.81 -793.81 -62.015 -78.097 

 (940.96) (829.52) (136.19) (139.22) 

Field has top soil 4.757 1713.55* 154.52 -343.79* 

 (1097.52) (921.8) (175.64) (177.13) 

Field has poor soil 640.16 440.90 330.11** -134.63 

 (1170.22) (1108.6) (154.28) (174.24) 

Inverse Mills ratio for  3015.7 -1412.23 -230.11 -63.32 

crop and P frequency choices (2417.43) (1900.9) (157.24) (172.10) 

Intercept 27112*** 5653.10 7796.1*** 6939.5*** 

  (6934.56) (6703.65) (1094.6) (928.63) 
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corn single corn multi 

soybean 

single 

soybean 

multi   

Phosphorus Fertilizer Prices with Interactions - Targeting 

Normalized P fertilizer price -0.4312 -3.718*** -2.4962 -2.1109 

 (0.7096) (1.1549) (1.8569) (4.5265) 

Normalized P price * familiar 4R 0.4642 1.3910*** -0.0847 0.3661 

 

(0.2829) (0.3973) (0.6079) (1.8682) 

Normalized P price * slope -1.139* -1.6506 1.4634 -8.4639 

 

(0.6472) (1.4531) (1.7230) (7.2907) 

Normalized P price * good soil 0.3317 -1.9769* -0.889 5.9426 

 

(0.8107) (1.0998) (2.0961) (3.6671) 

Normalized P price * poor soil -1.0315 1.5477 0.6032 2.4985 

 

(0.8195) (1.6736) (1.7805) (3.5544) 

Input and Output Prices 

    Normalized N price 0.3241*** 0.1997 0.4641 -0.2932 

 

(0.4220) (0.2113) (0.4092) (0.4127) 

Normalized expected corn price 0.4220 -1.2744** 0.2352 -2.105*** 

 

(0.3086) (0.5695) (0.5807) (0.7469) 

Normalized manure price -3248.27 6394.64 -26438 23278 

 

(5446.32) (6339.23) (63994) (27763) 

Farmer Characteristics 

    Familiar with 4R Nutrient  -29.403* -87.800*** 13.136 -33.067 

stewardship (16.764) (23.508) (35.341) (111.60) 

More risk loving -3.653** -9.542*** -1.423 5.1667 

 

(1.573) (2.800) (2.519) (3.9432) 

Age -0.258 -0.9790 -0.1210 1.6303 

 

(0.3588) (0.8400) (0.8276) (1.2292) 

Education -0.5988 -6.6612 -3.4279 -24.566*** 

 

(2.9129) (3.5036) (4.6296) (7.024) 

Years of farming experience -6.735** 0.2211 -0.4468 -2.5880** 

 

(0.1938) (0.7270) (0.7295) (1.2226) 

Female operator -74.058 -55.543 454.69*** 13.8162 

 

(52.734) (92.565) (74.648) (55.749) 

Farm income -6.735** 6.555 3.9731 14.169* 

 

(3.1427) (5.6948) (5.3122) (7.5300) 

                                                                                                                           Continued 

Table 31. SUREG Regressions for Phosphorus Fertilizer Demand without Constraining 

the Mean Elasticity Coefficient from Reduced-form Panel Data Model 
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Table 31 continued 

 

  

 Corn single Corn-multi 

Soybean-

single 

Soybean-

multi 

Farmer Characteristics     

Farm has livestock -14.161* -11.420 -17.386 11.129 

 (7.490) (12.611) (13.005) (21.512) 

Farm has crop insurance 2.580 14.262 -14.083 42.714** 

 (8.2340) (14.207) (12.403) (18.825) 

Field Characteristics 

    Field acres -0.0282 -0.1184 0.0567 -0.5524** 

 

(0.0471) (0.1012) (0.2174) (0.2522) 

Field is rented 2.1116 -1.9683 -6.1786 -1.5923 

 

(7.7066) (12.605) (12.881) (17.911) 

Soil texture is clay 19.819* -10.656 3.2072 2.013 

 

(10.690) (14.266) (12.246) (17.8886) 

Soil texture is sand 36.493 -31.394 22.136 -158.41** 

 

(28.720) (36.972) (41.762) (76.581) 

Distance (meter) to Lake Erie -0.0001 -0.0004*** 9.12E-05 -3.8E-04* 

 

(0.0000) (0.0002) (0.0001) (0.0002) 

Slope is greater than 2% 74.120** 97.728 -96.232 493.05 

 

(37.627) (86.459) (101.65) (436.96) 

Field has good soil -2.145 116.48* 69.118 -372.22* 

 

(47.485) (64.819) (124.84) (217.84) 

Field has poor soil 72.99 -79.142 -29.829 -178.83 

 

(47.643) (99.581) (104.53) (214.07) 

     

Inverse Mills ratio for 1st stage -22.182 -56.555** 18.761 5.523 

crop and P frequency choices (19.046) (28.303) (14.222) (21.479) 

Intercept 134.06*** 575.12*** 217.01* 385.96*** 

  (49.518) (108.66) (119.65) (278.51) 

 

Implied mean elasticity -0.3548 -2.6200*** -2.2002 -1.492 
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corn single corn multi 

soybean 

single 

soybean 

multi   

Constrained Phosphorus Fertilizer Prices from Reduced-form Regressions 

Normalized P fertilizer price -0.4376* -0.5634*** -0.4104*** -0.8462*** 

 (0.2259) (0.1689) (0.1111) (0.2325) 

Phosphorus Fertilizer Prices with Interactions - Targeting 

Normalized P price * familiar 4R 0.4685* 0.7552*** -0.4593 -0.0464 

 

(0.2593) (0.3274) (0.4784) (1.1034) 

Normalized P price * slope -0.8472 -2.1879 1.892* -8.9037 

 

(0.6308) (1.4607) (1.1254) (7.1390) 

Normalized P price * good soil 0.0369 -3.906*** -2.020 5.0280* 

 

(0.6992) (0.8573) (1.9778) (2.5980) 

Normalized P price * poor soil -0.7985 -0.4070 -1.0069 0.7629 

 

(0.6616) (1.5486) (0.7915) (1.4658) 

Input and Output Prices 

    Normalized N price 0.3117*** 0.1889 0.5170 -0.3087 

 

(0.1196) (0.2152) (0.4094) (0.4055) 

Normalized expected corn price 0.3960 -1.0013* 0.2344 -2.1253*** 

 

(0.3059) (0.5724) (0.5808) (0.7485) 

Farmer Characteristics 

    Familiar with 4R Nutrient  -29.588* -50.931*** 18.136 -8.1610 

stewardship (15.463) (19.721) (27.748) (64.913) 

More risk loving -3.757** -9.542*** -1.7647 5.6304 

 

(1.552) (2.844) (2.5021) (3.8592) 

Age -0.304 -1.1262 -0.2722 1.5946 

 

(0.3585) (0.8539) (0.8669) (1.2031) 

Education -0.5537 -7.5660 -3.4345 -25.609*** 

 

(2.9109) (5.3865) (4.6233) (6.941) 

Years of farming experience 0.2910 0.1859 -0.2509 -2.6831** 

 

(0.1937) (0.7402) (0.7168) (1.1908) 

Female operator -75.761 -68.220 462.04*** 16.6523 

 

(52.711) (94.177) (73.742) (55.823) 

Farm income -6.732** 5.170 4.2035 14.423* 

 

(3.1409) (5.778) (5.3208) (7.485) 

                                                                                                                           Continued 

Table 32. SUREG Regression Results for Phosphorus Fertilizer Demand Without 

Including Manure Demand and Manure Prices 
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Table 32 continued 

 

  

 Corn single Corn-multi 

Soybean-

single 

Soybean-

multi 

Farmer Characteristics     

Farm has livestock -14.823** -12.991 -16.626 11.368 

 (7.406) (12.779) (13.031) (21.563) 

Farm has crop insurance 2.235 14.072 -14.051 45.757** 

 (8.2206) (14.467) (12.450) (18.556) 

Field Characteristics 

    Field acres -0.0320 -0.0590 0.0539 -0.5597** 

 

(0.0471) (0.0963) (0.2165) (0.2516) 

Field is rented 2.2286 -2.6392 -4.1377 -4.0456 

 

(7.6926) (12.761) (12.838) (17.748) 

Soil texture is clay 20.220* -13.300 1.0129 0.0639 

 

(10.685) (14.457) (12.202) (17.6339) 

Soil texture is sand 35.666 -28.121 26.335 -162.98** 

 

(28.707) (37.493) (41.797) (76.51) 

Distance (meter) to Lake Erie -0.0001 -0.0004*** 7.9E-05 -3.6E-04* 

 

(0.0001) (0.0002) (0.0001) (0.0002) 

Slope is greater than 2% 57.385 126.83 -121.38 517.35 

 

(36.684) (87.12) (66.04) (427.75) 

Field has good soil 14.843 230.04* 136.23 -318.09** 

 

(41.507) (50.654) (117.98) (152.61) 

Field has poor soil 60.675 36.167 65.074 -71.913 

 

(38.504) (92.387) (46.178) (87.513) 

     

Inverse Mills ratio for 1st stage -23.982 -57.783** 16.962 6.938 

crop and P frequency choices (18.997) (28.802) (14.228) (21.322) 

Intercept 141.14*** 397.65*** 100.64* 316.57*** 

  (32.738) (89.444) (53.016) (84.058) 

 

Implied mean elasticity -0.3600*** -0.3970*** -0.3617*** -0.5982*** 
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  Farm Acre  2007 Census of Agriculture Our Farmer Survey 

State Groups Farms Acres % acres Farms Acres % acres 

Indiana < 10 acres 316 1450 0.26% 

   Indiana 10-49 acres 1269 21383 3.82% 16 547 0.29% 

Indiana 50-179 acres 1104 80555 14.38% 80 9259 4.98% 

Indiana 180-499 acres 501 133386 23.80% 101 32710 17.59% 

Indiana 500-999 acres 165 107323 19.15% 60 39474 21.22% 

Indiana 

1000-1999 

acres 94 127018 22.67% 35 47597 25.59% 

Indiana > 2000 acres 34 89253 15.93% 22 56397 30.32% 

Indiana Subtotal 3483 560368 100% 314 185984 100.00% 

        Michigan < 10 acres 40 120 0.02% 1 8 0.01% 

Michigan 10-49 acres 689 10403 2.01% 3 100 0.13% 

Michigan 50-179 acres 849 49423 9.55% 16 1721 2.23% 

Michigan 180-499 acres 393 94790 18.32% 17 5527 7.18% 

Michigan 500-999 acres 166 101770 19.67% 24 17111 22.22% 

Michigan 

1000-1999 

acres 112 136784 26.44% 20 25958 33.71% 

Michigan > 2000 acres 47 124037 23.98% 8 26585 34.52% 

Michigan Subtotal 2296 517327 100% 89 77010 100% 

        Ohio < 10 acres 251 1005 0.03% 1 8 0.00% 

Ohio 10-49 acres 2127 42659 1.18% 74 2263 0.25% 

Ohio 50-179 acres 3178 271555 7.50% 306 33804 3.76% 

Ohio 180-499 acres 2230 620761 17.15% 344 106243 11.82% 

Ohio 500-999 acres 997 645401 17.83% 215 149786 16.67% 

Ohio 

1000-1999 

acres 528 676477 18.69% 128 172838 19.24% 

Ohio > 2000 acres 103 284746 7.87% 59 170587 18.99% 

Ohio Subtotal 9414 2542604 100% 1127 635530 100% 

        Three States' Total 15193 3620298   1530 898524   

 

Table 33. Comparison of Farm Acre Distribution between Our Farmer Survey and 2007 

Census of Agriculture Microdata 
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Figure 13. Distribution of Fertilizer Application Rates Based on Responses to 

Hypothetical Fertilizer Price Questions 
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